
Citation: Saksuriya, P.; Likasiri, C.

Hybrid Heuristic for Vehicle Routing

Problem with Time Windows and

Compatibility Constraints in Home

Healthcare System. Appl. Sci. 2022,

12, 6486. https://doi.org/10.3390/

app12136486

Academic Editor: Vincent A.

Cicirello

Received: 6 June 2022

Accepted: 24 June 2022

Published: 26 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Hybrid Heuristic for Vehicle Routing Problem with Time
Windows and Compatibility Constraints in Home
Healthcare System
Payakorn Saksuriya 1 and Chulin Likasiri 2,*

1 PhD Degree Program in Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand; payakorn_sak@cmu.ac.th

2 Research Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand

* Correspondence: chulin.l@cmu.ac.th

Abstract: This work involves a heuristic for solving vehicle routing problems with time windows
(VRPTW) with general compatibility-matching between customer/patient and server/caretaker
constraints to capture the nature of systems such as caretakers’ home visiting systems or home
healthcare (HHC) systems. Since any variation of VRPTW is more complicated than regular VRP, a
specific, custom-made heuristic is needed to solve the problem. The heuristic proposed in this work
is an efficient hybrid of a novice Local Search (LS), Ruin and Recreate procedure (R&R) and Particle
Swarm Optimization (PSO). The proposed LS acts as the initial solution finder as well as the engine
for finding a feasible/local optimum. While PSO helps in moving from current best solution to the
next best solution, the R&R part allows the solution to be over-optimized and LS moves the solution
back on the feasible side. To test our heuristic, we solved 56 benchmark instances of 25, 50, and
100 customers and found that our heuristics can find 52, 21, and 18 optimal cases, respectively. To
further investigate the proficiency of our heuristic, we modified the benchmark instances to include
compatibility constraints. The results show that our heuristic can reach the optimal solutions in 5 out
of 56 instances.

Keywords: vehicle routing problem; time windows; compatibility constraints; home healthcare system

1. Introduction

In the year 2020, the proportion of the Thai population aged over 65 was 19.8%, more
than double the global average of 9.3%. This figure is expected to increase to 29.6% over
the next 30 years [1]. This means that in a short period of time Thailand will become
a Super Aged country, defined as a country where more than 28% of the population is
over 60 years of age. As projected by the Office of the National Economic and Social
Development Board, Office of the Prime Minister, Bangkok, Thailand [2], the number of
elderly people living alone with health problems will also increase. Home healthcare (HHC),
which plays a major role in a proactive healthcare system, is essential for this population
group, especially those with chronic diseases and bedridden patients requiring long-term
care [3]. Caring for these people may involve injections, wound dressing, physical therapy,
and other rehabilitation procedures, as well as health-related advice-giving to ensure the
sustainability and improved life quality of the coming Aged Society. For the elderly, home
visits represent more efficient management of human resources than having them visit the
hospital individually.

In attempting to manage home visits in an HHC system, the following need to be
considered: (1) compatibility matching of patients/customers and physicians, experts,
or healthcare staff; (2) best routing for healthcare personnel to visit their customers;
(3) meeting applicable service conditions, and (4) minimizing the cost of the whole system.

Appl. Sci. 2022, 12, 6486. https://doi.org/10.3390/app12136486 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136486
https://doi.org/10.3390/app12136486
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7445-1734
https://doi.org/10.3390/app12136486
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136486?type=check_update&version=2

Appl. Sci. 2022, 12, 6486 2 of 18

The second consideration together with the fourth bear similarities to a regular VRP, and
if the third is also considered, the problem becomes a vehicle routing problem with time
windows (VRPTW). In this work, we will also integrate the first aspect into the VRPTW
to better capture the nature of the HHC system. When all these aspects are taken into
consideration, the problem becomes even more complicated and requires a custom-made
heuristic to find a solution.

Most of the VRPTWs showcased in the literature already consider minimizing distance
traveled as the main objective. The model we constructed can also deal with minimizing
the total cost, with main objectives ranging from total distance traveled to completion
time. This, along with the new general set of compatibility constraints, will make it
more relevant for real-world applications, as patient-caretaker compatibility matching is
sometimes necessary and minimizing waiting time and balancing job numbers per vehicle
are a more important issue in VRPTWs that are similar to HHC systems.

The work process in this study goes as follows: First, a VRPTW with compatibility
matching constraints is formulated. Subsequently, a hybrid heuristic combining local
search (LS), Ruin and Recreate procedure (R&R), and particle swarm optimization (PSO) is
proposed for solving the problem, which is NP-hard in nature. Finally, simulation results
tested on best known benchmark instances, namely Solomon’s instances, are presented to
show our heuristic’s efficiency in solving VRPTW problems with and without compatibility
matching constraints.

This paper is organized as follows: Section 2 provides a review of literature on VRPTW.
Section 3 presents a mathematical formulation of the problem. Section 4 describes the
solution approach. Computational experiments on Solomon’s instances and conclusions
are presented in Sections 5 and 6, respectively.

2. Materials and Methods

As mentioned earlier, managing home visits in HHC systems can be viewed as a
variety of VRPTW. In addition to minimizing the arrival time, finishing time, or processing
time in caretaker-customer matching, the models may require further constraints to better
suit the problems. Some existing works consider the travel cost, penalty cost, fixed cost, and
overtime cost of the healthcare worker in their objective function. Wirnitzer et al. [4] find
the minimum staff numbers including minimum number per hour and per customer and
the number of staff replacing/switching times per customer. Braekers et al. [5] minimize
the weighted sum costs while maximizing service level; therefore, the costs considered
comprise the total costs and penalty costs that arise when customers find it inconvenient to
receive service. Putting compatibility in the objective function, Ait Haddadene et al. [6]
minimize total travel time as well as non-preferences between caretakers and patients to
maximize compatibility while adding synchronization constraints, as some patients may
need multiple services at the same time. Polnik et al. [7], also with synchronized visits to a
home, construct a heuristic to solve the problem where each stop has only one task that
might need multiple caretakers. Considering compatibility in the constraints, Yu et al. [8]
minimize maximum traveling time with the vehicle allowed to visit only compatible
nodes. Riazi et al. [9] consider minimizing total distance traveled but with caretaker
qualification requirements in the constraints. In another work, Kandakoglu et al. [10]
consider the weighted sum of total distance traveled, total travel cost, overtime wages
and number of working staff; their notable constraints include the lunch break of the
nurses. Nasir and Kuo [11] only consider the minimum total travel cost of staff but have
synchronization constraints between nurses and vehicles as they consider the travel costs
of the two separately. Cissé et al. [12] and Mascolo et al. [13] give the most recent extended
review of literature in HHC routing and scheduling problems with variety of constraints
to date.

Of the recently proposed heuristics for solving VRPTW that are more complicated
than an NP-hard VRP, most are metaheuristics. The benchmark instances given in [14],
known as Solomon’s instances, can be used to assess constructed heuristics. Table 1 shows

Appl. Sci. 2022, 12, 6486 3 of 18

the objective function values studied in the most recent literature. Note that only works that
consider hard time windows, i.e., where the service providers need to wait for customers
to become available, are presented in the table.

Table 1. The best objective function values obtained in literature on Solomon’s instances.

Problem
Best-Known Solution

References
Number of Vehicles Total Distance

C101 10 827.30 * [15,16]
C102 10 827.30 * [15,16]
C103 10 826.30 * [15,16]
C104 10 822.90 * [15,16]
C105 10 827.30 * [15,16]
C106 10 827.30 * [15,16]
C107 10 827.30 * [15,16]
C108 10 827.30 * [15,16]
C109 10 827.30 * [15,16]

C201 3 589.10 * [16,17]
C202 3 589.10 * [16]
C203 3 588.70 * [16]
C204 3 590.60 [18–22]
C205 ** 586.40 * [17]
C206 ** 586.00 * [17]
C207 ** 585.80 * [17]
C208 3 585.80 * [16]

R101 20 1637.7 * [15–17]
R102 18 1466.6 * [15–17]
R103 14 1208.7 * [15–17]
R104 11 976.61 [22,23]
R105 15 1355.3 * [15–17]
R106 13 1234.6 * [15–17]
R107 11 1064.6 * [15–17]
R108 10 938.20 [22]
R109 13 1146.9 * [16,17]
R110 12 1068.0 * [16,17]
R111 12 1048.7 * [16,17]
R112 10 953.63 [18,23]

R201 8 1143.2 * [16]
R202 8 1034.4 [23]
R203 6 874.87 [22,23]
R204 5 735.80 [22]
R205 5 954.16 [19,22]
R206 4 879.86 [23]
R207 4 797.99 [22]
R208 4 705.33 [22]
R209 5 859.39 [23]
R210 6 905.21 [22]
R211 4 753.15 [22]

RC101 14 1619.8 * [16,17]
RC102 14 1457.4 * [17]
RC103 11 1258.0 * [17]
RC104 10 1135.5 * [21]
RC105 15 1513.7 * [16,17]
RC106 13 1378.0 [22]
RC107 12 1212.8 [20,22,23]
RC108 11 1117.5 [20,23]

RC201 9 1261.8 * [16]
RC202 8 1095.6 [22,23]
RC203 5 926.82 [22]
RC204 4 786.38 [23]
RC205 7 1157.6 [22,23]
RC206 7 1054.6 [22,23]
RC207 6 966.08 [23]
RC208 4 778.93 [22]

* results claimed as optimal in the references. ** information not given in the references.

Appl. Sci. 2022, 12, 6486 4 of 18

There are three groups of Solomon’s instances. After plotting these instances, we can
see that the customers in Group C instances appear to be scattered in groups or clusters,
as seen in Figure 1. These instances are similar to real-world problems where customers
live in geographically scattered villages. The customers in Group R instances (Figure 2) are
relatively randomly placed, corresponding to customers living in a big city. The customers
in Group RC (Figure 3) are randomly clustered, that is, they appear in groups, but within
these groups, they are more or less randomly placed. This system can also be found in a
typical real-world system as well. Since VRPTW is very applicable and useful for real-world
problems, heuristics for solving VRPTW have been widely studied and still attract many
researchers in the field. The relevant recent works are summarized in Table 2.

Appl. Sci. 2022, 12, 6486 4 of 20

RC102 14 1457.4 * [17]
RC103 11 1258.0 * [17]
RC104 10 1135.5 * [21]
RC105 15 1513.7 * [16,17]
RC106 13 1378.0 [22]
RC107 12 1212.8 [20,22,23]
RC108 11 1117.5 [20,23]
RC201 9 1261.8 * [16]
RC202 8 1095.6 [22,23]
RC203 5 926.82 [22]
RC204 4 786.38 [23]
RC205 7 1157.6 [22,23]
RC206 7 1054.6 [22,23]
RC207 6 966.08 [23]
RC208 4 778.93 [22]

* results claimed as optimal in the references. ** information not given in the references.

There are three groups of Solomon’s instances. After plotting these instances, we can
see that the customers in Group C instances appear to be scattered in groups or clusters,
as seen in Figure 1. These instances are similar to real-world problems where customers
live in geographically scattered villages. The customers in Group R instances (Figure 2)
are relatively randomly placed, corresponding to customers living in a big city. The cus-
tomers in Group RC (Figure 3) are randomly clustered, that is, they appear in groups, but
within these groups, they are more or less randomly placed. This system can also be found
in a typical real-world system as well. Since VRPTW is very applicable and useful for real-
world problems, heuristics for solving VRPTW have been widely studied and still attract
many researchers in the field. The relevant recent works are summarized in Table 2.

Figure 1. Distribution of customers (represented by circles) in C-instances with diamond represent-
ing the center.

Figure 1. Distribution of customers (represented by circles) in C-instances with diamond representing
the center.

Appl. Sci. 2022, 12, 6486 5 of 20

Figure 2. Distribution of customers (represented by circles) in R-instances with diamond represent-
ing the center.

Figure 3. Distribution of customers (represented by circles) in RC-instances with diamond repre-
senting the center.

Table 2. Literature review for VRPTW with various objective functions and their proposed algo-
rithms.

Objective Proposed Algorithms Reference

Total cost

Insertion and saving heuristic [24]
Adaptive large neighborhood search with removal and insertion op-

erator [25]

Adaptive genetic algorithm with 2-opt procedure [26]
Particle swarm optimization with simulated annealing [27]

Total distance

Probabilistic tabu search [18]
Branch and bound algorithm with greedy algorithm and large

neighborhood search
[28]

Large neighborhood search with ruin and recreate procedure [29]
Parallel cutting plane of branch and bound [17]

Parallel strategy of branch and bound [15]
Simulated annealing with ruin and recreate procedure [30]

Lagrangian relaxation and Column generation [16]
Genetic algorithm [23]

Variable neighborhood search with pruning and propagation tech-
niques of constraint

[31]

Figure 2. Distribution of customers (represented by circles) in R-instances with diamond representing
the center.

Appl. Sci. 2022, 12, 6486 5 of 20

Figure 2. Distribution of customers (represented by circles) in R-instances with diamond represent-
ing the center.

Figure 3. Distribution of customers (represented by circles) in RC-instances with diamond repre-
senting the center.

Table 2. Literature review for VRPTW with various objective functions and their proposed algo-
rithms.

Objective Proposed Algorithms Reference

Total cost

Insertion and saving heuristic [24]
Adaptive large neighborhood search with removal and insertion op-

erator [25]

Adaptive genetic algorithm with 2-opt procedure [26]
Particle swarm optimization with simulated annealing [27]

Total distance

Probabilistic tabu search [18]
Branch and bound algorithm with greedy algorithm and large

neighborhood search
[28]

Large neighborhood search with ruin and recreate procedure [29]
Parallel cutting plane of branch and bound [17]

Parallel strategy of branch and bound [15]
Simulated annealing with ruin and recreate procedure [30]

Lagrangian relaxation and Column generation [16]
Genetic algorithm [23]

Variable neighborhood search with pruning and propagation tech-
niques of constraint

[31]

Figure 3. Distribution of customers (represented by circles) in RC-instances with diamond represent-
ing the center.

Appl. Sci. 2022, 12, 6486 5 of 18

Table 2. Literature review for VRPTW with various objective functions and their proposed algorithms.

Objective Proposed Algorithms Reference

Total cost

Insertion and saving heuristic [24]

Adaptive large neighborhood search with removal and insertion operator [25]

Adaptive genetic algorithm with 2-opt procedure [26]

Particle swarm optimization with simulated annealing [27]

Total distance

Probabilistic tabu search [18]

Branch and bound algorithm with greedy algorithm and large
neighborhood search [28]

Large neighborhood search with ruin and recreate procedure [29]

Parallel cutting plane of branch and bound [17]

Parallel strategy of branch and bound [15]

Simulated annealing with ruin and recreate procedure [30]

Lagrangian relaxation and Column generation [16]

Genetic algorithm [23]

Variable neighborhood search with pruning and propagation techniques
of constraint [31]

Simulated annealing with K-restart [32]

Parallel hybrid genetic algorithm with evolution function [33]

Two-phase set partitioning and genetic algorithm [20]

Multi-parametric mutation procedure with 1 + 1 evolution
strategies algorithm [34]

Adaptive large neighborhood search [35]

Parallel simulated annealing [21]

Particle swarm optimization with adaptive strategies [36]

Bi-level
Minimizing the number of vehicles and total
distance

Two evolutionary strategies algorithm with representation and
mutation operators [37]

Simulated annealing (for solving primary) and large neighborhood search (for
solving secondary) [38]

Genetic algorithm with Pareto ranking technique [19]

Arc-guided evolution strategies [39]

Bi-level
Minimizing cost and maximizing path length Iterated local search and decomposition [40]

Multiple problems:

- Minimize number of vehicles
- Minimize total distance

Multiple ant colony system (one for number of vehicles and one for
total distance) [41]

Multiple problems:

- Minimizing total waiting time
- Minimizing average waiting time
- Maximizing slack time

Greedy randomized adaptive search and Variable neighborhood search [42]

Multiple problems:

- Minimizing total distance
- Minimizing number of vehicles

Genetic algorithm with ruin and recreate procedure [22]

The combination of total distance and lateness
penalty (soft time windows) Tabu search with multiple exchange procedures [43]

3. Mathematical Modeling

As mentioned earlier, home visiting in a HHC system can be formulated as a VRPTW
problem, which can then be written as a complete graph, G = (N, E) having N = {0, 1, . . . , n}
being customers (or patients) where 0 is the starting point of the route. The set E, the
edges in the graph, represents the travelling connections between nodes. The travel times
between points and service time at each point are given. Since the medical needs of patients

Appl. Sci. 2022, 12, 6486 6 of 18

or customers are unique and may be time-bound, if the service providers (or caretakers)
arrive before the specified time window, they will have to wait until the appropriate
time. This problem is considered a hard time windows problem. The model constructed
here has the objective to minimize total travel costs with the constraints to meet all the
traveling/service/matching conditions. The proposed model can be described as follows:

Indices:

0: the starting point of the route (called the origin or the health center)
i, j: patients (1, 2, . . . , n)
k: the caretaker (1, 2, . . . , m)

Parameters:

dij: the travel time from patient i to patient j
pk

j : the service time of caretaker k at patient j
ej: the earliest starting time (or availability time) of patient j
lj: the latest start time of patient j
qj: the demand of patient j
Q: the capacity of all vehicles
[rjk]: a compatible matching matrix (n×m) whose element rjk = 1 means patient j can be

treated by caretaker k otherwise rjk = 0
M: a large number

Variables:

xk
0j: equal to 1 if caretaker k travels from the origin to patient j; otherwise, 0

xk
ij: equal to 1 if caretaker k travels from node i to patient j; otherwise, 0

xk
j0: equal to 1 if patient j is the last patient visited by caretaker k; otherwise, 0

uj: variables for subtour elimination
tj: the starting time of patient j
cij: the traveled cost between patient i and patient j

Mathematical Model

Given a set of patients N = {0, 1, 2, . . . , n} where 0 represents depot node, a set of
caretakers K = {1, 2, . . . , m} and a set of time windows corresponding to the caretakers,
the objective is to find a route for each caretaker to start and return to the origin, with
all patients needing to be visited only once with a minimum total cost. Each caretaker
must start the job within the time window. This HHC problem can be formulated as a
mixed-integer linear programming (MILP):

minimize
n

∑
j=0

n

∑
i=0, i 6=j

cijxk
ij

subject to
n

∑
j=1

xk
0j = 1, ∀k ∈ K (1)

n

∑
j=1

xk
j0 = 1, ∀k ∈ K (2)

m

∑
k=1

n

∑
i=0,i 6=j

xk
ij = 1, ∀j ∈ N\{0} (3)

m

∑
k=1

n

∑
j=0,i 6=j

xk
ij = 1, ∀i ∈ N\{0} (4)

Appl. Sci. 2022, 12, 6486 7 of 18

n

∑
i=0,i 6=j

xk
ij −

n

∑
l=0,l 6=j

xk
jl = 0, ∀j ∈ N\{0}, ∀k ∈ K (5)

n

∑
i=0,i 6=j

xk
ij ≤ rjk, ∀j ∈ N, ∀k ∈ K (6)

ui − uj + qj ≤ Q
(

1− xk
ij

)
, ∀i, j ∈ N\{0}, i 6= j, ∀k ∈ K (7)

qj ≤ uj ≤ Q, ∀j ∈ N\{0} (8)

ti + pk
i + dij −M

(
1− xk

ij

)
≤ tj, ∀i ∈ N, i 6= j, ∀j ∈ N, ∀k ∈ K (9)

ej ≤ tj ≤ lj, ∀j ∈ N (10)

xk
ij ∈ {0, 1}, ∀i, j ∈ N, i 6= j, ∀k ∈ K (11)

With the objective function being to minimize total costs, constraints (1) and (2) are
to make sure that each caretaker starts and ends their route at the origin. Constraints (3)
and (4) make sure that, for each patient, there is only one caretaker visit and departure.
Similarly, constraints (5) ensure that a caretaker leaves a patient for the next one after
completing service to the first patient. Constraints (6) are the compatibility constraints to
guarantee that only a caretaker compatible with the patient will travel and take care of that
patient. Constraints (7) and (8) are the subtour elimination constraint together with capacity
constraints. Constraints (9) will activate when caretaker k travels from patient i to patient j
(xk

ij = 1). The completion time of patient i (sum of starting time, service duration and travel
time) must be less than the starting time of patient j. Constraints (10) are time window
constraints. Constraints (11) ensure integrality of variables. Finally, M is a sufficiently
large number.

4. Algorithms

VRPTW is complicated and becomes even more so when some specific constraints,
in this case compatibility-matching constraints, are added. We therefore construct a local
search to use along with the help of PSO and R&R to solve the problem. Given the
discrete nature of our problem, the moving directions in the PSO initially used to solve the
continuous optimization problem can be adapted using our developed local search, R&R,
and PSO (path relinking procedure). The local search and R&R represent the effect of the
individual particle’s cognitive behavior, while the path relinking describes the impact of
global social learning behavior which allows a jump out of the local optimum.

Note that the feasibility of solution (particle) can be checked by substituting the parti-
cle’s binary representation into the proposed mathematical model. Due to the complexity
caused by the presence of time windows, it is difficult to randomly generate a feasible
solution (particle). To solve this issue, after the random solution (which is probably infea-
sible) is obtained, the patients that cause solution infeasibility (arrival time lies outside
the time window) are removed. Then the Inserting procedure, described below, is applied
to reinsert the patients. The removed patients are added to each caretaker until there is
no available place left. If there is still a patient left, a new caretaker is deployed, and the
Inserting procedure is applied until there is no patient left to schedule.

Note that the constructed heuristic can be applied, with only slight modifications, to
any VRPTW. All steps in the proposed heuristic remain the same, but the feasibility check
is based on the characteristics of the new problem. In a similar manner to the feasibility
check, the calculation of objective value can be adjusted to satisfy the new problem.

The main algorithm along with all sub-procedures are given in detail below.

Appl. Sci. 2022, 12, 6486 8 of 18

4.1. Main Algorithm

PSO is a population-based algorithm for solving an optimization problem which
simulates the social behavior of the birth flock. Each individual, called a particle, represents
a feasible solution. The particles try to find a direction to the best new solution iteratively
around the search space using the information guided by themselves and the best-known
best solution.

Let n be the population size, r be the number of R&R runs, Itermax be the maximum
number of iterations, P = {p1, p2, . . . , pn} be the set of all particles, and f (pi) be the
objective value (i.e., total cost) of particle pi, for i = 1, 2, . . . , n. The pseudocode of the main
algorithm based on PSO is given below.

Main Algorithm

1.
Set parameters: population size (n), the number of R&R runs (r), and maximum number of iterations
(Itermax)

2. Initial step: Generate n initial particles, set as P = {p1, p2, . . . , pn}
3. For pi ∈ P do
4. If pi is infeasible do
5. Remove all patients from pi that make the schedule infeasible
6. Insert the removed patients into the remaining schedule using the Inserting procedure
7. End If
8. End For
9. End Initial step
10. Calculate best-known solution (particle), pbest = argmin

pi∈P
(f (pi))

11. While iteration < Itermax and the best particle does not change for 10 iterations
12. Apply Local search procedure to each particle (pi)
13. Apply Path relinking procedure to each particle (pi)
14. Calculate the new pbest (line 10)
15. If pbest does not change for r iterations do
16. Apply the R&R procedure
17. End If
18. End While
19. Return pbest

4.2. Path Relinking Procedure

Path relinking is a search strategy guided by the other solution based on the idea that
quality solutions may share similar properties [44]. The guide solution is selected from the
current best solution.

Path relinking aims to create a new solution that shares information from the original
and the guided solutions. In the context of VRPTW, the good solutions may retain some
routes as the current best solution. Route-based path relinking is therefore considered in
this study: the new solution will have one of the routes as the guided solution. The path
relinking contains two steps. The first step is to select a guided route (any route) from the
guided solution and then remove all patients corresponding to the guided route from the
current solution. The next step is to insert the removed patients into the current solution
using the Inserting procedure. Suppose, for example, that the current solution contains 3
routes arranged as follows: O-A1-A2-A3-A4-O, O-B1-B2-B3-O, O-C1-C2-C3-C4-C5-O, and
the guided route is O-A2-B3-A3-C5-O. The result will contain 4 routes: O-A2-B3-A3-C5-O
(the guided route), O-A1-A4-O, O-B1-B2-O, and O-C1-C2-C3-C4-O. The procedure can be
summarized as follows:

Path Relinking Procedure

1. Input: the current solution, set to p and guided solution (current best solution), set to pbest
2. Randomly choose any route in pbest, set to r0

3.
Remove all jobs corresponding to route r0 from p. If the remaining schedule is infeasible, move the
infeasible patient to r0.

4. Apply the Inserting procedure to insert all jobs in r0 to p

Appl. Sci. 2022, 12, 6486 9 of 18

4.3. Inserting Procedure

The aim of this procedure is to arrange patients, one by one, between pairs of already
assigned patients where none of the assigned patients are served late. In the iteration
process, if the inserted patient cannot be treated immediately after the completion time of
the directly preceding patient, that caretaker will wait until the lower time window of the
patient is reached. A patient that cannot be inserted into any position will be considered a
tardy (late) patient.

Let J be a set of assigned patients, Jw be a set of tardy patients, Jc be a set of remaining
unattended patients and let J(j) be a set of all assignments obtained by inserting patient j
between every pair of patients in the assignment J, iteratively. The inserting procedure can
be described as follows:

Inserting Procedure

1. Input: A set of assigned patients, set to J, and a set of patients (waiting to be scheduled), set to Jc
2. Set Jw = ∅ and arrange the patients in Jc according to their upper time windows in ascending order
3. While Jc 6= ∅ do
4. Choose the first patient in Jc, say j. Remove j from Jc
5. Consider the set of assignments J(j)
6. If there is more than one assignment and all patients are not late do
7. Choose the case that has the minimum completion time, set to J
8. Else If there is a tardy patient in every assignment in J(j) do

9.
Choose the assignment with only one late patient, set as
J, and whose assignment completion time after removing that patient is the smallest.
Add the late patient to Jw

10. Else If every assignment J(j) has more than two tardy patients do
11. Add the patient j to the set Jw
12. End If
13. End While
14. While Jw 6= ∅ do

15.
Add a new caretaker. Repeat all steps in the While loop with Jw, instead of Jc, until there is no
change in J.

16. End While

4.4. Local Search Procedure

The aim of the proposed Local Search is to improve the solution. Some patients, if
served by a different caretaker, could result in reduced objective value. Since there are many
candidates to consider, it is more convenient to generate a priority list of every pair of jobs.
The List is sorted using the traveling times between pairs of patients in ascending order.

We developed three improving procedures: Swapping procedure (Section 4.4.1), Mov-
ing procedure (Section 4.4.2), and 2-opt procedure (Section 4.4.3). In the first step of Local
Search, the procedure will generate a priority list containing all candidates for swapping,
moving, and 2-opt. It will then apply Swapping, Moving and 2-opt procedures accordingly.
The procedures are explained in detail below.

4.4.1. Swapping Procedure

The swapping procedure aims to switch the order of a pair of jobs on the List in order
to make the solution better, or to reduce the objective value. For our purpose, the List is
generated by sorting travel times between pairs of patients. This procedure will be applied
multiple times until the solution can no longer be improved.

Swapping Procedure

1. For (job1, job2) in List do

2.
swap the routing position between job1 and job2 if it reduces the total routing cost and the routing
is still feasible.

3. End For

Appl. Sci. 2022, 12, 6486 10 of 18

4.4.2. Moving Procedure

This procedure uses the same idea as the swapping procedure: the chosen patient
is moved to another position. The patient moves when the objective value is reduced;
otherwise, the patient will maintain his/her position. This procedure also uses the same
List as the swapping procedure.

Moving Procedure

1. For (job1, job2) in List do

2.
Move job2 to process before or after job1 if it reduces the total routing cost and the routing is
feasible. If both positions reduce cost, choose the one with more cost reduction.

3. End For

4.4.3. 2-Opt Procedure

This is a local search procedure for solving the traveling salesman problem. It uses
the same idea as the swapping procedure by swapping a pair of edges, instead of patients,
from any route and reconnecting them with each other. In other words, the main idea is
the crossover between two routes. The edge moves when the objective value is reduced;
otherwise, all patients will maintain their positions. The List for this procedure contains all
pairs of edges in random order. Suppose, for example, that we have two routes that start
and end at the origin, denoted by “O”, and are arranged as follows: O-A1-A2-A3-A4-A5-O
and O-B1-B2-B3-B4-B5-B6-O. Suppose the selected edges are (A1-A2) and (B4-B5). The
result routes will be O-A1-B5-B6-O and O-B1-B2-B3-B4-A2-A3-A4-A5-O.

2-Opt Procedure

1. For (A-B, C-D) in List do

2.
Define a path starting from depot to node A by OA, a path starting from B to depot by BO, a path
starting from depot to node C by OC, and a path starting from D to depot by DO.

3.
Reconstruct a path as OA connected to DO and OC connected to BO only if the result is feasible
and the total cost is reduced.

4. End For

4.5. R&R Procedure

The main idea behind this procedure is to jump out to a new solution to avoid the
local optimum [30]. In this procedure, one of the caretakers is randomly removed. The
removed patients are then added to the remaining caretakers using the Inserting procedure.
If some of the remaining patients cannot be inserted into any place, a new caretaker will be
deployed by applying the Inserting procedure to the remaining patients.

R&R Procedure

1. Input: Routing solution

2.
Randomly select a caretaker, set to Removal, and remove all patients belonging to that caretaker from
the routing solution.

3. For patient ∈ Removal do

4.
Insert patient by applying the Inserting procedure to each caretaker; if there is no place to insert,
deploy a new caretaker and apply the procedure again

5. End For

5. Computational Results on Solomon’s Instances

To test our constructed heuristic, we apply it to solve the well-known benchmark
instances called Solomon’s instances with 25, 50, and 100 customers. As mentioned earlier,
there are 3 groups of instances, C (clustered), R (random) and RC (randomly clustered). The
parameters used in all simulation results are: number of particles, set at 15 (n = 15); number
of R&R runs, which is 5 (r = 5); and maximum iterations, set at 500 (Iter_max = 500). These
parameters greatly affect the performance of the heuristic. For example, if the number of
particles is high, the objective function value tends to be better. However, we will have to
sacrifice the time needed to execute each iteration. Since a higher number of particles does

Appl. Sci. 2022, 12, 6486 11 of 18

not guarantee a better solution, we limit the number of particles to 15 where the running
time is comparatively low. The number of R&R is set to 5 in an attempt to diversify particles
when they have similar solutions or similar route. This normally occurs when the heuristic
reaches a local optimum, since the path relinking process tends to move all particles that
are similar to each other. As for the maximum number of iterations, in all problems tested
this has never reached 500, hence the number is set to 500.

To illustrate the proposed heuristic’s performance, the heuristic is written in Julia’s
language [45,46] and run on AMD Ryzen 9 12-Core processors with 3.8 GHz CPU and
64 GB of RAM. The results shown in Tables 3–5 compare the optimum objective function
values and that obtained with our heuristic for the Solomon’s instances with 25, 50, and
100 customers, respectively. For those instances where the optimal solutions have not been
found in the existing literature, we compare our results with the best solutions from the
literature. The number of vehicles presented is equivalent to the number of caretakers. The
customers presented can be seen as the patients. The “%Gap” is the percentage difference
between the values obtained with our heuristic and the optimal values. With 52, 21, and 18
out of 56 cases that our heuristic can find the optimal solutions in 25, 50, and 100 customer
instances, we can say that our heuristic performs better in smaller-size instances. In general,
our heuristic performs better in C1 and C2 instances since the %Gap is smaller compared
to the R1, R2, RC1, and RC2 instances. Moreover, in most cases the optimal solutions have
yet to be found, and the %Gap is less than 5%.

Note that for all computations, the distance between each pair of nodes is truncated
to 1 digit. It is also worth mentioning that the running time for each iteration on 25-
customer instances is recorded at approximately 1 s for RC2 instances (at 20 total number
of iterations), 2 s for all C1, R1, R2, and RC1 instances (at 10, 10, 12, and 20 iterations), and
3 s for C2 instances (at 15 iterations). The running times for each iteration on 50 customer
instances are 4 s for C1 (at 25 iterations), 5 s for R2 and RC2 (at 25 and 30 iterations), and
6, 7, and 10 s for R1, RC1, and C2 instances (at 20, 25, and 30 iterations), respectively.
For those instances with 100 customers, the running time for each iteration is recorded at
approximately 30 s for all C1 instances, and 1 min for C2, R1, R2, RC1, and RC2 instances.
Note that the running time depends on the number of particles and maximum iterations
set. However, for each instance, the heuristic executes with the indicated solution after only
a few iterations (for the worst case, up to 30 iterations or up to 30 min for each instance).

To further analyze the performance of our heuristic, we modify Solomon’s instances
to contain compatibility between patients and caretakers. The solutions obtained with
our heuristic are shown in Table 6 along with the optimal solutions. Note the negative
%Gap in the first instance: this is because our heuristic cannot find a feasible solution with
3 vehicles. The optimal solutions can be found for only 5 out of 56 cases. This indicates that
the difficulty level of the problem has increased dramatically. Note that the computation
time of the instances with compatibility is the same as without compatibility constraints.

Appl. Sci. 2022, 12, 6486 12 of 18

Table 3. Comparisons between the exact solutions and the results obtained by our heuristic on
25-customer Solomon instances.

Problem
Optimum Our Best

%Gap Execution
Time (s)Number of

Vehicles Total Distance Reference Number of
Vehicles Total Distance

C101 3 191.3 [47] 3 191.3 0.000 17.13
C102 3 190.3 [47] 3 190.3 0.000 30.44
C103 3 190.3 [47] 3 190.3 0.000 16.38
C104 3 186.9 [47] 3 186.9 0.000 30.74
C105 3 191.3 [47] 3 191.3 0.000 25.25
C106 3 191.3 [47] 3 191.3 0.000 15.98
C107 3 191.3 [47] 3 191.3 0.000 16.48
C108 3 191.3 [47] 3 191.3 0.000 14.34
C109 3 191.3 [47] 3 191.3 0.000 21.45

C201 2 214.7 [17] 2 214.7 0.000 29.40
C202 2 214.7 [17] 2 214.7 0.000 26.66
C203 2 214.7 [17] 2 214.7 0.000 33.97
C204 2 213.1 [17] 2 214.5 0.657 47.89
C205 2 214.7 [17] 2 214.7 0.000 49.21
C206 2 214.7 [17] 2 214.7 0.000 41.50
C207 2 214.5 [17] 1 274.0 27.74 45.93
C208 2 214.5 [17] 1 229.1 6.807 42.62

R101 8 617.1 [47] 8 617.1 0.000 25.21
R102 7 547.1 [47] 7 547.1 0.000 23.50
R103 5 454.6 [47] 5 454.6 0.000 20.80
R104 4 416.9 [47] 4 416.9 0.000 26.97
R105 6 530.5 [47] 6 530.5 0.000 15.39
R106 3 465.4 [47] 5 465.4 0.000 23.06
R107 4 424.3 [47] 5 430.8 1.532 22.06
R108 4 397.3 [47] 4 397.3 0.000 19.90
R109 5 441.3 [47] 5 441.3 0.000 16.39
R110 4 444.1 [47] 5 444.1 0.000 23.13
R111 5 428.8 [47] 4 428.8 0.000 20.35
R112 4 393.0 [47] 4 393.0 0.000 18.15

R201 4 463.3 [17] 4 463.3 0.000 25.58
R202 4 410.5 [17] 4 410.5 0.000 18.46
R203 3 391.4 [17] 3 391.4 0.000 25.46
R204 2 355.0 [17] 2 355.0 0.000 27.90
R205 3 393.0 [17] 3 393.0 0.000 25.92
R206 3 374.4 [17] 3 374.4 0.000 27.84
R207 3 361.6 [16] 3 361.6 0.000 27.24
R208 1 328.2 [48] 1 328.2 0.000 19.03
R209 2 370.7 [16] 2 370.7 0.000 19.94
R210 3 404.6 [17] 3 404.6 0.000 26.32
R211 2 350.9 [16] 2 350.9 0.000 22.49

RC101 4 461.1 [47] 4 461.1 0.000 38.39
RC102 3 351.8 [47] 3 351.8 0.000 39.48
RC103 3 332.8 [47] 3 332.8 0.000 38.72
RC104 3 306.6 [47] 3 306.6 0.000 39.89
RC105 4 411.3 [47] 4 411.3 0.000 39.10
RC106 3 345.5 [47] 3 345.5 0.000 42.88
RC107 3 298.3 [47] 3 298.3 0.000 36.47
RC108 3 294.5 [47] 3 294.5 0.000 43.91

RC201 3 360.2 [17] 3 360.2 0.000 18.25
RC202 3 338.0 [17] 3 338.0 0.000 11.64
RC203 3 326.9 [48] 3 326.9 0.000 13.74
RC204 3 299.7 [49] 3 299.7 0.000 12.33
RC205 3 338.0 [15] 3 338.0 0.000 17.65
RC206 3 324.0 [16] 3 324.0 0.000 13.34
RC207 3 298.3 [16] 3 298.3 0.000 11.50
RC208 2 269.1 [49] 2 269.1 0.000 10.98

Appl. Sci. 2022, 12, 6486 13 of 18

Table 4. Comparisons between the exact solution or best solutions (with “*”) and the results obtained
by our heuristic on 50-customer Solomon instances.

Problem
Best-Known Our Best

%Gap Execution
Time (s)Number of

Vehicles Total Distance Reference Number of
Vehicles Total Distance

C101 5 362.4 [47] 5 362.4 0.000 104.8
C102 5 361.4 [47] 5 361.4 0.000 104.1
C103 5 361.4 [47] 5 382.1 5.727 104.8
C104 5 358.0 [47] 5 361.1 0.8659 104.7
C105 5 362.4 [47] 5 362.4 0.000 98.30
C106 5 362.4 [47] 5 362.4 0.000 101.1
C107 5 362.4 [47] 5 362.4 0.000 97.12
C108 5 362.4 [47] 5 362.4 0.000 104.8
C109 5 362.4 [47] 5 362.4 0.000 95.53

C201 3 360.2 [17] 3 360.2 0.000 275.6
C202 3 360.2 [17] 3 360.2 0.000 207.4
C203 3 359.8 [17] 3 359.8 0.000 469.5
C204 2 350.1 [17] 2 357.6 2.142 472.4
C205 3 359.8 [17] 3 359.8 0.000 349.7
C206 3 359.8 [17] 3 359.8 0.000 427.4
C207 3 359.6 [17] 3 359.6 0.000 226.2
C208 2 350.5 [17] 2 350.5 0.000 458.7

R101 12 1044 [47] 12 1049 0.4789 124.4
R102 11 909.0 [47] 11 909.0 0.000 116.6
R103 9 772.9 [47] 9 772.9 0.000 128.6
R104 6 625.4 [47] 6 636.0 1.694 95.72
R105 9 899.3 [47] 11 922.4 2.568 105.3
R106 5 793.0 [47] 9 795.5 0.3153 128.5
R107 7 711.1 [47] 7 711.1 0.000 95.11
R108 6 617.7 [17] 6 623.7 0.9713 95.83
R109 8 786.8 [47] 8 792.0 0.6609 118.4
R110 7 697.0 [47] 8 718.5 3.084 127.7
R111 7 707.2 [17] 7 719.3 1.711 87.38
R112 6 630.2 [17] 6 650.3 3.189 97.39

R201 6 791.9 [17] 6 812.1 2.550 143.3
R202 5 698.5 [17] 6 715.4 2.419 140.3
R203 5 605.3 [48] 5 613.8 1.404 160.0
R204 2 506.4 [48] 3 512.7 1.244 153.2
R205 4 690.1 [48] 5 700.0 1.434 117.1
R206 4 632.4 [48] 5 643.4 1.739 153.7
R207 2 * 594.0 * [50] 3 584.2 −1.649 * 133.4
R208 2 * 508.4 * [50] 2 496.2 −2.399 * 189.5
R209 4 600.6 [48] 4 600.6 0.000 109.0
R210 4 645.6 [48] 5 655.5 1.533 167.3
R211 3 535.5 [48] 4 552.2 3.118 133.3

RC101 8 944.0 [47] 8 944.8 0.08475 183.0
RC102 7 822.5 [47] 8 838.9 1.993 215.5
RC103 6 710.9 [47] 7 754.5 6.133 224.9
RC104 5 545.8 [47] 5 552.2 1.172 234.0
RC105 8 855.3 [47] 9 889.0 3.940 211.2
RC106 6 723.2 [47] 7 769.0 6.333 234.9
RC107 6 642.7 [47] 6 670.2 4.278 229.3
RC108 6 598.1 [47] 6 598.1 0.000 210.5

RC201 5 684.8 [15] 5 684.8 0.000 139.1
RC202 5 613.6 [48] 5 613.6 0.000 139.3
RC203 4 555.3 [48] 4 566.2 1.962 154.1
RC204 3 444.2 [51] 3 447.2 0.6754 152.1
RC205 5 630.2 [48] 5 633.7 0.5554 130.9
RC206 5 610.0 [48] 5 610.1 0.01639 195.0
RC207 4 558.6 [49] 5 562.5 0.6982 139.5
RC208 2 * 498.8 * [50] 4 490.6 −1.643 * 122.3

Appl. Sci. 2022, 12, 6486 14 of 18

Table 5. Comparisons between the exact solution or best solutions (with “*”) and the results obtained
by our heuristic on 100-customer Solomon instances.

Problem
Best-Known Our Best

%Gap Execution
Time (s)Number of

Vehicles Total Distance Reference Number of
Vehicles Total Distance

C101 10 827.30 [47] 10 827.30 0.0000 533.12
C102 10 827.30 [47] 10 827.30 0.0000 794.94
C103 10 826.30 [47] 10 826.30 0.0000 1456.5
C104 10 822.90 [47] 10 822.90 0.0000 1524.0
C105 10 827.30 [47] 10 827.30 0.0000 1243.1
C106 10 827.30 [47] 10 827.30 0.0000 1010.7
C107 10 827.30 [47] 10 827.30 0.0000 1316.3
C108 10 827.30 [47] 10 827.30 0.0000 936.42
C109 10 827.30 [47] 10 827.30 0.0000 1692.4

C201 3 589.10 [17] 3 589.10 0.0000 1887.9
C202 3 589.10 [17] 3 589.10 0.0000 814.01
C203 3 588.70 [16] 3 588.70 0.0000 1806.4
C204 3 588.10 [17] 3 588.10 0.0000 1280.1
C205 3 586.40 [17] 3 586.40 0.0000 2014.4
C206 3 586.00 [17] 3 586.00 0.0000 2121.1
C207 3 585.80 [17] 3 585.80 0.0000 762.62
C208 3 585.80 [16] 3 585.80 0.0000 1697.6

R101 20 1637.7 [47] 20 1637.7 0.0000 1091.7
R102 18 1466.6 [47] 18 1467.7 0.07500 1826.4
R103 14 1208.7 [17] 15 1220.3 0.95971 1246.7
R104 11 971.50 [48] 10 984.50 1.3381 2208.1
R105 15 1355.3 [47] 16 1373.1 1.3134 1542.2
R106 13 1234.6 [17] 14 1259.3 2.0007 768.54
R107 11 1064.6 [17] 12 1084.6 1.8786 664.12
R108 9 * 938.20 * [22] 11 952.30 1.5029 * 633.11
R109 13 1146.9 [17] 13 1165.9 1.6566 1143.8
R110 12 10,680 [17] 12 1091.2 2.1723 1761.7
R111 12 1048.7 [17] 12 1065.3 1.5829 1274.6
R112 10 * 953.60 * [23] 11 971.80 1.9086 * 1961.3

R201 8 1143.2 [16] 8 1146.6 0.29741 1297.3
R202 8 * 1034.4 * [23] 7 1035.8 0.13534 * 880.37
R203 6 * 874.90 * [23] 6 877.00 0.24003 * 2108.4
R204 5 * 735.80 * [22] 5 742.40 0.89698 * 2013.9
R205 5 * 954.20 * [19] 5 957.20 0.31440 * 2050.3
R206 4 * 879.90 * [23] 6 894.40 1.6479 * 1236.0
R207 4 * 798.00 * [22] 5 808.60 1.3283 * 2164.1
R208 4 * 705.30 * [22] 4 718.70 1.8999 * 871.52
R209 5 * 859.40 * [23] 5 870.30 1.2683 * 1077.4
R210 6 * 905.20 * [22] 6 916.00 1.1931 * 2154.1
R211 4 * 753.20 * [22] 5 758.60 0.71694 * 1968.6

RC101 15 1619.8 [16] 16 1647.5 1.7101 2023.8
RC102 14 1457.4 [48] 14 1473.5 1.1047 868.49
RC103 11 1258.0 [17] 12 1282.5 1.9475 1585.9
RC104 10 * 1135.5 * [21] 11 1159.2 2.0872 * 1363.0
RC105 15 1513.7 [47] 15 1554.9 2.7218 658.57
RC106 13 * 1368.0 * [22] 14 1398.2 2.2076 * 1787.3
RC107 12 1207.8 [48] 12 1251.0 3.5768 1235.4
RC108 11 1114.2 [48] 11 1132.5 1.6424 1828.4

RC201 9 1261.8 [16] 9 1268.8 0.55476 1849.6
RC202 8 1092.3 [48] 8 1096.3 0.36620 506.41
RC203 5 * 926.80 * [22] 5 934.40 0.82003 * 947.26
RC204 4 * 786.40 * [23] 4 793.60 0.91556 * 664.77
RC205 7 1154.0 [48] 8 1162.7 0.75390 1385.4
RC206 7 * 1054.6 * [23] 7 1070.2 1.4792 * 1334.3
RC207 6 * 966.10 * [23] 6 967.70 0.1656 * 1641.8
RC208 4 * 778.90 * [23] 4 778.90 0.0000 * 2208.1

Appl. Sci. 2022, 12, 6486 15 of 18

Table 6. Comparison between the exact solution of Solomon’s instances with and without compatibil-
ity, and the solution with compatibility obtained with our algorithm.

Problem

Optimum without
Compatibility Optimum with Compatibility Our Algorithm with

Compatibility
%Gap

Number of
Vehicles

Total
Distance

Number of
Vehicles

Total
Distance %Gap Number of

Vehicles
Total

Distance

C101 3 191.3 3 253.3 0.0 4 228.3 −9.870
C102 3 190.3 3 244.1 0.0 3 267.3 9.504
C103 3 190.3 3 236.8 0.0 3 247.6 4.561
C104 3 186.9 3 261.3 0.0 3 263.6 0.8802
C105 3 191.3 3 228.9 0.0 3 243.5 6.378
C106 3 191.3 3 253.3 0.0 3 256.7 1.342
C107 3 191.3 3 232.1 0.0 3 246.7 6.290
C108 3 191.3 3 231.9 0.0 3 237.3 2.329
C109 3 191.3 3 231.9 0.0 3 246.5 6.300

C201 2 214.7 3 356.2 0.0 2 386.6 8.534
C202 2 214.7 2 244.8 0.0 2 244.8 0.000
C203 2 214.7 2 244.8 0.0 2 247.4 1.062
C204 2 213.1 2 235.8 0.0 2 244.8 3.817
C205 2 214.7 2 261.4 0.0 2 267.0 2.142
C206 2 214.7 2 259.1 0.0 2 263.0 1.505
C207 2 214.5 2 252.4 0.0 2 261.2 3.486
C208 2 214.5 2 251.8 0.0 2 251.8 0.000

R101 8 617.1 8 623.9 0.0 9 643.7 3.174
R102 7 547.1 7 553.6 0.0 7 585.7 5.798
R103 5 454.6 5 454.6 0.0 5 474.0 4.268
R104 4 416.9 4 416.9 0.0 4 416.9 0.000
R105 6 530.5 5 555.6 0.0 6 582.2 4.788
R106 3 465.4 5 465.4 0.0 5 475.2 2.106
R107 4 424.3 4 432.5 0.0 4 440.3 1.804
R108 4 397.3 4 407.9 0.0 4 408.3 0.09810
R109 5 441.3 5 446.9 0.0 4 481.0 7.630
R110 4 444.1 4 444.7 0.0 5 457.1 2.788
R111 5 428.8 4 437.8 0.0 4 477.1 8.977
R112 4 393.0 4 403.3 0.0 4 415.2 2.951

R201 4 463.3 3 463.3 0.0 3 503.9 8.763
R202 4 410.5 3 421.0 0.0 3 457.5 8.670
R203 3 391.4 3 412.0 0.0 2 444.5 7.888
R204 2 355.0 3 369.5 0.0 3 393.9 6.603
R205 3 393.0 2 418.8 0.0 2 418.8 0.000
R206 3 374.4 3 375.9 0.0 3 405.0 7.741
R207 3 361.6 3 375.9 0.0 3 400.7 6.598
R208 1 328.2 3 369.5 0.0 3 385.5 4.330
R209 2 370.7 3 390.5 0.0 3 409.8 4.942
R210 3 404.6 3 423.4 0.0 3 452.6 6.897
R211 2 350.9 3 381.3 0.0 3 413.6 8.471

RC101 4 461.1 4 464.9 0.0 5 488.2 5.0118
RC102 3 351.8 4 405.4 0.0 4 420.7 3.7741
RC103 3 332.8 4 386.4 0.0 4 386.4 0.0000
RC104 3 306.6 4 367.8 0.0 4 372.6 1.3051
RC105 4 411.3 4 458.9 0.0 5 481.4 4.9030
RC106 3 345.5 4 399.2 0.0 4 406.3 1.7786
RC107 3 298.3 4 365.9 0.0 4 368.3 0.6559
RC108 3 294.5 4 361.6 0.0 4 367.8 1.7146

RC201 3 360.2 3 524.5 0.0 3 574.5 9.5329
RC202 3 338.0 2 436.0 0.0 2 437.0 0.2294
RC203 3 326.9 3 356.6 0.0 4 362.9 1.7667
RC204 3 299.7 3 327.5 2.8 3 330.9 1.0382
RC205 3 338.0 3 498.7 7.4 3 547.8 9.8456
RC206 3 324.0 2 409.5 0.0 2 444.1 8.4493
RC207 3 298.3 4 672.3 0.0 4 701.7 4.3730
RC208 2 269.1 4 559.3 0.0 4 613.3 9.6549

Appl. Sci. 2022, 12, 6486 16 of 18

6. Conclusions

In this paper, we formulated mathematical modeling and a heuristic for solving a
home healthcare routing and scheduling problem in which caretakers must visit specific
patients within a specific time frame. This problem can be formulated into a vehicle routing
problem with time windows (VRPTW) and compatibility constraints.

Due to the NP-hard nature of the problem, we presented a new heuristic combining
particle swarm optimization, inserting procedure, local search, path relinking, and ruin-and-
recreate (R&R) procedures. In particular, the inserting procedure is used to generate initial
solutions and restore the feasibility of the solution. The constructed local search procedure
representing the particle’s movement to the local space is used to improve the solutions.
Path relinking represents the global search movement of particles; at each iteration, the
procedure is used to improve the current solution by integrating the current solution with
the current best solution. R&R is deployed in cases where leaping out of the local optimum
is necessary.

To test the performance of the heuristic, we applied it to Solomon’s instances with
25, 50 and 100 customers and compared objective values obtained with our heuristic and
the optimum values collected from published literature. Computational results show that
our proposed heuristic performs better on smaller instances and in all clustered problems
(C1 and C2 instances). Further investigation with compatibility constraints included in
the model shows that our proposed heuristic also performed very well on 25 customer
instances yielding solutions with less than 10% optimality gap. However, only 5 optimal
solutions are found in the model with compatibility constraints compared with 52 optimal
solutions found in the model without the constraints. This also suggests that the problem
is much more difficult compared with regular VRPTW.

The parameters in this study are experimentally selected to balance the computation
time and solution quality. This does not guarantee the best performance of the algorithm.
Moreover, as searching for the parameters is very time-consuming, one could consider the
parameterized metaheuristic as presented in [52].

Author Contributions: Conceptualization, P.S. and C.L.; Data curation, P.S.; Formal analysis, C.L.;
Investigation, P.S.; Methodology, P.S. and C.L.; Software, P.S.; Supervision, C.L.; Validation, P.S. and
C.L.; Visualization, C.L.; Writing—original draft, P.S.; Writing—review and editing, C.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is supported by the Royal Golden Jubilee Ph.D. Program [Grant No. PHD/0041/
2560]; and the Research Group in Mathematics and Applied Mathematics, Department of Mathematics,
Faculty of Science, Chiang Mai University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thanks the Royal Golden Jubilee Ph.D. Program, and the Research
Group in Mathe-matics and Applied Mathematics, Department of Mathematics, Faculty of Science,
Chiang Mai University for the support. The authors appreciate Wiriya Sungkhaniyom for her
proofreading help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations. World Population Prospects 2019, Volume II: Demographic Profiles; Department of Economic and Social Affairs:

New York, NY, USA, 2019.
2. Office of the National Economic and Social Development Board Office of the Prime Minister Bangkok Thailand. Summary the

Twelfth National Economic and Social Development Plan (2017–2021); Office of the National Economic and Social Development Board
Office of the Prime Minister: Bangkok, Thailand, 2017.

3. Suriyanrattakorn, S.; Chang, C.-L. Long-Term Care (LTC) Policy in Thailand on the Homebound and Bedridden Elderly Happiness.
Health Policy Open 2021, 2, 100026. [CrossRef]

http://doi.org/10.1016/j.hpopen.2020.100026

Appl. Sci. 2022, 12, 6486 17 of 18

4. Wirnitzer, J.; Heckmann, I.; Meyer, A.; Nickel, S. Patient-Based Nurse Rostering in Home Care. Oper. Res. Health Care 2016, 8,
91–102. [CrossRef]

5. Braekers, K.; Hartl, R.F.; Parragh, S.N.; Tricoire, F. A Bi-Objective Home Care Scheduling Problem: Analyzing the Trade-off
between Costs and Client Inconvenience. Eur. J. Oper. Res. 2016, 248, 428–443. [CrossRef]

6. Ait Haddadene, S.R.; Labadie, N.; Prodhon, C. A GRASP × ILS for the Vehicle Routing Problem with Time Windows, Synchro-
nization and Precedence Constraints. Expert Syst. Appl. 2016, 66, 274–294. [CrossRef]

7. Polnik, M.; Riccardi, A.; Akartunalı, K. A Multistage Optimisation Algorithm for the Large Vehicle Routing Problem with Time
Windows and Synchronised Visits. J. Oper. Res. Soc. 2021, 72, 2396–2411. [CrossRef]

8. Yu, M.; Nagarajan, V.; Shen, S. An Approximation Algorithm for Vehicle Routing with Compatibility Constraints. Oper. Res. Lett.
2018, 46, 579–584. [CrossRef]

9. Riazi, S.; Wigstrom, O.; Bengtsson, K.; Lennartson, B. A Column Generation-Based Gossip Algorithm for Home Healthcare
Routing and Scheduling Problems. IEEE Trans. Autom. Sci. Eng. 2019, 16, 127–137. [CrossRef]

10. Kandakoglu, A.; Sauré, A.; Michalowski, W.; Aquino, M.; Graham, J.; McCormick, B. A Decision Support System for Home
Dialysis Visit Scheduling and Nurse Routing. Decis. Support Syst. 2020, 130, 113224. [CrossRef]

11. Nasir, J.A.; Kuo, Y.-H. A Decision Support Framework for Home Health Care Transportation with Simultaneous Multi-Vehicle
Routing and Staff Scheduling Synchronization. Decis. Support Syst. 2020, 138, 113361. [CrossRef]

12. Cissé, M.; Yalçındağ, S.; Kergosien, Y.; Şahin, E.; Lenté, C.; Matta, A. OR Problems Related to Home Health Care: A Review of
Relevant Routing and Scheduling Problems. Oper. Res. Health Care 2017, 13–14, 1–22. [CrossRef]

13. di Mascolo, M.; Martinez, C.; Espinouse, M.-L. Routing and Scheduling in Home Health Care: A Literature Survey and
Bibliometric Analysis. Comput. Ind. Eng. 2021, 158, 107255. [CrossRef]

14. Solomon, M.M. Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Oper. Res. 1987, 35,
254–265. [CrossRef]

15. Larsen, J. Parallelization of the Vehicle Routing Problem with Time Windows; Technical University of Denmark: Kongens Lyngby,
Danmark, 1999.

16. Kallehauge, B.; Larsen, J.; Madsen, O.B.G. Lagrangean Duality Applied on Vehicle Routing with Time Windows Experimental
Results. In IMM-Technical Report-2001-9; Informatics and Mathematical Modelling, Technical University of Denmark: Lyngby,
Denmark, 2001.

17. Cook, W.; Rich, J.L. A Parallel Cutting-Plane Algorithm for the Vehicle Routing Problem with Time Windows. In CAAM Technical
Reports; Digital Scholarship Services: Houston, TX, USA, 1999.

18. Rochat, Y.; Taillard, É.D. Probabilistic Diversification and Intensification in Local Search for Vehicle Routing. J. Heuristics 1995, 1,
147–167. [CrossRef]

19. Ombuki, B.; Ross, B.J.; Hanshar, F. Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows. Appl.
Intell. 2006, 24, 17–30. [CrossRef]

20. Alvarenga, G.B.; Mateus, G.R.; de Tomi, G. A Genetic and Set Partitioning Two-Phase Approach for the Vehicle Routing Problem
with Time Windows. Comput. Oper. Res. 2007, 34, 1561–1584. [CrossRef]

21. Zbigniew, J.C. Best Solutions Found by the Parallel Simulated Annealing Algorithm for Solomon’s Vehicle Routing Problem with
Time Windows (VRPTW) Benchmark Instances. Available online: http://sun.aei.polsl.pl/~{}zjc/best-solutions-solomon.html
(accessed on 6 June 2021).

22. Khoo, T.S.; Mohammad, B.B. The Parallelization of a Two-Phase Distributed Hybrid Ruin-and-Recreate Genetic Algorithm for
Solving Multi-Objective Vehicle Routing Problem with Time Windows. Expert Syst. Appl. 2021, 168, 114408. [CrossRef]

23. Jung, S.; Moon, B.-R. A Hybrid Genetic Algorithm for the Vehicle Routing Problem with Time Windows. In Proceedings of the
Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 9–13 July 2002;
pp. 1309–1316.

24. Ahn, B.-H.; Shin, J.-Y. Vehicle-Routeing with Time Windows and Time-Varying Congestion. J. Oper. Res. Soc. 1991, 42, 393.
[CrossRef]

25. Eshtehadi, R.; Demir, E.; Huang, Y. Solving the Vehicle Routing Problem with Multi-Compartment Vehicles for City Logistics.
Comput. Oper. Res. 2020, 115, 104859. [CrossRef]

26. Low, C.; Chang, C.-M.; Li, R.-K.; Huang, C.-L. Coordination of Production Scheduling and Delivery Problems with Heterogeneous
Fleet. Int. J. Prod. Econ. 2014, 153, 139–148. [CrossRef]

27. Chen, J.; Shi, J. A Multi-Compartment Vehicle Routing Problem with Time Windows for Urban Distribution—A Comparison
Study on Particle Swarm Optimization Algorithms. Comput. Ind. Eng. 2019, 133, 95–106. [CrossRef]

28. Shaw, P. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing Problems; APES Group, Dept of Computer
Science, University of Strathclyde: Glasgow, UK, 1997.

29. Shaw, P. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In International Conference
on Principles and Practice of Constraint Programming; Springer: Berlin/Heidelberg, Germany, 1998; pp. 417–431.

30. Schrimpf, G.; Schneider, J.; Stamm-Wilbrandt, H.; Dueck, G. Record Breaking Optimization Results Using the Ruin and Recreate
Principle. J. Comput. Phys. 2000, 159, 139–171. [CrossRef]

31. Rousseau, L.-M.; Gendreau, M.; Pesant, G. Using Constraint-Based Operators to Solve the Vehicle Routing Problem with Time
Windows. J. Heuristics 2002, 8, 43–58. [CrossRef]

http://doi.org/10.1016/j.orhc.2015.08.005
http://doi.org/10.1016/j.ejor.2015.07.028
http://doi.org/10.1016/j.eswa.2016.09.002
http://doi.org/10.1080/01605682.2020.1792365
http://doi.org/10.1016/j.orl.2018.10.002
http://doi.org/10.1109/TASE.2018.2874392
http://doi.org/10.1016/j.dss.2019.113224
http://doi.org/10.1016/j.dss.2020.113361
http://doi.org/10.1016/j.orhc.2017.06.001
http://doi.org/10.1016/j.cie.2021.107255
http://doi.org/10.1287/opre.35.2.254
http://doi.org/10.1007/BF02430370
http://doi.org/10.1007/s10489-006-6926-z
http://doi.org/10.1016/j.cor.2005.07.025
http://sun.aei.polsl.pl/~{}zjc/best-solutions-solomon.html
http://doi.org/10.1016/j.eswa.2020.114408
http://doi.org/10.1057/jors.1991.81
http://doi.org/10.1016/j.cor.2019.104859
http://doi.org/10.1016/j.ijpe.2014.02.014
http://doi.org/10.1016/j.cie.2019.05.008
http://doi.org/10.1006/jcph.1999.6413
http://doi.org/10.1023/A:1013661617536

Appl. Sci. 2022, 12, 6486 18 of 18

32. Li, H.; Lim, A. Local Search with Annealing-like Restarts to Solve the VRPTW. Eur. J. Oper. Res. 2003, 150, 115–127. [CrossRef]
33. Berger, J.; Barkaoui, M. A Parallel Hybrid Genetic Algorithm for the Vehicle Routing Problem with Time Windows. Comput. Oper.

Res. 2004, 31, 2037–2053. [CrossRef]
34. Mester, D.; Bräysy, O.; Dullaert, W. A Multi-Parametric Evolution Strategies Algorithm for Vehicle Routing Problems. Expert Syst.

Appl. 2007, 32, 508–517. [CrossRef]
35. Pisinger, D.; Ropke, S. A General Heuristic for Vehicle Routing Problems. Comput. Oper. Res. 2007, 34, 2403–2435. [CrossRef]
36. Marinakis, Y.; Marinaki, M.; Migdalas, A. A Multi-Adaptive Particle Swarm Optimization for the Vehicle Routing Problem with

Time Windows. Inf. Sci. 2019, 481, 311–329. [CrossRef]
37. Gehring, H.; Homberger, J. A Parallel Hybrid Evolutionary Metaheuristic for the Vehicle Routing Problem with Time Windows.

In Proceedings of the EUROGEN99; Springer: Berlin/Heidelberg, Germany, 1999; pp. 57–64.
38. Bent, R.; van Hentenryck, P. A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows. Transp. Sci.

2004, 38, 515–530. [CrossRef]
39. Repoussis, P.P.; Tarantilis, C.D.; Ioannou, G. Arc-Guided Evolutionary Algorithm for the Vehicle Routing Problem With Time

Windows. IEEE Tran. Evol. Comput. 2009, 13, 624–647. [CrossRef]
40. Galindres-Guancha, L.F.; Toro-Ocampo, E.; Gallego-Rendón, R. A Biobjective Capacitated Vehicle Routing Problem Using

Metaheuristic Ils and Decomposition. Int. J. Ind. Eng. Comput. 2021, 12, 293–304. [CrossRef]
41. Gambardella, L.M.; Taillard, É.; Agazzi, G. MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with

Time Windows. In New Ideas in Optimization; McGraw-Hill: London, UK, 1999; pp. 63–76.
42. Expósito, A.; Brito, J.; Moreno, J.A.; Expósito-Izquierdo, C. Quality of Service Objectives for Vehicle Routing Problem with Time

Windows. Appl. Soft Comput. 2019, 84, 105707. [CrossRef]
43. Taillard, É.; Badeau, P.; Gendreau, M.; Guertin, F.; Potvin, J.-Y. A Tabu Search Heuristic for the Vehicle Routing Problem with Soft

Time Windows. Transp. Sci. 1997, 31, 170–186. [CrossRef]
44. Glover, F.; Manuel, L. Rafael Martí Fundamentals of Scatter Search and Path Relinking. Control Cybern. 2000, 29, 653–684.
45. Bezanson, J.; Karpinski, S.; Shah, V.B.; Edelman, A. Julia: A Fast Dynamic Language for Technical Computing. arXiv 2012,

arXiv:1209.5145. [CrossRef]
46. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 2017, 59, 65–98.

[CrossRef]
47. Kohl, N. 2-Path Cuts for the Vehicle Routing Problem with Time Windows. Transp. Sci. 1999, 33, 101–116. [CrossRef]
48. Irnich, S.; Villeneuve, D. The Shortest-Path Problem with Resource Constraints and k-Cycle Elimination for k ≥ 3. Inf. J. Comput.

2006, 18, 391–406. [CrossRef]
49. Chabrier, A. Vehicle Routing Problem with Elementary Shortest Path Based Column Generation. Comput. Oper. Res. 2006, 33,

2972–2990. [CrossRef]
50. Hedar, A.-R.; Bakr, M.A. Three Strategies Tabu Search for Vehicle Routing Problem with Time Windows. Comput. Sci. Inf. Technol.

2014, 2, 108–119. [CrossRef]
51. Danna, E.; le Pape, C. Branch-and-Price Heuristics: A Case Study on the Vehicle Routing Problem with Time Windows. In Column

Generation; Springer: Boston, MA, USA, 2005; pp. 99–129. [CrossRef]
52. Cutillas-Lozano, J.M.; Giménez, D.; Almeida, F. Hyperheuristics based on parametrized metaheuristic schemes. In Proceedings of

the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; pp. 361–368.

http://doi.org/10.1016/S0377-2217(02)00486-1
http://doi.org/10.1016/S0305-0548(03)00163-1
http://doi.org/10.1016/j.eswa.2005.12.014
http://doi.org/10.1016/j.cor.2005.09.012
http://doi.org/10.1016/j.ins.2018.12.086
http://doi.org/10.1287/trsc.1030.0049
http://doi.org/10.1109/TEVC.2008.2011740
http://doi.org/10.5267/j.ijiec.2021.2.002
http://doi.org/10.1016/j.asoc.2019.105707
http://doi.org/10.1287/trsc.31.2.170
http://doi.org/10.48550/arXiv.1209.5145
http://doi.org/10.1137/141000671
http://doi.org/10.1287/trsc.33.1.101
http://doi.org/10.1287/ijoc.1040.0117
http://doi.org/10.1016/j.cor.2005.02.029
http://doi.org/10.13189/csit.2014.020208
http://doi.org/10.1007/0-387-25486-2_4

	Introduction
	Materials and Methods
	Mathematical Modeling
	Algorithms
	Main Algorithm
	Path Relinking Procedure
	Inserting Procedure
	Local Search Procedure
	Swapping Procedure
	Moving Procedure
	2-Opt Procedure

	R&R Procedure

	Computational Results on Solomon’s Instances
	Conclusions
	References

