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Featured Application: The proposed system is an image processing module that monitors, tracks,
and recognizes hand gestures and has been evaluated over publicly available benchmark datasets.
However, this technique can be used over automated home appliances as well as security systems
to control surrounding environments and classify their events.

Abstract: In the past few years, home appliances have been influenced by the latest technologies
and changes in consumer trends. One of the most desired gadgets of this time is a universal remote
control for gestures. Hand gestures are the best way to control home appliances. This paper presents
a novel method of recognizing hand gestures for smart home appliances using imaging sensors.
The proposed model is divided into six steps. First, preprocessing is done to de-noise the video
frames and resize each frame to a specific dimension. Second, the hand is detected using a single shot
detector-based convolution neural network (SSD-CNN) model. Third, landmarks are localized on
the hand using the skeleton method. Fourth, features are extracted based on point-based trajectories,
frame differencing, orientation histograms, and 3D point clouds. Fifth, features are optimized using
fuzzy logic, and last, the H-Hash classifier is used for the classification of hand gestures. The system is
tested on two benchmark datasets, namely, the IPN hand dataset and Jester dataset. The recognition
accuracy on the IPN hand dataset is 88.46% and on Jester datasets is 87.69%. Users can control their
smart home appliances, such as television, radio, air conditioner, and vacuum cleaner, using the
proposed system.

Keywords: convolution neural network; frame differencing; hand gestures; point-based trajectories;
smart home appliances; single shot detector; 3d point clouds; k-ary tree hashing classifier

1. Introduction

Over the past few years, intelligent human-computer interaction recognition in the
smart home environment is getting more attention in many fields, including architecture,
robotics, biomedical, and smart home appliances [1–3]. The easiest way of controlling smart
home appliances is through hand gestures [4–6]. The appliances that you use every day are
an important part of your home. Consumers today are very careful about their comfort
and safety and are more interesting in smart appliances [7–9]. They will facilitate their
daily life by controlling the lights, speakers, air conditioners, and similar robots through
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hand gestures [10–12]. By making gestures, you can control all the devices in your home. A
motion sensor is one of the most important tools in your smart home [13–15].

Different models proposed for controlling smart home appliances using hand gesture
recognition can be divided into two main streams. The first approach is based on the recog-
nition of hand gestures using motion sensors embedded in smart home appliances [16–18].
In motion-based sensors, one inertial sensor or an array of sensors is used. These sensors
are responsible for tracking the acceleration, velocity, and position of the hand. Such type
of motion features help to control smart appliances such as television, radio, and lighting
of rooms [19–21], however, the drawback of using motion-based sensors in smart home
appliances is the high sensitivity. The second approach is the use of image sensors [22–24]
or cameras to obtain the commands from hand gestures [25]; the sensors are trained on
image features which include color, shape, texture, position contours, and motion of the
hands. Our proposed model is based on the second approach and recognizes the hand
gestures using imagery sensors or cameras [26].

In this research article, we propose a robust method for recognizing hand gestures
for controlling smart home appliances. For this, we use the IPN hand dataset and Jester
dataset. Initially, preprocessing of the video samples for frame conversion, motion blur
noise reduction, and resizing is performed. The next step is hand detection via SSD-CNN.
After that, the hand skeleton is extracted to process these data sources by various algorithms
for features extraction, optimization of the extracted features, and recognition of the hand
gestures. The main contributions of this paper are:

• For hand motion and position analysis, we propose a method for extracting hand
skeletons;

• For the recognition of image-based hand gestures, we have extracted novel features
based on point-based trajectories, frame differencing, orientation histogram, and 3D
point clouds.

The article is subdivided as follows: we start with the related works section, which is
followed by our system methodology. Then, the detailed experimental setup is discussed,
and finally, an overview of the paper is presented in the Conclusions Section.

2. Related Work

Hand gesture recognition can help computers translate and interpret specific motions
to control smart home appliances. With the advancement of technology, various hand
gesture recognition systems have been developed via smart tools and various classification
approaches. In this section, we will discuss the detailed description of various HGR models
developed in the past few years. Table 1 includes a comprehensive review of recent research
in this area.

Table 1. A comprehensive review of relevant research.

Hand Gestures Recognition for Controlling Smart Home Appliances

Methods Main Contributions

H. Khanh et al. (2019) [24]

The system was developed for controlling smart home appliances using two deep learning
models fused with mobile sensors to recognize hand gestures. The mobile sensors were

instrumented on smartwatches, smartphones, and smart appliances. The deep learning models
helped in the learning and representation of the mobile sensors’ data.

Ransalu et al. (2012) [25]

The HGR model was developed to automate the home appliances using hand gestures. First, the
hand was detected using the Viola-Jones object detection algorithm. To segment the hand from
the image, the YCbCr skin color segmentation technique was used. The filtered hand was refined
using dilation and eroding. At last, a multilayer perceptron was used to classify the four-hand

gestures, i.e., ready, swing, on/speedup & off.
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Table 1. Cont.

Hand Gestures Recognition for Controlling Smart Home Appliances

Methods Main Contributions

P. N. et al. (2017) [26]

The model consists of a few steps. The hand gestures were captured using the web camera and
were then preprocessed to detect the hands. Corner point detection was used to de-noise the

images using a MATLAB simulation tool. Based on the gestures, different threshold values were
used for controlling the home appliances. The threshold values were generated using the Fast

Fourier transform algorithm and the appliances were controlled by the micro-controllers.

V. Utpal et al. (2011) [27]

For controlling home appliances and electronic gadgets using hand gestures, the authors detected
hands using the YCbCr skin color segmentation model and traced edges. For gesture recognition,
the number of fingers was counted, and its orientation was analyzed. The reference background

was stored from each frame which was compared with the next frame for reliable hand
gesture recognition.

Santhana et al. (2020) [28]

They developed a hand gesture recognition system using Leap motion sensors. The system was
customized to recognize multiple motion-based hand gestures for controlling smart home

appliances. The system was trained using a customized dataset containing various hand gestures
to control daily household devices using a deep neural network.

Qi et al. (2013) [29]

They developed a hand recognition system for controlling television. The system was categorized
into three sub-categories. (1) For static hand gesture recognition, hand features were extracted
using a histogram-oriented gradient (HOG), and for recognition, Adaboost training was used.
(2) For dynamic hand gesture recognition, first the hand trajectory was recognized and passed

through the HMM model for recognition. (3) For finger click recognition, a specific depth
threshold was fixed to detect the fingers. The distance between the palm and the fingertip was
calculated. The accumulated variance was calculated for each fingertip to recognize the finger

click gesture.

Yueh et al. (2018) [30]

The authors developed a system to control a TV using hand gestures. First, the hand was
detected through skin segmentation and the hand contour was extracted. After that, the system

was trained using CNN to recognize hand gestures that were categorized into five branches;
(1) menu, (2) direction, (3) go back, (4) mute/unmute, and (5) nothing. After that, CNN also

helped in tracking the hand joints to detect commands: (1) increase/ decrease the speed,
(2) clicking, and (3) cursor movement.

3. Material and Methods

In this section, a detailed description of the proposed model is given. First, the video
input is converted into RGB frames, then the frames are resized to a fixed dimension. Noise
is removed and the quality of images is enhanced and sharpened. The second step is
hand detection by first removing the background and extracting the foreground. A hand
skeleton is extracted for localizing the points on the entire hand. Then the point-based and
texture-based features are extracted. These features are optimized by using an optimization
algorithm. At last, a classification algorithm is used for the classification of hand gestures
for controlling smart home appliances. Figure 1 illustrates the proposed HGR system model
structural design.

3.1. Preprocessing of the Input Videos

Before the localization of the hand points, some preprocessing techniques are applied
to save computational cost and time. Initially, video data is converted into frames (images).
These frames are set to a fixed dimension of 452 × 357. After that, the frames are denoised
using the median filtering algorithm. The median filtering is used for detecting the distorted
pixels in the images and replacing the corrupted pixels values with the median values.
A 5 × 5 window is used to de-noise the image [31–37]. The median filter is defined in
Equations (1)–(3);

Med (I) = Med
{

Ip) (1)

=
Ip(k + 1)

2
; k is odd (2)



Appl. Sci. 2022, 12, 6481 4 of 17

=
1
2

[
Ip

(
k
2

)
+ Ip

(
k
2

)
+ 1
]

, (3)

where I1, I2, I3, . . . , Ik is the sequence of neighboring pixels. Before applying the filter, all
pixels of the images should be arranged in ascending or descending order. After sorting
the pixels, the sequence of the pixels will be Ip1 < Ip2 < Ip3 < Ipk, where k is usually odd.
Figure 2 shows the results of preprocessing on video frames.
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3.2. Hand Detection Using Single Shot MultiBox Detector

The ridge detection of the human silhouette comprises two steps that are binary edge
extraction and ridge data generation [38–40]. In the binary edge extraction step, the binary
edges are extracted from the RGB and depth silhouettes are obtained in the described
preprocessing stage. The distance maps are produced on the edges by using distance
transform (See Figure 3). While, in the ridge data generation step, the local maximal
is obtained from the pre-computed maps, which produces ridge data within the binary
edges [41,42]. A further description of binary edge detection and generation of ridge data
is described below in Algorithm 1:
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Algorithm 1: Hand detection using a single shot multibox detector.

Input: Optimized feature vectors.
Output: Hand gesture classification.
Step 1: Check the length of the hash table (say n).

Check the number of entries in the hash table by setting a fixed threshold
(say T = 40).

If (n > T) then
Find the correlation matching or minimum distance between the vectors by the following
equation:

γK =
n

∑
x = 1
||αx| − |β|| where K = 1, 2, 3, 4

where α represents the centroid of the vectors stored in the hash table, β represents the new
vectors of the test image, γ represents the distance between the stored values of the hash table and
the new vectors.

Now, finding the sum of the vectors

θ = γ1 + γ2 + γ3 + γ4

End
Step 2: /*Check the correlation γK of the new entry*/

If (γK ≥ 0.98)
Match exists
Else
Match does not exist

End
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3.3. Hand Landmarks Localization Using Skeleton Method

To localize the hand landmarks points, the first step is to localize the palm region. For
doing this, we selected the palm area via a single shot multibox detector and removed
the fingers; with this help, a bounding box appears on the palm. Then the extreme top-
left, top-right, bottom-left and bottom-right points are calculated and marked with the
4 points [43–46].

The next step is to localize the finger points. For this, the palm region is removed
and only the fingers are left. The extreme points are identified with the help of a scanning
window that moves from top to bottom, identifying all the extreme points. As a result,
the extreme top points of all fingers are marked with the 5 points. Similarly, the extreme
bottom points are identified using the scanning window that moves from bottom to top
marking 5 points on the bottom of the fingers [47]. Figure 4 shows the results of hand
point localization.

3.4. Features Extraction

For features extraction, we have extracted both points-based and appearance-based
features for better classification of the hand gestures. For point-based features, we have
used Bezier curves and frame differencing. For appearance-based features, 3D point clouds
are mapped on the hands.
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3.4.1. Bezier Curves

The landmark points localized on the entire hand are utilized for Bezier curves fitting
for analyzing the trajectories of the hand in different gestures. For this, we have taken three
control points to represent a curve using Equation (4);

Curve(x) = ∑n
i = 0 Qi,n(x)Yi (4)

The points along the curve are determined by x, where 0 ≤ x ≤ 1. The degree of
the curve is denoted by n, which is one less than the control points. Yi is the i-th control
point where Y(0) = Curve(0) and Y(n) = Curve(1). Qi,n is the Bernstein polynomial and is
calculated in Equation (5).

Qi,n =
n!

i!(n− i)!
ni(1− x)n−i (5)

We have used Bezier curves with three control points describing the quadratic curve.
Therefore, the Bernstein polynomial with n = 2 is calculated as in Equations (6)–(8) [48–51].

Q0,2 = (1− x)2 (6)

Q1,2 = 2x(1− x) (7)

Q2,2 = x2 (8)

Therefore, the equation of a Bezier curve with three control points is simplified as in
Equation (9). Figure 5 shows the results of the Bezier curves fitting on the hand.

Curve(x) = (1− x)2 + 2x(1− x) + x2 (9)
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3.4.2. Frame Differencing

Keyframes are the representation of the elements in the image sequences. In this model,
the keyframes have been extracted that exhibit the dynamic hand gestures. Each hand
shows a gesture that is localized by a set of points. To find the difference in the positions of
the landmarks, the first and the pause frame sequences are taken as the keyframes. Figure 6
illustrates the change in the position of the pixel between different frames. The first frame
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is well established. To find the motion of the hand gestures, we have adopted the following
method of frame difference as defined in Equation (10) [52–56].

Di f fk(x, y) = |Framek(x, y)− Framek−1(x, y)| (10)

where Framek(x, y) and Framek−1(x, y) are the two consecutive frames in which the hand
is not moving and Di f fk is defined as in Equation (11).

Di f fk(x, y) = |Framek(x, y)− Framek−1(x, y)| ≈ 0 (11)

where Framek(x, y) is the pause keyframe. The two continuous frames are impossible to
be the keyframes. Thus, if Framek−1(x, y) is the keyframe, then Framek(x, y) is not the
keyframe. Therefore, for each frame sequence, Framek(x, y) with N number of frames: The
following approach should be outlined as:

1. Initialize the keyframe number with n = 1. So, the keyframes are marked as M1(x) = 1,
Mk(x) = 0, k = (2, . . . , N). After that, compute the difference frame Di f fk between
Framek(x, y) and Framek−1(x, y), k = (2, . . . , N). Compute the valid pixels of N.

2. If N > Thresh1 and Mk−1(x) = 0, set n = n + 1, set Mk(x) = 1.
3. Set k = k + 1 if the value of k is less than N. Then repeat the steps, otherwise end the

procedure.
4. After calculating the frame difference, each key point L in the first keyframe and L

′

points in the other keyframes positions are calculated using the distance formula
defined in Equation (12).

Distance =

√
(L1′ − L1)2 + (L2′ − L2) (12)
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D Point Clouds

For appearance-based features, extracted the 3D point clouds. The following are the
main steps of extracting the appearance-based features [57–59].

1. First, a central point on the palm is taken and the maximum distance d between the
central point and the edges Ei point of the gesture region is calculated. After that, ten
different lengths of the radius are defined as X = n× d

10 where n = 1, 2, 3, . . . 10.
Next, the center of the rhombus is defined as C and the radiuses as rn. We have drawn
10 rhombuses (innermost is the first rhombus and outmost is the tenth rhombus) as
shown in Figure 7. To highlight the effect of changing hand gestures, the color of the
rhombus changes on the hand.

2. In Figure 7, it is visible that every rhombus has a different number of intersections
with hand gesture regions. For finding the number of stretched fingers S, we have
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taken the sixth rhombus (according to the thumb rule). In the sixth rhombus, we
extracted those points whose colors vary from green to yellow and yellow to green.
We define Gi as the point whose color changes from green to yellow and Yi as the
point whose values changes from yellow to green.

3. Now, for midpoint identification, we define it as Mi which is the midpoint of Gi and
Yi. Then, each midpoint Mi and the central point C can be connected through a line
and the angles between the adjacent lines are calculated. The angles are represented
as Anj (j = 1, 2, 3 . . . I − 1).

4. Using the thumb rule, the fifth rhombus is taken as a boundary line to divide the
hand gesture into two parts. For instance, we have taken the first part as P1 and the
second part as P2, where P1 lies inside the rhombus and P2 is the outside area of the
rhombus. Then the ratio R of P1 and P2 is calculated. The R is the gesture region area
distribution feature as shown in Algorithm 2. Figure 7 shows the appearance features
using 3D point clouds.
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Algorithm 2: Feature extraction.

Input: Hands Point based and texture-based data (x, y, z).
Output: Feature Vectors (v1, v2, . . . , vn).

featureVectors ← [ ]
window_size ← Get windowSize( )
Overlap← Get Overlapping Time( )

For HandComponent in [x,y,z] do
Hand←window← Getwindow(HandComponent)
/* Extracting features */
BezierCurves← ExtractBezierCurvesFeatures (Hand_window)
Frame Differencing← ExtractFrameDifferencingFeatures (Hand_window)
3D Point Clouds← Extract3DPointCloudsFeatures (Hand_window)
featureVectors← GetFeatureVectors [BezierCurves, Frame Differencing, 3D Point Clouds]
featureVectors.append (featureVectors)
End for

featureVectors← Normalize (featureVectors)
return featureVectors
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3.5. Feature FOptimization Using Fuzzy Logic

The objective of using fuzzy logic optimizer is to recognize the hand gestures based
on the information obtained through different feature descriptors. Each feature descriptor
value is labeled with a specific variable and is mapped to their respective fuzzy sets. For
instance, we have five fingers labeled as; F1 (thumb), F2 (index finger), F3 (middle finger),
F4 (ring finger), and F5 (little finger). The joints of the fingers are labeled as J1, J2, J3, and J4.
Similarly, the distance between the fingers is denoted by Di,j showing the distance between
the fingers Fi and Fj.

Since any movement of the hand shows the variation of the position of the hand
in a sequence of images (frames), to simulate the data transfer, a hand configuration is
generated by a tuple of angles. For each tuple of angles, the data is represented using a
set of linguistic variables such as curve, straight, and bent. The separation of the fingers is
represented as open, closed, crossed, and semi-open. By these notations, the set of features
is optimized, helping to reduce the overall computational time and complexity [60–63].
Figure 8 shows the result of the fuzzy logic optimization.
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3.6. Hand Gestures Recognition

For hand gesture recognition, K-Ary Tree Hashing (KATH) classifier is used for the
first time in our proposed model [64–67]. The KATH classifier takes the feature descriptors
values of each image corresponding to the hand gesture and projects in a common space
without the subtree pattern prior knowledge. Then similar pattern feature descriptors are
kept in the traversal table. The unique patterns are specified by passing through recursive
indexing N numbers to generate (n − 1). After that, the hand gesture is classified by the
sub-patterns created by MinHash. The experimental results show that KATH classified
different hand gestures more accurately than many other state-of-the-art methods, i.e.,
ANN and decision tree, as shown in Figure 9. In our proposed model, the graph g = (v, ε, l)
is given input with the number of iterations I and F representing the feature space. To
assign a new label l, the nodes v are relabeled considering the neighboring nodes WV. The
traversal table T is generated and stored. After the traversal table, MinHash classifies data.
For dimensional reduction, PCA is used to plot results in 3D feature space.
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4. Experimental Setting and Results
4.1. Datasets Descriptions

The IPN hand dataset [68] is a large-scale hand gesture video dataset. It contains
13 gestures, including pointing with one finger, pointing with two fingers, click with one
finger, click with two fingers, throw up, throw down, throw left, throw right, open twice,
double click with one finger, click with two fingers, zoom in and zoom out. The IPN dataset
contains RGB videos with a resolution of 640 × 480 at 30 fps. Figure 10 shows the example
images of the IPN hand dataset.
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Figure 10. A few example images of the IPN Hand dataset.

The Jester dataset [69] contains a large collection of labeled hand gestures video
clips collected by webcam. The dataset contains 148,092 videos, and each video frame
is converted into a jpg image at the rate of 12 frames per second. There are 27 classes
of hand gestures named: swiping down, swiping left, swiping right, swiping up, thumb
down, thumb up, zooming in with full hand, zooming out with full hand, stop, and so on.
Figure 11 shows the example images of the Jester dataset.
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4.2. Performance Parameters and Evaluations
4.2.1. Experiment I: The Hand Detection Accuracies

In this experiment, the hand detection accuracies on different hand gestures over
IPN Hand dataset and Jester dataset are shown in Tables 2 and 3, respectively. Table 2
represents the results of the hand gestures of the IPN Hand dataset on both plain and
complex backgrounds. We took 30 samples of each hand gesture in the plain and complex
background and obtained 97.1% accuracy on plain background samples and 94.3% accuracy
on complex background samples.

Table 2. Hand detection accuracies over IPN Hand dataset.

Hand
Gestures

Number of
Samples

Plain
Background Accuracy (%) Cluttered

Background Accuracy (%)

POF 30 30 100 25 83.3
PTF 30 30 100 26 86.6
COF 30 30 100 26 86.6
CTF 30 28 93.3 26 86.6
TU 30 29 96.6 29 96.6
TD 30 29 96.6 30 100
TL 30 27 90 30 100
TR 30 28 93.3 30 100
OT 30 29 96.6 30 100

DCOF 30 30 100 29 96.6
DCTF 30 30 100 29 96.6

ZI 30 30 100 28 93.3
ZO 30 29 96.6 30 100

Mean Accuracy Rate 97.1% 94.3%
POF = pointing with one finger, PTF = pointing with two fingers, COF = click with one finger, CTF = click with two
fingers, TU = throw up, TD = throw down, TL = throw left, TR = throw right, OT = open twice, DCOF = double
click with one finger, DCTF = double click with two fingers, ZI = zoom in, ZO = zoom out.

Table 3. Hand detection accuracies over Jester Hand dataset.

Hand
Gestures

Number of
Samples

Plain
Background Accuracy (%) Cluttered

Background Accuracy (%)

SD 30 30 100 25 83.3
SL 30 29 96.6 27 90
SR 30 28 93.3 24 80
SU 30 28 93.3 26 86.6
TD 30 29 96.6 24 80
TU 30 28 93.3 30 100
ZIF 30 29 96.6 25 83.3
ZOF 30 27 90 30 100

S 30 29 96.6 25 83.3
RF 30 30 100 29 96.6
RB 30 30 100 23 76.6
PI 30 28 93.3 28 93.3
SH 30 29 96.6 30 100

Mean Accuracy Rate 95.6% 88.6%
SD = swiping down, SL = swiping left, SR = swiping right, SU = swiping up, TD = thumb down, TU = thumb
up, ZIF = zooming in with full hand, ZOF = zooming out with full hand, S = stop, RF=rolling hand forward,
RB = rolling hand backward, PI = pulling hand in, SH = shaking hand.

Table 3 represents the results of the 13 hand gestures of the Jester dataset on both
plain and complex backgrounds. We took 30 samples of each hand gesture in the plain
and complex background and obtained 95.6% accuracy on plain background samples and
88.6% accuracy on complex background samples.
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4.2.2. Experiment II: Hand Gestures Classification Accuracies

For hand gestures classification, we used a KATH classifier. The design method was
evaluated using the leave one subject out (LOSO) cross-validation method. In Table 4, the
results over the IPN hand video dataset show 88.46% hand gestures classification accuracy.
Table 5 represents the confusion matrix for the Jester dataset with 87.69% mean accuracy
for hand gestures classification.

Table 4. Confusion Matrix results over IPN Hand dataset.

Class POF PTF COF CTF TU TD TL TR OT DCOF DCTF ZI ZO

POF 8 1 0 1 0 0 0 0 0 0 0 0 0
PTF 0 9 0 0 0 0 1 0 0 0 0 0 0
COF 0 0 10 0 0 0 0 0 0 0 0 0 0
CTF 0 1 0 9 0 0 0 0 0 0 0 0 0
TU 1 0 0 0 9 0 0 0 0 0 0 0 0
TD 0 0 1 0 0 8 0 0 0 1 0 0 0
TL 0 2 0 0 0 0 7 0 0 0 0 1 0
TR 1 0 0 0 0 0 0 8 0 0 0 1 0
OT 0 0 0 0 0 0 0 0 9 0 1 0 0

DCOF 0 0 0 0 0 0 0 0 0 10 0 0 0
DCTF 0 0 0 0 0 0 0 0 0 0 9 0 1

ZI 0 0 0 0 0 0 0 0 0 0 0 10 0
ZO 0 0 0 0 0 0 0 0 0 0 0 1 9

Hand Gestures classification mean accuracy = 88.46%

POF = pointing with one finger, PTF = pointing with two fingers, COF = click with one finger, CTF = click with two
fingers, TU = throw up, TD = throw down, TL = throw left, TR = throw right, OT = open twice, DCOF = double
click with one finger, DCTF = double click with two fingers, ZI = zoom in, ZO= zoom out.

Table 5. Confusion Matrix results over Jester dataset.

Gestures SD SL SR SU TD TU ZIF ZOF S RF RB PI SH

SD 9 0 0 0 1 0 0 0 0 0 0 0 0
SL 0 9 0 0 0 0 0 0 1 0 0 0 0
SR 0 0 9 0 1 0 0 0 0 0 0 0 0
SU 0 0 1 8 1 0 0 0 0 0 0 0 0
TD 0 0 0 0 10 0 0 0 0 0 0 0 0
TU 0 0 0 0 1 8 0 0 1 0 0 0 0
ZIF 0 0 0 0 0 0 9 0 0 1 0 0 0
ZOF 0 0 0 0 1 0 0 9 0 0 0 0 0

S 0 1 0 0 0 0 0 0 8 0 0 1 0
RF 0 0 0 0 1 0 0 0 0 9 0 0 0
RB 0 0 0 0 0 0 0 0 0 0 10 0 0
PI 0 0 0 0 0 0 0 0 0 0 1 9 0
SH 0 0 0 0 0 0 1 0 0 0 1 1 7

Hand Gestures classification mean accuracy = 87.69%

SD = swiping down, SL = swiping left, SR = swiping right, SU = swiping up, TD = thumb down, TU = thumb
up, ZIF = zooming in with full hand, ZOF = zooming out with full hand, S = stop, RF = rolling hand forward,
RB = rolling hand backward, PI = pulling hand in, SH = shaking hand.

4.2.3. Experiment III: Comparison with Other Classification Algorithms

In this segment, we compared the recall, precision, and F1-measure over the IPN hand
dataset and the Jester dataset. For the classification of hand gestures, we used a decision
tree, an artificial neural network, and we associated the consequences with the KATH
classifier. Figure 12 shows the results over the IPN hand dataset and Figure 13 shows the
results over the Jester dataset.
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4.2.4. Experiment IV: Comparison of our Proposed System with State-of-the-Art Techniques

In this section, we have compared the proposed model with other well-known tech-
niques using the same datasets. Table 6 shows the comparative results between the pro-
posed model and other state-of-the-art techniques.
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Table 6. Hand gestures recognition results from the proposed model with other
state-of-the-art techniques.

Authors IPN Hand
Dataset (%) Authors Jester Dataset

(%)

Yamaguchi et al. (2022) [70] 60.00 Zhou et al. (2018) [71] 82.02
Gammulle et al. (2021) [72] 80.03 Shi et al. (2019) [73] 82.34

Garcia et al. (2020) [68] 82.36 Kopuklu et al. (2018) [74] 84.70

TSN [75] 68.01 MFFs [76] 84.70

Proposed method 88.46 Proposed method 87.69

5. Conclusions

This article is based on a hand gestures recognition system for controlling smart
home appliances. Two benchmark datasets were selected for experiments: the IPN hand
dataset and Jester dataset. Initially, images are acquired, in which hands are detected
and landmarks are localized on the palm and the fingers. After that, the textures-based
and point-based features are extracted. The hand skeletons are used for extracting the
point-based features, whereas the full hand is used for extracting the texture-based features.
For feature reduction and optimization, the fuzzy logic is adopted, and finally, the K-ary
classification algorithm is used for classifying the hand gestures for operating smart home
appliances. For the IPN hand dataset, we achieved the mean accuracy of 88.46% and for
the Jester dataset, a mean accuracy of 87.69% was achieved. The proposed system’s perfor-
mance shows a significant improvement compared to existing state-of-the-art frameworks.
The limitation of the proposed framework is due to the complexity in the videos, such
as cluttered backgrounds and various illumination conditions, which make it difficult to
achieve more accurate results.
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