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Abstract: In South Korea, a water supply enhancement project is being carried out to preemptively
respond to drought and water loss by reducing pipeline leakages and supplying stable tap water
through the maintenance of an aging water supply network. In order to reduce water leakage, a
District Metered Area (DMA) was established to monitor and predict the minimum night flow based
on flow data collected from IoT sensors. In this study, a model based on Multi-Layer Perceptron
(MLP) and Long Short-Term Memory (LSTM) was constructed to predict the MNF (minimum night
flow) of County Y. The prediction of MNF results was compared with the MLP networks and the
LSTM model. The outcome showed that the LSTM-MNF model proposed in this study performed
better than the MLP-MNF model. Therefore, the research methods of this study can contribute to
technical support for leakage reductions by preemptively responding to the expected increase in
leakage through the prediction of the minimum flow at night.

Keywords: LSTM; water leakage; minimum night flow; waterworks; water network

1. Introduction

According to statistics provided by the Ministry of Environment in 2019, the total
amount of water leakage in South Korea equates to 1 million m3. The revenue water
ratio is the ratio of the amount of water received as a fee out of the total amount of
water produced at the water purification plant. Non-revenue water (NRW) represents the
difference between water supplied and water sold, expressed as a percentage of net water
supplied [1]. Countries such as the United States (12.78%) in 2011 and Poland (15.45%)
in 2010 indicated low NRW, while Chile (33.3%) and Turkey (58.93%) in 2008 had high
NRW [2]. In order to lower the NRW in South Korea, which has reached about 10.5%
nationwide [3], actions such as detecting leaks, monitoring and analyzing flowmeters in
District Metered Areas (DMAs), performing district meter analysis, managing distribution
system pressure, preventing illicit water consumption, and training and education in
waterworks management are being taken.

A DMA is defined as a discrete sector of a distribution network which is formed
naturally or imposed, and can effectively evaluate the continuous flow of water supply
through a flow meter installed at metering points, as shown in Figure 1.

The MNF in this study refers to the flow into the DMA in the middle of the night
when water demand is at its lowest. The MNF is a common method used to evaluate water
loss in a water network. The MNF includes the water demand at night and water leakage,
as shown in Figure 2. Generally, very little water is used during night hours. The water
demand at night means very little water is used, e.g., the water demand of toilet flushing
late at night. When the amount of water demand is relatively small, the amount of water
leakage can be predicted and analyzed by measuring the flow when the amount of water
flowing into the area is minimized.
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Figure 1. DMA (District Metered Area) Schematics. 

 
Figure 2. Configuration of the minimum night flow. 

As the leakage continues, the losses such as supply and pressure also increase. Re-
cently, Neuro Fuzzy has been used to predict leaks in water pipe networks [4–6] and Long 
Short-Term Memory (LSTM) has been used to predict water flood, water quality, and con-
sumption [7–10]. In this paper, using the flow data acquired from the pipe network mon-
itoring system based on Information and Communication Technology (ICT), the predicted 
values calculated by LSTM and Multi-Layer Perceptron (MLP) are compared with the ac-
tual minimum night flow. 

2. Introduction and Application of Modeling 
2.1. Sectorized Area Overview 

The flow rates of three sectorized DMAs (YD 2, YD 3, YD 4) in the water distribution 
network of County Y were used in the modeling, as shown in Figure 3. There were very 
few customers using water at night in YD 2, YD 3, and YD 4. Single-jet water meters and 
digital water meters were installed in each household in the DMAs with advanced meter-
ing infrastructure (AMI). The water data, such as the flow and pressure, were acquired 
from supervisory control and data acquisition (SCADA) systems with tele metric and tele 
control (TM/TC) using wireless communication. 

Figure 1. DMA (District Metered Area) Schematics.
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Figure 2. Configuration of the minimum night flow.

As the leakage continues, the losses such as supply and pressure also increase. Re-
cently, Neuro Fuzzy has been used to predict leaks in water pipe networks [4–6] and Long
Short-Term Memory (LSTM) has been used to predict water flood, water quality, and
consumption [7–10]. In this paper, using the flow data acquired from the pipe network
monitoring system based on Information and Communication Technology (ICT), the pre-
dicted values calculated by LSTM and Multi-Layer Perceptron (MLP) are compared with
the actual minimum night flow.

2. Introduction and Application of Modeling
2.1. Sectorized Area Overview

The flow rates of three sectorized DMAs (YD 2, YD 3, YD 4) in the water distribution
network of County Y were used in the modeling, as shown in Figure 3. There were very
few customers using water at night in YD 2, YD 3, and YD 4. Single-jet water meters and
digital water meters were installed in each household in the DMAs with advanced metering
infrastructure (AMI). The water data, such as the flow and pressure, were acquired from
supervisory control and data acquisition (SCADA) systems with tele metric and tele control
(TM/TC) using wireless communication.

As shown in Figure 4, the flow of each DMA was measured by installing the LF-200
model electronic flowmeter made by Woori Technology (Korea), which has high accuracy
considering the straightness and length of the pipe. The problem of low accuracy in
MNF was solved by reducing the diameter of the water supply pipe in each DMA (YD 2:
D200→D150; YD 3: D200→D150; YD 4: D250→D150) and increasing the speed of the water.
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There were several minor instances of missing data, which were replaced with the 
data from the same time on the previous day. However, this did not significantly affect 
the training results. Additionally, flow data during any national holidays were included 
for training. Flow data acquired from the tele metric and tele control systems were con-
sistent because they were acquired using serial communication. During this period, 70% 
of the data were used as the training set and the remaining 30% were used as the test set. 
A predictive model for 42 days (11/04/21~12/15/21) was used as the test set. The observa-
tion periods were related to the same dates. 
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Table 1. Information on the DMAs in YD 2, YD 3, and YD 4 (2011).

DMA Number of Households
with Drinking Water Taps

Water Demand
(m3/day) Pipe Length (km)

YD 2 (D150) 1115 621 10.48
YD 3 (D150) 783 490 7.21
YD 4 (D150) 845 517 4.77

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 9 
 

 
Figure 3. Schematic diagram of the water distribution network in County Y. The names of the sites 
are shown in Table 1. 

Table 1. Information on the DMAs in YD 2, YD 3, and YD 4 (2011). 

DMA 
Number of Households with  

Drinking Water Taps 
Water Demand 

(m3/day) Pipe Length (km) 

YD 2 (D150) 1115 621 10.48 
YD 3 (D150) 783 490 7.21 
YD 4 (D150) 845 517 4.77 

As shown in Figure 4, the flow of each DMA was measured by installing the LF-200 
model electronic flowmeter made by Woori Technology (Korea), which has high accuracy 
considering the straightness and length of the pipe. The problem of low accuracy in MNF 
was solved by reducing the diameter of the water supply pipe in each DMA (YD 2: D200
→D150; YD 3: D200→D150; YD 4: D250→D150) and increasing the speed of the water. 

   
(a) (b) (c) 

Figure 4. The electromagnetic flow meters in County Y: (a) YD 2, (b) YD 3, and (c) YD 4. 

2.2. Framework of the Proposed Model 
The flow data used in this study were obtained from 07/01/21 to 12/15/21 considering 

the learning time for training. Missing data from 12/16/21 to12/31/21 were excluded for 
precise prediction. 

There were several minor instances of missing data, which were replaced with the 
data from the same time on the previous day. However, this did not significantly affect 
the training results. Additionally, flow data during any national holidays were included 
for training. Flow data acquired from the tele metric and tele control systems were con-
sistent because they were acquired using serial communication. During this period, 70% 
of the data were used as the training set and the remaining 30% were used as the test set. 
A predictive model for 42 days (11/04/21~12/15/21) was used as the test set. The observa-
tion periods were related to the same dates. 

For the flow prediction model applied in this paper, as shown in Table 2 and Figure 
5, hourly flow data for the previous 7 days were used as input variables with LSTM/MLP 
and the hourly flow data of the next day were used output variables. 

Figure 4. The electromagnetic flow meters in County Y: (a) YD 2, (b) YD 3, and (c) YD 4.

2.2. Framework of the Proposed Model

The flow data used in this study were obtained from 07/01/21 to 12/15/21 considering
the learning time for training. Missing data from 12/16/21 to12/31/21 were excluded for
precise prediction.

There were several minor instances of missing data, which were replaced with the
data from the same time on the previous day. However, this did not significantly affect the
training results. Additionally, flow data during any national holidays were included for
training. Flow data acquired from the tele metric and tele control systems were consistent
because they were acquired using serial communication. During this period, 70% of the
data were used as the training set and the remaining 30% were used as the test set. A
predictive model for 42 days (11/04/21~12/15/21) was used as the test set. The observation
periods were related to the same dates.

For the flow prediction model applied in this paper, as shown in Table 2 and Figure 5,
hourly flow data for the previous 7 days were used as input variables with LSTM/MLP
and the hourly flow data of the next day were used output variables.

The method for extracting the MNF was finding the smallest flow data between 0 am
and 5 am in terms of the hourly flow from the previous predictions, and the smallest flow
measured in a 1-h interval was used as the minimum night flow [11–13].

Table 2. Design specifications with LSTM/MLP modeling variables.

Item Design Specifications

Input variables Hourly flow for the previous 7 days
Output variables Hourly flow next day
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2.3. MLP and LSTM Network Model

The MLP and LSTM networks were used to predict the hourly flow. The MLP network
has an input layer, output layer, and several hidden layers, and is a kind of multi-layer
feed-forward network based on the backpropagation algorithm during training as shown
in Figure 6a. As shown in Figure 6b, LSTM networks are a type of recurrent neural network
capable of learning order dependence in sequence prediction problems. A common LSTM
unit is composed of a cell, an input gate, an output gate, and a forget gate. The parameters
of the LSTM model were 168 units and 300 epochs. In addition, the activation function was
considered as the rectified linear unit.
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Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and R-squared were considered for the performance evaluation:

MAPE =
1
N

N

∑
i=1

∣∣∣∣Observed MNFi − Predicted MNFi
Observed MNFi

∣∣∣∣× 100 (1)

MAE =
1
N

N

∑
i=1
|Observed MNFi − Predicted MNFi| (2)
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RMSE =

√√√√ 1
N

N

∑
i=1

(Observed MNFi − Predicted MNFi)
2 (3)

3. Results
3.1. Case of YD 2

In this study we used KERAS, which is an open-source software library that provides
a python interface for neural networks. Figures 7 and 8 present the MNF predictions with
the test data from YD 2 with the MLP and LSTM models. As shown in Figures 7 and 8,
the coefficient of determination was 0.868 for the MLP-MNF model and 0.907 for the
LSTM-MNF model.
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3.2. Case of YD 3

Figures 9 and 10 show the MNF predictions with the test data from YD 3 with the
MLP and LSTM models. As shown in Figures 9 and 10, the coefficient of determination
was 0.257 for the MLP-MNF model and 0.488 for the LSTM-MNF model. The LSTM-MNF
model clearly demonstrates where the flow changed rapidly.
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3.4. Result Summary with MLP-MNF and LSTM-MNF

The algorithm used for this result was applied to the YD 2, YD 3, and YD 4 DMAs.
Mean Absolute Error (MAE), Mean Square Error (MSE), Mean Absolute Percentage Er-
ror (MAPE), and R-Squared were used as evaluation criteria. As shown in Table 3, the
average absolute ratio errors for each DMA showed good predictive power as a result of
predicting through YD 2 (6.231%), YD 3 (3.682%), and YD 4 (3.806%). The R-squared is
the degree of contribution of the parameters with significant difference in each subgroup.
R2 ≥ 0.7, 0.7 > R2 ≥ 0.5, 0.5 > R2 ≥ 0.3, and 0.3 > R2 were considered high, moderate, low,
and very low values, respectively [14]. The reason for the relatively low R-squared result of
YD 3 might be that it was highly variable and noisy compared to YD 2 and YD 4.

Table 3. Evaluation results for three sectorized DMAs (YD 2, YD 3, YD 4).

Algorithm
YD 2 Data

MAPE MAE MSE R-Squared

MLP-MNF 7.572 0.372 0.612 0.868
LSTM-MNF 6.231 0.416 0.259 0.907

Algorithm
YD 3 Data

MAPE MAE MSE R-Squared

MLP-MNF 4.020 0.849 1.135 0.257
LSTM-MNF 3.682 0.751 1.010 0.488

Algorithm
YD 4 Data

MAPE MAE MSE R-Squared

MLP-MNF 4.253 0.581 0.548 0.637
LSTM-MNF 3.806 0.532 0.419 0.733

4. Discussion

The model proposed in this study can be used as an early warning system that will
strengthen waterwork network management. When the prediction results show that the
MNF increases quickly, we can take preemptive actions promptly—such as repair and
replacement—so as to minimize losses, e.g., from water leakages from external forces such
as road works.

It can be seen that the accuracy of the LSTM-MNF model’s predictions with the YD 2,
3, and 4 data was better than the MLP-MNF model. The MAEs of the LSTM-MNF model for
YD 2, 3, and 4 were 0.416, 0.751, and 0.532, respectively. The MSEs of the LSTM-MNF model
for YD 2, 3, and 4 were 0.259, 1.01, and 0.419, respectively. The MAPEs of the LSTM-MNF
model for YD 2, 3, and 4 were 6.231, 3.682, and 3.806, respectively.
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There are many improved versions of these artificial intelligence models, such as
Bi-directional Long Short-Term Memory networks (Bi-LSTMs) and Gated Recurrent Units
(GRUs). These and other new methods can be used for comparison with the model
proposed for improved prediction.

5. Conclusions

This study proposed the LSTM-MNF prediction model based on a neural network
using the water flow data of three DMAs in County Y. The flow data were collected from
the SCADA system via TM/TC. Then, machine learning approaches such as LSTM and
MLP were implemented to predict the water consumption of the next day with the training
from the previous 7 days. MNF data were then derived from the predicted flow.

When evaluating the performance of the LSTM-MNF and MLP-MNF models, the
results showed that the LSTM-MNF model proposed in this study showed better prediction
than the MLP-MNF model. This is because of its characteristic of remembering patterns
in time series for long durations of time. LSTM networks are specific types of Recurrent
Neural Network architecture that can use long-term data to predict future. The LSTM
model can better take into account the time-dependent structure of water data.

The study not only provides prediction flow, but also acts as an important support for
decision-making in terms of repair and replacement, identifying the time at which water
leakages start to occur. It is judged that it will be of great help in detecting and reducing
the amount of water leakage through the prediction of the minimum flow at night. It is also
possible to replace the missing flow data with the prediction flow data in a timely manner.

Due to the difficulty of acquiring data for more than three places, we could only apply
the model for MNF prediction to the YD 2, 3, and 4 DMAs, which cannot reflect the entire
network of County Y, which includes 21 DMAs. Additionally, the method proposed in this
study may not be effective for customers who have big water tanks, such as fire stations,
hospitals, night markets or apartments complexes, which may use a lot of water at night.
This pattern of water demand can make it difficult to estimate the MNF and the exact
amount of leakage if a lot of water is used at night for business activities. We suggest that
this problem can be solved by installing many flow meters in sub-DMAs. Flow meters
are mainly installed in a DMA to measure the water of 500~1500 households. In order
to establish more accurate predictions, we suggest that many flow meters be installed to
monitor the water flow, e.g., installing flow meters for every 100 households. In addition,
the proposed model could not predict MNF after one week; the performance of the model
will be improved by training data for long periods in the future. More accurate MNF can
be predicted in the future by considering additional data, such as weather information.
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