
Citation: Kotiranta, P.; Junkkari, M.;

Nummenmaa, J. Performance of

Graph and Relational Databases in

Complex Queries. Appl. Sci. 2022, 12,

6490. https://doi.org/10.3390/

app12136490

Academic Editor: Federico Divina

Received: 20 May 2022

Accepted: 22 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Performance of Graph and Relational Databases in
Complex Queries
Petri Kotiranta, Marko Junkkari * and Jyrki Nummenmaa

Faculty of Information Technology and Communication Sciences, Computing Sciences, Tampere University,
33100 Tampere, Finland; petri.kotiranta@tuni.fi (P.K.); jyrki.nummenmaa@tuni.fi (J.N.)
* Correspondence: marko.junkkari@tuni.fi

Abstract: In developing NoSQL databases, a major motivation is to achieve better efficient query
performance compared with relational databases. The graph database is a NoSQL paradigm where
navigation is based on links instead of joining tables. Links can be implemented as pointers, and
following a pointer is a constant time operation, whereas joining tables is more complicated and
slower, even in the presence of foreign keys. Therefore, link-based navigation has been seen as a more
efficient query approach than using join operations on tables. Existing studies strongly support this
assumption. However, query complexity has received less attention. For example, in enterprise
information systems, queries are usually complex so data need to be collected from several tables or
by traversing paths of graph nodes of different types. In the present study, we compared the query
performance of a graph-based database system (Neo4j) and relational database systems (MySQL and
MariaDB). The effect of different efficiency issues (e.g., indexing and optimization) were included
in the comparison in order to investigate the most efficient solutions for different query types. The
outcome is that although Neo4j is more efficient for simple queries, MariaDB is essentially more
efficient when the complexity of queries increases. The study also highlighted how dramatically the
efficiency of relational database has grown during the last decade.

Keywords: graph database; relational database; performance; complex queries; Neo4J; MariaDB; MySQL

1. Introduction

Performance is one of the motivations to use NoSQL databases instead of traditional
SQL databases [1,2]. With data and queries suitable for the data model, NoSQL databases
might offer significant performance benefits. In the present study, we compared database
systems of the traditional relational model and of the NoSQL graph model. In the graph
model [3], which is one of the four major NoSQL types, the data consist of nodes and edges,
and it has its own benefits when handling relationship rich data. While in SQL databases
multiple tables may need to be joined for a relational query, in graph databases relational
information can be queried by navigating through the graph.

Previous studies [4–8] where the performance of graph databases, especially Neo4j,
was compared with the traditional SQL databases, indicate that graph databases possess
better performance than relational databases. However, those studies mainly focused on
quite simple queries. In contrast to the earlier studies, we investigated the performance
of database systems in situations where the query complexity increased. In a complex
query, the necessary data must be collected from several tables in an SQL database, or
by traversing a path of different types of nodes, potentially using recursion, in a graph
database. Using a complex query, an aggregated value (e.g., a count or an average) from
a large data set can be calculated. Complex queries are typical in various application
domains such as Enterprise information systems [9], Geographical information systems [10],
Bioinformatics [11] and CAD systems [12]. The sample data of the present paper relate to
Enterprise information systems.

Appl. Sci. 2022, 12, 6490. https://doi.org/10.3390/app12136490 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136490
https://doi.org/10.3390/app12136490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12136490
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136490?type=check_update&version=1

Appl. Sci. 2022, 12, 6490 2 of 16

In the present study, MariaDB and two versions of MySQL were selected as relational
database systems. MariaDB was selected because it is a modern database system and, to
the best of our knowledge, it has not been compared to graph database systems before.
MySQL 8.0 was included in the present investigation in order to compare how the query
performance of complex queries differs between MySQL and MariaDB. Old MySQL 5.1 was
included to observe the efficiency development of relational database systems. MariaDB
and MySQL 8.0 were initially based on MySQL 5.1. Thus, they belong to the same database
system family, and their comparison is an indication of how relational database query
efficiency has developed during the last decade. In addition to using complex queries,
we also paid attention to factors related to efficiency. Indexing is a traditional method to
improve performance and it can be applied with both relational and graph databases. Ad-
ditionally, for the selected graph database system (Neo4J), a more efficient query execution
type (call-function) was developed. Recursive queries can be optimized in modern versions
of Neo4J. We considered all these optimizations in the efficiency evaluations.

In order to benchmark the database systems using complex queries, we designed
and implemented a new test bench that also supports complex queries, unlike existing
benchmarks such as [13] or [14]. Our test bench was designed for testing queries using
MariaDB, MySQL, and Neo4J. The test database relates to enterprise information systems,
but it is worth noting that the query types are general, and processing of the data is similar
in many other domains. The test bench is called Invoicing Database Test Bench and its
source code is available in GitHub [15]. The program generated a selected amount of data
for our test invoicing database schema and performed various query tests. Our dataset
is public. The source code for generating the data is available in GitHub, and, thus, it is
possible for anyone to repeat these tests by installing the same test bench and generating
the same data.

The rest of the paper is organized as follows. Section 2 reviews previous work related
to Neo4j and MariaDB performance analysis. Section 3 introduces the schema that is used
for the test data. Section 4 presents the implemented benchmarking program. Section 5
presents the test queries. Section 6 presents the test results. Section 7 discusses the results
and Section 8 contains the conclusions.

2. Related Work

An older MySQL version was included in the comparison to make our research
compatible with earlier studies. From this perspective, MariaDB is a natural choice for
a modern database, because MariaDB was initially a descendant of MySQL. Based on the
popularity of databases, the DB-Engines site ranks MariaDB as 8th out of 138 of relational
databases [16]. Neo4j ranks 1st out of 32 graph databases on the same sites. DB-Engines
ranks the databases according to current popularity. Popularity is measured using six
parameters. The first parameter is the number of mentions on the websites Google and
Bing. Second is the general interest which is measured by frequency in Google Trends.
Third is the frequency of technical questions in Stack Overflow or DBA Stack Exchange.
Fourth is the number of job offers in Indeed and Simply Hired. Fifth is the number of
profiles in LinkedIn in which the system is mentioned. Sixth is the relevance in social
networks which is counted by the number of tweets on Twitter, in which the system is
mentioned. As all of the databases we studied are quite popular and are often candidates
for use in enterprises. One of the goals of this study was to identify differences in what use
case the databases should be used.

SQL databases and Neo4j have been compared in several studies [4–8]. Khan et al.
compared tuned Oracle 11 g and Neo4j 3.03 Community Edition [4]. They used health-
care data, including data of patients, medication, and medical staff. Performance of the
databases was evaluated using ten different count(*) queries. Many of the queries in-
cluded some table joins. A physical database tuning technique called tablespaces was
used for Oracle. The same databases were compared without physical database tuning
by Khan et al. [6]. The physical database tuning technique decreased the overall average

Appl. Sci. 2022, 12, 6490 3 of 16

query time of Oracle from 4.34 to 2.78 s. However, the overall average query time for Neo4j
in query tests was only 0.67 s. Thus, Neo4j outperformed Oracle.

Holzschuher et al. tested Neo4j version 1.8 performance with different backend solu-
tions [5]. Neo4j was benchmarked as embedded with native object access, as a dedicated
server through RESTful Web Services, with embedded Cypher queries, with Cypher opti-
mized for remote execution with REST, and with Gremlin queries through REST. MySQL
version 5.5.27 was also included with Java Persistence API based backend. Queries were
written using Cypher, Gremlin and SQL query languages. The test data consisted of data
of persons and their relationships. Tests included such queries as friends of friends. As the
size of the database increased, the advantages of Neo4j over MySQL became more evident.
Neo4j performance stayed nearly constant when MySQL performance dropped by factors
of 5 and 7–9. Queries in Neo4j query languages Gremlin and Cypher executed faster than
queries using MySQL with JPA.

Vicknair et al. compared MySQL Community Server version 5.1.42 and Neo4j version
1.0-b11 in 2010 [7]. The graph database was transferred into a relational database as nodes
and edges. Three types of structural and three types of data queries were made. The first
structural query found all orphan nodes and the two other structural queries traversed the
graph at depths of 4 and 128. The data queries were count(*) queries counting nodes with
certain payloads. Neo4j performed better in structural queries. However, in data queries,
MySQL was more efficient, partly due to the use of Lucene indexing in the tested Neo4j.
The data contained integers, and Lucene treated the data as text by default, so conversions
were necessary and thus impacted the performance. The work [7] by Vicknair et al. has
been referenced in [4–6].

Batra et al. compared MySQL version 5.1.41 and Neo4j Community version 1.6 in
2012 [8]. They used a schema with tables user, friends, fav_movies, and actors for testing,
and they tested the databases with three queries: “Find all friends of Esha”, “Find all
favourite movies of Esha’s friends” and “Find the lead actors of Esha’s friends’ favourite
movies”. Queries were executed on 100 and 500 objects. Neo4j had 2–5 times faster query
execution times with a 100-objects data set and 15–30 times faster query execution with
a 500-objects data set. The work by Batra et al. [8] was similar to that of the present study
as the data were stored in an SQL database with a relational schema unlike in the work by
Vicknair et al. [7]. The work [8] by Batra et al. is referenced in [5].

There also exist previous performance studies where MariaDB is involved. Tongkaw et al.
compared the performance of MariaDB 10.0.21 and MySQL 5.6 [17]. They used the Sysbench
and OLTP [14] software systems with OLTP-Simple and OLTP-Seats workloads. Both
databases consumed the same number of resources. However, when increasing the number
of threads in OLTP-Simple and the number of workers in OLTP-Seats, MySQL became
clearly more efficient and outperformed MariaDB. Shalygina et al. studied the Common
Table Expression capabilities of MariaDB by comparing it to Postgres [18]. The study
showed that Postgres had better results, when only a few steps of recursion were needed.
However, MariaDB was a better choice for longer-executing recursive queries on huge
amounts of data.

Stanescu [19] compared the performance of SQL Server 2009 and Neo4j 4.0. Four datasets
were used consisting of 350,000, 700,000, 1,400,000 and 2,100,000 entries. A schema with
multiple relations between entities was used. Five different query tests were performed
with the different datasets. All the queries addressed relations between entities, so joins or
matches between relationships were used. The results show that as query complexity and
dataset complexity grew, Neo4j performed faster than the SQL Server.

Sholichah et al. [20] compared MySQL and Neo4j. Four queries were used. Three of
the queries were tested with datasets containing 10, 100, 500, 1000 and 10,000 records. The
fourth query was used to infer the databases’ ability to handle unstructured data. In these
tests, MySQL was in general faster and used less memory as the query complexity and
number of records increased. Both databases were able to handle unstructured data.

Appl. Sci. 2022, 12, 6490 4 of 16

Cheng et al. [21] compared RocksDB 5.8, Hbase 2.2, Cassandra 3.11, Neo4j 3.4.6
and MySQL 5.7. Four relational datasets from TPC-H benchmark were used as well as
four real graph datasets. Different types of query workloads were tested, including atomic
relational queries such as projection, aggregation, join and order by, TPC-H workloads, and
different graph query algorithms. The conclusion of the tests was that relational databases
outperformed graph databases with workloads that mainly consisted of group by, sort,
aggregation operations and their combinations. Graph databases outperformed relational
databases with workloads that mainly consisted of multiple table joins, pattern matching,
path identification and their combinations.

3. Test Database

Our test database is a general example from enterprise information systems, where
different types of information are associated with customers. In the example, a customer
may have several targets for which different types of works and items are associated. When
sending an invoice to a customer, the stored works and items must be found and calculated
which may require complex navigation among stored data. As it is an invoicing database,
one of the most important use cases is the calculation of the price for a customer invoice.
This is achieved by calculating the used time for work of different work types and the price
of the items used when working. Invoices might also have relations to other invoices if
several invoices are sent to the customer.

The relational database has 10 tables. The basic tables customer, invoice, target, work,
worktype and item represent entities of the application domain. These tables contain
the customer information, customer’s invoices, the target (or project) where the work is
performed, a listing of each work, and a listing of different worktypes with different prices
and information about the items used for each work. Relationships between the entities
are stored in relationship tables of worktarget, workinvoice, useditem and workhours.
These represent many-to-many relationships between entities. Figure 1 shows the database
structure as a relational database schema. Arrows illustrate how the tables are associated
with each other. For example, the arrow from the invoice to the customer means that
customer_id in the invoice table refers to an id in the customer table.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 17

tests, MySQL was in general faster and used less memory as the query complexity and
number of records increased. Both databases were able to handle unstructured data.

Cheng et al. [21] compared RocksDB 5.8, Hbase 2.2, Cassandra 3.11, Neo4j 3.4.6 and
MySQL 5.7. Four relational datasets from TPC-H benchmark were used as well as four
real graph datasets. Different types of query workloads were tested, including atomic re-
lational queries such as projection, aggregation, join and order by, TPC-H workloads, and
different graph query algorithms. The conclusion of the tests was that relational databases
outperformed graph databases with workloads that mainly consisted of group by, sort,
aggregation operations and their combinations. Graph databases outperformed relational
databases with workloads that mainly consisted of multiple table joins, pattern matching,
path identification and their combinations.

3. Test Database
Our test database is a general example from enterprise information systems, where

different types of information are associated with customers. In the example, a customer
may have several targets for which different types of works and items are associated.
When sending an invoice to a customer, the stored works and items must be found and
calculated which may require complex navigation among stored data. As it is an invoicing
database, one of the most important use cases is the calculation of the price for a customer
invoice. This is achieved by calculating the used time for work of different work types and
the price of the items used when working. Invoices might also have relations to other
invoices if several invoices are sent to the customer.

The relational database has 10 tables. The basic tables customer, invoice, target, work,
worktype and item represent entities of the application domain. These tables contain the
customer information, customer’s invoices, the target (or project) where the work is per-
formed, a listing of each work, and a listing of different worktypes with different prices
and information about the items used for each work. Relationships between the entities
are stored in relationship tables of worktarget, workinvoice, useditem and workhours.
These represent many-to-many relationships between entities. Figure 1 shows the data-
base structure as a relational database schema. Arrows illustrate how the tables are asso-
ciated with each other. For example, the arrow from the invoice to the customer means
that customer_id in the invoice table refers to an id in the customer table.

Figure 1. Database structure in relational format.

In our graph database schema, entities are represented as nodes, and relationships as
directed edges. Two edges are used to represent many-to-many relationships. Customer,

Figure 1. Database structure in relational format.

In our graph database schema, entities are represented as nodes, and relationships as
directed edges. Two edges are used to represent many-to-many relationships. Customer,
invoice, target, work, and worktype entities are represented as nodes. Relationships PAYS
from the customer to invoice, and CUSTOMER_TARGET from the customer to the target,
and PREVIOUS_INVOICE from an invoice to another are represented by directed edges,

Appl. Sci. 2022, 12, 6490 5 of 16

the last being a recursive relationship. WORK_TARGET, WORK_INVOICE, WORKHOURS
and USED_ITEM are each represented by two edges. Figure 2 represents the database
structure in a graph format. The attributes of nodes and edges are not illustrated.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 17

invoice, target, work, and worktype entities are represented as nodes. Relationships PAYS
from the customer to invoice, and CUSTOMER_TARGET from the customer to the target,
and PREVIOUS_INVOICE from an invoice to another are represented by directed edges,
the last being a recursive relationship. WORK_TARGET, WORK_INVOICE, WORK-
HOURS and USED_ITEM are each represented by two edges. Figure 2 represents the da-
tabase structure in a graph format. The attributes of nodes and edges are not illustrated.

Figure 2. Graph database structure.

4. Test Program
The test data were generated using a Java program. The customer and target gener-

ation used sample data based on openly available name and address data sets [22,23]. The
generation process was divided into three parts. Items and work types need to be gener-
ated first, then work and customer data. The program has threaded classes for each part.
Multiple threads can be used to insert the generated data. For random data generation,
controlled random seeds were used, making the generation repeatable.

The generation was controlled with parameters for the following: numbers of work
types; numbers of items; numbers of related invoices, targets and work for a customer;
number of works; number of customers; numbers of relations between worktypes and
works; numbers of invoices and targets for each customer; and numbers of workinvoice
and worktarget relationships.

The program has a class called QueryTester that was used to perform the query tests.
Query tests were repeated the selected number of times. The test program collects the
performance figures from the executions into a list structure. The program removes the
biggest and the smallest number from the list and calculates the average and the standard
deviation from the rest of the results.

The test data follows the schemata of the databases given in Figures 1 and 2. The used
dataset was generated using the test program [15]. Table 1 shows the numbers of rows/ob-
jects generated for the dataset. For each row in the relationship tables of useditem, work-
hours, workinvoice and worktarget, two respective edges were generated for the Neo4j
graph database, as a many-to-many relationship was expressed as a bidirectional relation-
ship, i.e., two edges. The size of relational databases is 214 Mt and the size of Neo4J is 1,12
Gt.

Figure 2. Graph database structure.

4. Test Program

The test data were generated using a Java program. The customer and target gen-
eration used sample data based on openly available name and address data sets [22,23].
The generation process was divided into three parts. Items and work types need to be
generated first, then work and customer data. The program has threaded classes for each
part. Multiple threads can be used to insert the generated data. For random data generation,
controlled random seeds were used, making the generation repeatable.

The generation was controlled with parameters for the following: numbers of work
types; numbers of items; numbers of related invoices, targets and work for a customer;
number of works; number of customers; numbers of relations between worktypes and
works; numbers of invoices and targets for each customer; and numbers of workinvoice
and worktarget relationships.

The program has a class called QueryTester that was used to perform the query tests.
Query tests were repeated the selected number of times. The test program collects the
performance figures from the executions into a list structure. The program removes the
biggest and the smallest number from the list and calculates the average and the standard
deviation from the rest of the results.

The test data follows the schemata of the databases given in Figures 1 and 2. The used
dataset was generated using the test program [15]. Table 1 shows the numbers of rows/objects
generated for the dataset. For each row in the relationship tables of useditem, workhours,
workinvoice and worktarget, two respective edges were generated for the Neo4j graph
database, as a many-to-many relationship was expressed as a bidirectional relationship,
i.e., two edges. The size of relational databases is 214 Mt and the size of Neo4J is 1.12 Gt.

Table 1. The numbers of the generated rows/objects in SQL and Neo4j.

Table/Object Rows in SQL Object in Neo4J

Customer 10,000 10,000 nodes
Invoice 100,000 100,000 nodes

Item 100,000 100,000 nodes
Target 100,000 100,000 nodes
Work 10,000 10,000 nodes

Workhours 100,000 200,000 edges
Workinvoice 1,000,000 2000,000 edges
Worktarget 1,000,000 2,000,000 edges
Worktype 100,000 100,000 nodes
UsedItem 100,000 200,000 edges

Pays - 100,000 edges
Customertarget - 100,000 edges
Previousinvoice 100/1000 100/1000 edges

Appl. Sci. 2022, 12, 6490 6 of 16

5. Test Queries

The query tests contain queries with different complexities. A query task represents
an information need to be fulfilled using a query to the database, and it is implemented in
SQL and Cypher queries. Each task involves the following two Cypher queries: basic form
and optimized/CALL forms. The query tasks are ordered from simple to complex starting
from the work price and the work price with items ending in the invoice prices, and invoice
prices for a given customer. Finally, recursive queries combine all the related invoices.

The tasks were chosen as they represent typical information needs that would be
executed in the chosen test databases. Finding and calculating invoice related information
the primary use for a database, and this is what all the test queries demonstrated. Querying
all the information required for invoices leads to complex queries. Simpler queries were
included in order to see how databases perform with different complexities of queries.

Calculating the invoice prices is one of the most important query tasks. The schema
does not store invoice prices explicitly. The price must be calculated based on the amount
of workhours and the items used. The “price of work” and the “price of work with items”
are the subqueries for calculating this price. The queries calculating invoice prices for
a given customer add customer information into this task. The recursive queries find all
the recursively related invoices given the top-level invoice.

5.1. Query Optimization

In addition to just testing databases with the queries, we investigated improving the
query performance, in particular by indexing. Both MySQL and MariaDB create an index
by default for the primary keys and for the foreign keys while Neo4j does not create indices
for properties by default. The effect of indexing is also different in an SQL database and
in a graph database. As was the case for our investigation, in SQL databases, the tables
are often joined on primary key and foreign key information. Thus, SQL databases usually
benefit from the indexing of primary keys and foreign keys. In a graph database, the graph
is traversed when querying data. We do not benefit from indexing the properties the way
we do with SQL databases. However, starting points for traversing the graph may be found
faster using an index.

In order to study the effects of indexing, certain columns and properties that were
used in queries were indexed in all the databases. Table 2 shows the extra indices created.
As ids in customer and invoice tables are indexed by default in MySQL and MariaDB,
an extra index was not needed.

Besides indexing, in Neo4j 4.4.8, queries can be optimized using CALL subqueries [24].
The CALL clause makes it possible to execute subqueries in other queries. It is similar to
a function that obtains input parameters from the main query and returns some values.
The subquery is executed for each incoming input row from calling the query from the
main query. CALL was supported from Neo4j 4.1 onwards. In the present study, Cypher
queries with and without CALL were used for backward compatibility and to see how
much CALL subqueries improve the query performance.

Table 2. Indexed columns/properties in SQL and Neo4j.

Table/Node SQL Neo4j

Customer - customerId
Invoice previousinvoice invoiceId, previousinvoice

Item purchaseprice purchaseprice
Workhours hours, discount hours, discount
Worktype price price
Useditem amount, discount amount, discount

5.2. Task 1: Price of Work

The first query task focused on calculating the price of works. One work can have
different work types with different prices. The price of one work is defined by the number

Appl. Sci. 2022, 12, 6490 7 of 16

of hours performed of the work type. There can also be a discount on the prices and the
discount is included in the calculation. The related queries show how databases perform
with a fairly simple query task. Figure 3 shows the queries of the task for the price of work
in SQL and Cypher.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 17

Table 2. Indexed columns/properties in SQL and Neo4j.

Table/Node SQL Neo4j
Customer - customerId

Invoice previousinvoice invoiceId, previousinvoice
Item purchaseprice purchaseprice

Workhours hours, discount hours, discount
Worktype price price
Useditem amount, discount amount, discount

Besides indexing, in Neo4j 4.4.8, queries can be optimized using CALL subqueries
[24]. The CALL clause makes it possible to execute subqueries in other queries. It is similar
to a function that obtains input parameters from the main query and returns some values.
The subquery is executed for each incoming input row from calling the query from the
main query. CALL was supported from Neo4j 4.1 onwards. In the present study, Cypher
queries with and without CALL were used for backward compatibility and to see how
much CALL subqueries improve the query performance.

5.2. Task 1: Price of Work
The first query task focused on calculating the price of works. One work can have

different work types with different prices. The price of one work is defined by the number
of hours performed of the work type. There can also be a discount on the prices and the
discount is included in the calculation. The related queries show how databases perform
with a fairly simple query task. Figure 3 shows the queries of the task for the price of work
in SQL and Cypher.

Figure 3. Queries for Task 1 (Price of work).

5.3. Task 2: Price of Work with Items
The task for calculating the price of work with items is an extended version of Task

1. During the task, item prices are added into work prices. As items are also included,
longer queries are needed. With this task, it is possible to see how databases perform when
more relationships and calculations are included in queries. Item purchase price is a float-
ing-point number so this changes the calculations slightly. Figure 4 shows the queries for
the price of work with items in SQL and Cypher.

Figure 3. Queries for Task 1 (Price of work).

5.3. Task 2: Price of Work with Items

The task for calculating the price of work with items is an extended version of Task 1.
During the task, item prices are added into work prices. As items are also included, longer
queries are needed. With this task, it is possible to see how databases perform when more
relationships and calculations are included in queries. Item purchase price is a floating-
point number so this changes the calculations slightly. Figure 4 shows the queries for the
price of work with items in SQL and Cypher.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Figure 4. Queries for Task 2 (Price of work with items).

5.4. Task 3: Invoice Price
Queries related to Task 3 calculate the sum of work prices for an invoice. The queries

contain two subqueries. The first one finds the relationships between invoices and work.
The second is the one presented above in Task 2. The results of these queries are joined
and the sums of prices are aggregated based on the id of the invoice. This is one of the
most demanding tasks and as such it is useful to see the performance differences when
executing complex queries. Figure 5 shows the queries for calculating the invoice price in
SQL and Cypher.

Figure 4. Queries for Task 2 (Price of work with items).

Appl. Sci. 2022, 12, 6490 8 of 16

5.4. Task 3: Invoice Price

Queries related to Task 3 calculate the sum of work prices for an invoice. The queries
contain two subqueries. The first one finds the relationships between invoices and work. The
second is the one presented above in Task 2. The results of these queries are joined and the
sums of prices are aggregated based on the id of the invoice. This is one of the most demanding
tasks and as such it is useful to see the performance differences when executing complex
queries. Figure 5 shows the queries for calculating the invoice price in SQL and Cypher.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 17

Figure 5. Queries for Task 3 (Invoice price).

5.5. Task 4: Invoice Prices for a Given Customer
It is often necessary to find out all the invoice prices for a given customer. The queries

of this task calculate invoice prices for a given customer. They are extensions of the queries
of Task 3. Subqueries to obtain relationships between the underlying customer and in-
voices are included. The queries of this task are the most complex of the tested queries.
From the technical point of view, the queries show how databases perform when there is
a certain key defined for which the data should be related to. Figure 6 represents the que-
ries for calculating invoice prices for a given customer.

Figure 5. Queries for Task 3 (Invoice price).

5.5. Task 4: Invoice Prices for a Given Customer

It is often necessary to find out all the invoice prices for a given customer. The queries
of this task calculate invoice prices for a given customer. They are extensions of the queries
of Task 3. Subqueries to obtain relationships between the underlying customer and invoices
are included. The queries of this task are the most complex of the tested queries. From the
technical point of view, the queries show how databases perform when there is a certain
key defined for which the data should be related to. Figure 6 represents the queries for
calculating invoice prices for a given customer.

5.6. Task 5: Recursive Queries for Invoice Chain

The recursive queries find all the invoices related to a given invoice id. The task is
useful to test the recursive query capabilities of the databases. In SQL, Common Table
Expressions are used to make the query. In Cypher, there is a way to optimize a recursive
query by negating irrelevant relationships. The optimized query does not return exactly the
same result as the basic query. While the basic query returns a set of individual nodes, the
optimized query returns a list structure containing nodes. However, it still returns similar

Appl. Sci. 2022, 12, 6490 9 of 16

results and as such it is a relevant query. Figure 7 presents the queries for finding invoices
recursively related for a given invoice.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 17

Figure 6. Queries for Task 4 (Invoice prices for a given customer).

5.6. Task 5: Recursive Queries for Invoice Chain
The recursive queries find all the invoices related to a given invoice id. The task is

useful to test the recursive query capabilities of the databases. In SQL, Common Table
Expressions are used to make the query. In Cypher, there is a way to optimize a recursive
query by negating irrelevant relationships. The optimized query does not return exactly
the same result as the basic query. While the basic query returns a set of individual nodes,
the optimized query returns a list structure containing nodes. However, it still returns
similar results and as such it is a relevant query. Figure 7 presents the queries for finding
invoices recursively related for a given invoice.

Figure 6. Queries for Task 4 (Invoice prices for a given customer).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 17

Figure 7. Recursive queries for Task 5 (Invoices recursively related to a given invoice).

6. Test Executions
6.1. Test Settings

The tests were performed with a MacBook Pro Laptop with the following specifica-
tions:
• MacOS 12.3.1;
• 1.4 GHz quad core Intel Core i5;
• 8 GB 2133 MHz LPDDR3;
• Intel Iris Plus Graphics 645, 1536 MB.

MySQL versions 5.1.41 and 8.0.29, MariaDB version 10.8.3 and Neo4j community edi-
tion version 4.4.8 were installed on this computer. MariaDB and Neo4j were the latest
versions at the time of the study. MySQL version 5.1.41 was already considered to be
“end-of-life” when conducting the present study. However, it was used in a previous
study [8] and version 5.1.42 was used in [7]. MariaDB driver version 2.7 and Neo4j driver
version 4.1.1 were used. MySQL driver version 4.1.41 was used for MySQL 4.1.41.

6.2. Test Results
The results of tests are given in Tables 3 and 4. Each query result contains an average

time for the query in milliseconds. Table 3 contains the results for the queries related to
Tasks 1, 2, 3 and 4. Table 4 contains the result of recursive queries for Task 5. Table 4 does
not contain results for MySQL 5.1 because MySQL 5.1 does not support those queries. The
results are illustrated and further analyzed in the following subsections. Indexed (ind) is
the same query on an indexed database. Notably, the performance ranking of different
systems varied for different tasks and settings, with the exception that MySQL was always
slower than MariaDB.

Table 3. Query performance of the MySQL, MariaDB and Neo4J.

 MySQL 5 MySQL 8 MariaDB Neo4J Neo4J CALL
Task 1 (Short Query)

Avg 576 464 486 162 149
Avg, ind 453 459 472 173 149

Task 2 (Long Query)
Avg 6550 5337 5549 1868 1776

Avg, ind 5190 5257 5293 1968 1831
Task 3 (Aggregate Query)

Figure 7. Recursive queries for Task 5 (Invoices recursively related to a given invoice).

Appl. Sci. 2022, 12, 6490 10 of 16

6. Test Executions
6.1. Test Settings

The tests were performed with a MacBook Pro Laptop with the following specifications:

• MacOS 12.3.1;
• 1.4 GHz quad core Intel Core i5;
• 8 GB 2133 MHz LPDDR3;
• Intel Iris Plus Graphics 645, 1536 MB.

MySQL versions 5.1.41 and 8.0.29, MariaDB version 10.8.3 and Neo4j community
edition version 4.4.8 were installed on this computer. MariaDB and Neo4j were the latest
versions at the time of the study. MySQL version 5.1.41 was already considered to be
“end-of-life” when conducting the present study. However, it was used in a previous
study [8] and version 5.1.42 was used in [7]. MariaDB driver version 2.7 and Neo4j driver
version 4.1.1 were used. MySQL driver version 4.1.41 was used for MySQL 4.1.41.

6.2. Test Results

The results of tests are given in Tables 3 and 4. Each query result contains an average
time for the query in milliseconds. Table 3 contains the results for the queries related to
Tasks 1, 2, 3 and 4. Table 4 contains the result of recursive queries for Task 5. Table 4 does
not contain results for MySQL 5.1 because MySQL 5.1 does not support those queries. The
results are illustrated and further analyzed in the following subsections. Indexed (ind) is
the same query on an indexed database. Notably, the performance ranking of different
systems varied for different tasks and settings, with the exception that MySQL was always
slower than MariaDB.

Table 3. Query performance of the MySQL, MariaDB and Neo4J.

MySQL 5 MySQL 8 MariaDB Neo4J Neo4J CALL

Task 1 (Short Query)
Avg 576 464 486 162 149

Avg, ind 453 459 472 173 149
Task 2 (Long Query)

Avg 6550 5337 5549 1868 1776
Avg, ind 5190 5257 5293 1968 1831

Task 3 (Aggregate Query)
Avg 276,935 7674 7242 212,171 209,816

Avg, ind 251,138 7615 7117 215,053 205,198
Task 4 (Aggregate Query with defined key)

Avg 3,938,500 5212 59 33 57
Avg, ind 3,891,082 5227 57 26 55

Table 4. Query performance in recursive queries.

MySQL 8 MariaDB Neo4J Neo4J Optimized

Recursive Query, 100 entities
Avg 7850 9152 73 42

Avg, ind 1 1 72 42
Recursive Query, 1000 entities

Avg 79,037 92,917 331,338 2146
Avg, ind 2 4 208,573 2127

6.2.1. Query Performance in Task 1

The performance results for Task 1 are illustrated in Figure 8. From the generated
dataset, the query returned 10,000 rows/objects. With this query, Neo4j outperformed
relational databases. The best run of Neo4j was about three times faster than the best
run on relational databases. Between MySQL 8.0 and MariaDB, no essential difference

Appl. Sci. 2022, 12, 6490 11 of 16

appeared. Among versions of MySQL, the old version 5.1 was the fastest, when indices
were used. In other databases, indexing played a minor role in efficiency. The inclusion of
CALL brought minor benefits to Neo4j with this query. The numeric performance values
are given in Table 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 17

Avg 276,935 7674 7242 212,171 209,816
Avg, ind 251,138 7615 7117 215,053 205,198

Task 4 (Aggregate Query with defined key)
Avg 3,938,500 5212 59 33 57

Avg, ind 3,891,082 5227 57 26 55

Table 4. Query performance in recursive queries.

 MySQL 8 MariaDB Neo4J Neo4J Optimized
Recursive Query, 100 entities

Avg 7850 9152 73 42
Avg, ind 1 1 72 42

Recursive Query, 1000 entities
Avg 79,037 92,917 331,338 2146

Avg, ind 2 4 208,573 2127

6.2.1. Query Performance in Task 1
The performance results for Task 1 are illustrated in Figure 8. From the generated

dataset, the query returned 10,000 rows/objects. With this query, Neo4j outperformed re-
lational databases. The best run of Neo4j was about three times faster than the best run on
relational databases. Between MySQL 8.0 and MariaDB, no essential difference appeared.
Among versions of MySQL, the old version 5.1 was the fastest, when indices were used.
In other databases, indexing played a minor role in efficiency. The inclusion of CALL
brought minor benefits to Neo4j with this query. The numeric performance values are
given in Table 3.

Figure 8. Results for the queries of Task 1.

6.2.2. Query Performance in Task 2
Results for the queries for Task 2 are shown in Figure 9. From the generated dataset,

the query returned 10,000 rows/objects. The mutual difference between relational data-
bases was similar to that in Task 1. The best run of Neo4J was about three times faster than
the best run on relational databases. In this query, indices of relational databases had a
minor effect. In basic Neo4j, indexing had a negative effect.

0 50 100 150 200 250 300 350 400 450

MySQL 5.1.41

MariaDB 10.5.6

Neo4J 4.1.3

Neo4J 4.1.3 CALL

Avg indexed Avg

Figure 8. Results for the queries of Task 1.

6.2.2. Query Performance in Task 2

Results for the queries for Task 2 are shown in Figure 9. From the generated dataset, the
query returned 10,000 rows/objects. The mutual difference between relational databases
was similar to that in Task 1. The best run of Neo4J was about three times faster than the
best run on relational databases. In this query, indices of relational databases had a minor
effect. In basic Neo4j, indexing had a negative effect.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17

Figure 9. Results for the queries of Task 2.

6.2.3. Query Performance in Task 3
In the aggregation query of Task 3, radical differences between the database ap-

peared. Here, MariaDB was 35 times faster than the old MySQL and 29 times faster than
basic Neo4j. The inclusion of CALL did not provide a significant performance benefit com-
pared to basic Neo4j. MariaDB was a little faster than MySQL 8.0.29. Figure 10 illustrates
the differences between the databases and their settings.

Figure 10. Results for the queries of Task 3.

6.2.4. Query Performance in Task 4
Results for Task 4 are illustrated in Figure 11. From the generated dataset, the query

returned 10 rows/objects. MySQL 5.1.41 was excluded as the performance was too poor—
the query took over one hour on average. In practice, it would be unusable. Neo4J per-
formed the best. However, the inclusion of CALL did not lead to performance benefits.
Instead, indexing seemed to bring improvements with the basic Cypher query. With in-
dexing, Neo4j found the customer from the graph faster. MariaDB also performed well,
but it was 50% slower than the best run with Neo4J. A dramatic difference appeared be-
tween relational database systems. Namely, MariaBD was about 90 times faster than
MySQL 8.0.29. This was the first essential difference found between the modern data-
bases.

Figure 9. Results for the queries of Task 2.

6.2.3. Query Performance in Task 3

In the aggregation query of Task 3, radical differences between the database appeared.
Here, MariaDB was 35 times faster than the old MySQL and 29 times faster than basic
Neo4j. The inclusion of CALL did not provide a significant performance benefit compared
to basic Neo4j. MariaDB was a little faster than MySQL 8.0.29. Figure 10 illustrates the
differences between the databases and their settings.

Appl. Sci. 2022, 12, 6490 12 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17

Figure 9. Results for the queries of Task 2.

6.2.3. Query Performance in Task 3
In the aggregation query of Task 3, radical differences between the database ap-

peared. Here, MariaDB was 35 times faster than the old MySQL and 29 times faster than
basic Neo4j. The inclusion of CALL did not provide a significant performance benefit com-
pared to basic Neo4j. MariaDB was a little faster than MySQL 8.0.29. Figure 10 illustrates
the differences between the databases and their settings.

Figure 10. Results for the queries of Task 3.

6.2.4. Query Performance in Task 4
Results for Task 4 are illustrated in Figure 11. From the generated dataset, the query

returned 10 rows/objects. MySQL 5.1.41 was excluded as the performance was too poor—
the query took over one hour on average. In practice, it would be unusable. Neo4J per-
formed the best. However, the inclusion of CALL did not lead to performance benefits.
Instead, indexing seemed to bring improvements with the basic Cypher query. With in-
dexing, Neo4j found the customer from the graph faster. MariaDB also performed well,
but it was 50% slower than the best run with Neo4J. A dramatic difference appeared be-
tween relational database systems. Namely, MariaBD was about 90 times faster than
MySQL 8.0.29. This was the first essential difference found between the modern data-
bases.

Figure 10. Results for the queries of Task 3.

6.2.4. Query Performance in Task 4

Results for Task 4 are illustrated in Figure 11. From the generated dataset, the query
returned 10 rows/objects. MySQL 5.1.41 was excluded as the performance was too poor—
the query took over one hour on average. In practice, it would be unusable. Neo4J
performed the best. However, the inclusion of CALL did not lead to performance benefits.
Instead, indexing seemed to bring improvements with the basic Cypher query. With
indexing, Neo4j found the customer from the graph faster. MariaDB also performed well,
but it was 50% slower than the best run with Neo4J. A dramatic difference appeared
between relational database systems. Namely, MariaBD was about 90 times faster than
MySQL 8.0.29. This was the first essential difference found between the modern databases.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 17

Figure 11. Results for the queries of Task 4.

6.2.5. Query Performance in Task 5
The recursive queries for Task 5 list all the sequential invoices related to the invoice

with given id. The tests were performed with 100 and 1000 invoices. With 100 invoices,
Neo4J outperformed relational databases when no indexing was used. When indices were
used, the situation was reversed. Relational databases needed only one millisecond
whereas Neo4J required 72 milliseconds and 42 milliseconds when indices were used.
With 10,000 invoices and without indexing, Neo4’sj performance without optimization
was poorest, but best with optimizations. Relational databases benefitted again from in-
dexing considerably. Here, MYSQL 8.0.29 was the fastest and it was over 100,000 times
faster than basic Neo4J and a thousand times faster than optimized Neo4J. MariaDB was
five times slower than MySQL 8.0.29 but took only ten milliseconds. Moreover, this was
the second difference found between modern databases. Figure 12 represents the results
when querying 100 sequential invoices and Figure 13 represents results when querying
1000 invoices.

Figure 12. Results for the recursive queries among 100 entities.

Figure 11. Results for the queries of Task 4.

6.2.5. Query Performance in Task 5

The recursive queries for Task 5 list all the sequential invoices related to the invoice
with given id. The tests were performed with 100 and 1000 invoices. With 100 invoices,
Neo4J outperformed relational databases when no indexing was used. When indices
were used, the situation was reversed. Relational databases needed only one millisecond
whereas Neo4J required 72 milliseconds and 42 milliseconds when indices were used.
With 10,000 invoices and without indexing, Neo4’sj performance without optimization
was poorest, but best with optimizations. Relational databases benefitted again from
indexing considerably. Here, MYSQL 8.0.29 was the fastest and it was over 100,000 times
faster than basic Neo4J and a thousand times faster than optimized Neo4J. MariaDB was
five times slower than MySQL 8.0.29 but took only ten milliseconds. Moreover, this was

Appl. Sci. 2022, 12, 6490 13 of 16

the second difference found between modern databases. Figure 12 represents the results
when querying 100 sequential invoices and Figure 13 represents results when querying
1000 invoices.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 17

Figure 11. Results for the queries of Task 4.

6.2.5. Query Performance in Task 5
The recursive queries for Task 5 list all the sequential invoices related to the invoice

with given id. The tests were performed with 100 and 1000 invoices. With 100 invoices,
Neo4J outperformed relational databases when no indexing was used. When indices were
used, the situation was reversed. Relational databases needed only one millisecond
whereas Neo4J required 72 milliseconds and 42 milliseconds when indices were used.
With 10,000 invoices and without indexing, Neo4’sj performance without optimization
was poorest, but best with optimizations. Relational databases benefitted again from in-
dexing considerably. Here, MYSQL 8.0.29 was the fastest and it was over 100,000 times
faster than basic Neo4J and a thousand times faster than optimized Neo4J. MariaDB was
five times slower than MySQL 8.0.29 but took only ten milliseconds. Moreover, this was
the second difference found between modern databases. Figure 12 represents the results
when querying 100 sequential invoices and Figure 13 represents results when querying
1000 invoices.

Figure 12. Results for the recursive queries among 100 entities. Figure 12. Results for the recursive queries among 100 entities.
Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 17

Figure 13. Results for the recursive queries among 1000 entities.

7. Discussion
In our tests, modern relational databases outperformed Neo4j in complex and recur-

sive query tasks. When comparing Neo4j with MySQL and MariaDB, we also compared
a Java program with a C/C++ program. Clearly, C/C++ has an upper hand because it does
not run on a virtual machine. Additionally, relational database systems index primary
keys and foreign keys by default. This provides a benefit in every query where tables are
joined. Neo4j does not seem to benefit from indexing in many cases. One such case where
indexing did benefit Neo4j was when Neo4j needed to find the starting point from the
graph.

The benefit of indexing in MariaDB and MySQL is a benefit of the traditional rela-
tional database model. As the relations with the tables are created when executing the
SQL query, indexing the keys becomes beneficial. The graph model does not benefit from
such indexing as there are no tables that are joined by keys. Querying a graph database is
achieved by traversing the graph. One of the benefits of the graph model can be seen in
recursive query tests. By optimizing the query, performance clearly improved, in this case,
performing even better than an SQL database with Common Table Expressions. However,
with recursive queries, indexing still brought dramatic benefits for the SQL database.

Compared with the modern databases, the old MySQL 5.1 performed well in simple
query tasks. However, in aggregation tasks the performance of MySQL 5.1 collapsed. Fur-
ther, MySQL 5.1 does not support recursive queries. MySQL 8.0.29 was more efficient in
recursive queries than MariaDB with the long recursive query. MariaDB’s efficiency in
aggregate queries with a defined key was quite surprising. This may follow from the op-
timization algorithms of database management systems. Good optimization leads to per-
forming the most selective operations first.

With the invoicing database schema used in the present study, the calculation of price
was conducted with complex queries. If this database was used in a real case, the usage
of table views would probably be preferred to simplify the queries. When it comes to us-
ing views, it is also of benefit that an SQL database outperformed a graph database, which
is a new finding in this study that was not presented in previous studies. In previous
studies, Neo4j typically outperformed SQL databases. In study [4] for example, Neo4j out-
performed Oracle in various tests using count(*) queries. In the present study, aggregation
queries were also used but the result was different. The present study also indicated the
benefit of indexing in SQL databases in many of the tests. SQL databases seemed to benefit

Figure 13. Results for the recursive queries among 1000 entities.

7. Discussion

In our tests, modern relational databases outperformed Neo4j in complex and recursive
query tasks. When comparing Neo4j with MySQL and MariaDB, we also compared a Java
program with a C/C++ program. Clearly, C/C++ has an upper hand because it does not
run on a virtual machine. Additionally, relational database systems index primary keys
and foreign keys by default. This provides a benefit in every query where tables are joined.
Neo4j does not seem to benefit from indexing in many cases. One such case where indexing
did benefit Neo4j was when Neo4j needed to find the starting point from the graph.

The benefit of indexing in MariaDB and MySQL is a benefit of the traditional relational
database model. As the relations with the tables are created when executing the SQL query,
indexing the keys becomes beneficial. The graph model does not benefit from such indexing

Appl. Sci. 2022, 12, 6490 14 of 16

as there are no tables that are joined by keys. Querying a graph database is achieved by
traversing the graph. One of the benefits of the graph model can be seen in recursive query
tests. By optimizing the query, performance clearly improved, in this case, performing even
better than an SQL database with Common Table Expressions. However, with recursive
queries, indexing still brought dramatic benefits for the SQL database.

Compared with the modern databases, the old MySQL 5.1 performed well in simple
query tasks. However, in aggregation tasks the performance of MySQL 5.1 collapsed.
Further, MySQL 5.1 does not support recursive queries. MySQL 8.0.29 was more efficient
in recursive queries than MariaDB with the long recursive query. MariaDB’s efficiency
in aggregate queries with a defined key was quite surprising. This may follow from the
optimization algorithms of database management systems. Good optimization leads to
performing the most selective operations first.

With the invoicing database schema used in the present study, the calculation of price
was conducted with complex queries. If this database was used in a real case, the usage of
table views would probably be preferred to simplify the queries. When it comes to using
views, it is also of benefit that an SQL database outperformed a graph database, which is
a new finding in this study that was not presented in previous studies. In previous studies,
Neo4j typically outperformed SQL databases. In study [4] for example, Neo4j outperformed
Oracle in various tests using count(*) queries. In the present study, aggregation queries
were also used but the result was different. The present study also indicated the benefit
of indexing in SQL databases in many of the tests. SQL databases seemed to benefit from
indexing and in some cases very dramatically. However, Neo4j did not seem to benefit
from indexing, apart from when a starting point in the graph was indexed.

In further studies, it is essential to compare other NoSQL database systems to modern
relational database systems. Nowadays, the general understanding is that NoSQL database
systems are more efficient than relational database systems in general. It is evident that in
performance studies, indexing, optimization and query complexity should be taken into
account as was the case in the present study.

8. Conclusions

The present study compared relational database systems (MariaDB and two versions
of MySQL) and a graph database system (Neo4j) efficiency using queries with different com-
plexities. The results support earlier studies where graph database systems outperformed
relational database systems with structurally simple datasets and simple queries. However,
with more complex queries new relational database systems outperformed Neo4j.

The significantly better performance of new relational database systems compared to
MySQL 5.1 is not surprising as the tested MariaDB and MySQL 8.0.29 versions are 10 years
newer, and many developments have occurred during that time. Although MariaDB is
based on old MySQL, it offers a different feature set and is completely open source [25].
One significant change after MySQL 5.1.41 is a change in the default storage engine from
MyISAM to InnoDB in version 5.5 [26]. InnoDB is used as a default storage engine of
MariaDB. The study indicates the extent to which relational database query performance
has improved during the last one and half decade.

Neo4j outperformed modern relational database systems in most of the query tasks.
Using the best settings of database systems, Neo4J was often at least three times faster
than modern relational databases. However, in the task where an aggregated value was
calculated for the given entity, Neo4J was 200 times faster than MySQL 8.0.29. In this task,
the most essential difference between modern databases also appeared. MariaDB was over
90 times faster than MySQL 8.0.29. In the most complex query task, MariaDB was 29 times
faster than Neo4j when indices were used and Neo4J query was optimized. In the same
setting, MySQL 8.0.29 was 27 times faster than Neo4J. The role of optimization and indexing
played an essential role in performance, especially in the long recursive query. Without
indexing, basic Neo4J was the slowest, but the optimized query was the fastest. Indexing
changes the situation, i.e., relational database systems outperformed Neo4J. MySQL 8.0.29

Appl. Sci. 2022, 12, 6490 15 of 16

performed best. It was over 1000 times faster than the optimized Neo4J query and over
100,000 times faster than basic Neo4J.

Our general conclusion is that on the basis of tests with our data set and queries, it
cannot be generally concluded which of the database systems possesses the best query
efficiency. In other words, the efficiency depends on the complexity of data and queries.
Furthermore, query optimization and indexing may play important roles. This means that
when choosing a database for an application domain, the query needs must be analyzed
carefully beforehand. The results in the present study show how a relational database
system is still a good alternative when it comes to performance compared with an NoSQL
graph database.

Author Contributions: Conceptualization, P.K., M.J. and J.N.; Methodology, P.K., M.J. and J.N.;
Software, P.K.; Validation, P.K., M.J. and J.N.; Formal Analysis, P.K., M.J. and J.N.; Investigation,
P.K. and M.J.; Data Curation, P.K.; Writing—Original Draft Preparation, P.K., M.J. and J.N.; Writing—
Review and Editing, P.K., M.J. and J.N.; Visualization, P.K. and M.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code for generating the data is available in GitHub: https:
//github.com/homebeach/InvoicingDBTestBench (accessed on 2 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leavitt, N. Will NoSQL databases live up to their promise? Computer 2010, 43, 12–14. [CrossRef]
2. Győrödi, C.; Dumşe-Burescu, D.; Zmaranda, D.; Győrödi, R.; Gabor, G.; Pecherle, G. Performance analysis of NoSQL and

relational databases with CouchDB and MySQL for application’s data storage. Appl. Sci. 2020, 10, 8524. [CrossRef]
3. Angles, R.; Gutiérrez, C. Survey of graph database models. ACM Comput. Surv. 2008, 40, 1–39. [CrossRef]
4. Khan, W.; Ahmad, W.; Luo, B.; Ahmed, E. SQL Database with physical database tuning technique and NoSQL graph database

comparisons. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 110–116.

5. Holzschuher, F.; Peinl, R. Performance of graph query languages: Comparison of cypher, gremlin and native access in Neo4j.
In Proceedings of the Joint EDBT/ICDT 2013 Workshops, Genova, Italy, 18–22 March 2013.

6. Khan, W.; Shahzad, W. Predictive performance comparison analysis of relational & NoSQL graph databases. Int. J. Adv. Comput.
Sci. Appl. 2017, 8, 523–530.

7. Vicknair, C.; Macias, M.; Zhao, Z.; Nan, X.; Chen, Y.; Wilkins, D. A comparison of a graph database and a relational
database: A data provenance perspective. In Proceedings of the 48th Annual Southeast Regional Conference, Oxford, MI, USA,
15–17 April 2010; pp. 1–6.

8. Batra, S.; Tyagi, C. Comparative analysis of relational and graph databases. Int. J. Soft Comput. Eng. (IJSCE) 2012, 2, 509–512.
9. Niemi, T.; Junkkari, M.; Järvelin, K. Concept-based query language approach to enterprise information systems. Enterp. Inf. Syst.

2014, 8, 26–66. [CrossRef]
10. Aufaure-Portier, M.-A.; Trépied, C. A survey of query languages for geographic information systems. In Proceedings of the 3rd

International Workshop on Interfaces to Databases, Edinburgh, UK, 8–10 July 1996; p. 3.
11. Leser, U. A query language for biological networks. Bioinformatics 2005, 21, ii33–ii39. [CrossRef] [PubMed]
12. Hardwick, M.; Samaras, G.; Spooner, D. Evaluating recursive queries in CAD using an extended projection function. In Proceedings

of the IEEE 3rd International Conference on Data Engineering, Los Angeles, CA, USA, 3–5 February 1987; pp. 138–148.
13. Cooper, B.F.; Silberstein, A.; Tam, E.; Ramakrishnan, R.; Sears, R. Benchmarking cloud serving systems with YCSB. In Proceedings

of the 1st ACM Symposium on Cloud Computing, Indianapolis, IN, USA, 10–11 June 2010; pp. 143–154.
14. Difallah, D.E.; Pavlo, A.; Curino, C.; Cudre-Mauroux, P. Oltp-bench: An extensible testbed for benchmarking relational databases.

Proc. VLDB Endow. 2013, 7, 277–288. [CrossRef]
15. GitHub. InvoicingDBTestBench Repository. Available online: https://github.com/homebeach/InvoicingDBTestBench

(accessed on 13 December 2020).
16. DB-Engines. Available online: https://db-engines.com/ (accessed on 20 June 2022).
17. Tongkaw, S.; Tongkaw, A. A comparison of database performance of MariaDB and MySQL with OLTP workload. In Proceedings

of the IEEE Conference on Open Systems (ICOS), Langkawi, Malaysia, 10–12 October 2016.

https://github.com/homebeach/InvoicingDBTestBench
https://github.com/homebeach/InvoicingDBTestBench
http://doi.org/10.1109/MC.2010.58
http://doi.org/10.3390/app10238524
http://doi.org/10.1145/1322432.1322433
http://doi.org/10.1080/17517575.2011.598241
http://doi.org/10.1093/bioinformatics/bti1105
http://www.ncbi.nlm.nih.gov/pubmed/16204121
http://doi.org/10.14778/2732240.2732246
https://github.com/homebeach/InvoicingDBTestBench
https://db-engines.com/

Appl. Sci. 2022, 12, 6490 16 of 16

18. Shalygina, G.; Novikov, B. Implementing common table expressions for MariaDB. In Proceedings of the 2nd Conference on
Software Engineering and Information Management (SEIM-2017), St. Petersburg, Russia, 21 April 2017.

19. Stanescu, L. A Comparison between a Relational and a Graph Database in the Context of a Recommendation System. In Proceedings
of the 16th Conference on Computer Science and Intelligence Systems, Online, 2–5 September 2021.

20. Sholichah, R.; Jayanty, M.I.; Andry, A. Performance Analysis of Neo4j and MySQL Databases using Public Policies Decision
Making Data. In Proceedings of the 7th International Conference on Information Technology, Computer, and Electrical Engineering
(ICITACEE), Semarang, Indonesia, 24–25 September 2021.

21. Cheng, Y.; Ding, P.; Wang, T.; Lu, W.; Du, X. Which category is better: Benchmarking relational and graph database management
systems. Data Sci. Eng. 2019, 4, 309–322. [CrossRef]

22. Data.World. Names Datasets. 2020. Available online: https://data.world/datasets/names (accessed on 2 May 2022).
23. OpenAddresses. A Summary View of OpenAddresses Data. 2020. Available online: http://results.openaddresses.io (accessed on

2 May 2022).
24. Neo4j, Inc. The Neo4j Cypher Manual v4.2. CALL {Subquery}. 2020. Available online: https://neo4j.com/docs/cypher-manual/

current/clauses/call-subquery (accessed on 1 December 2021).
25. MariaDB Corporation, MariaDB Enterprise vs. MySQL Enterprise Edition 8 [White Paper]. 2020. Available online: https:

//mariadb.com/products/enterprise/comparison/ (accessed on 2 May 2022).
26. MySQL 5.5 Reference Manual. InnoDB I/O Subsystem Changes. Available online: https://docs.oracle.com/cd/E19957--01

/mysql-refman-5.5/introduction.html#innodb-io-changes (accessed on 24 April 2022).

http://doi.org/10.1007/s41019-019-00110-3
https://data.world/datasets/names
http://results.openaddresses.io
https://neo4j.com/docs/cypher-manual/current/clauses/call-subquery
https://neo4j.com/docs/cypher-manual/current/clauses/call-subquery
https://mariadb.com/products/enterprise/comparison/
https://mariadb.com/products/enterprise/comparison/
https://docs.oracle.com/cd/E19957--01/mysql-refman-5.5/introduction.html#innodb-io-changes
https://docs.oracle.com/cd/E19957--01/mysql-refman-5.5/introduction.html#innodb-io-changes

	Introduction
	Related Work
	Test Database
	Test Program
	Test Queries
	Query Optimization
	Task 1: Price of Work
	Task 2: Price of Work with Items
	Task 3: Invoice Price
	Task 4: Invoice Prices for a Given Customer
	Task 5: Recursive Queries for Invoice Chain

	Test Executions
	Test Settings
	Test Results
	Query Performance in Task 1
	Query Performance in Task 2
	Query Performance in Task 3
	Query Performance in Task 4
	Query Performance in Task 5

	Discussion
	Conclusions
	References

