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Abstract: The head-mounted eye-tracking technology is often used to manipulate the motion of servo
platform in remote tasks, so as to achieve visual aiming of servo platform, which is a highly integrated
human-computer interaction effect. However, it is difficult to achieve accurate manipulation for the
uncertain meanings of gaze points in eye-tracking. To solve this problem, a method of classifying
gaze points based on a conditional random field is proposed. It first describes the features of gaze
points and gaze images, according to the eye visual characteristic. An LSTM model is then introduced
to merge these two features. Afterwards, the merge features are learned by CRF model to obtain the
classified gaze points. Finally, the meaning of gaze point is classified for target, in order to accurately
manipulate the servo platform. The experimental results show that the proposed method can classify
more accurate target gaze points for 100 images, the average evaluation values Precision = 86.81%,
Recall = 86.79%, We = 86.79%, these are better than relevant methods. In addition, the isolated gaze
points can be eliminated, and the meanings of gaze points can be classified to achieve the accuracy of
servo platform visual aiming.

Keywords: eye-tracking; visual characteristics; gaze points classification; condition random filed

1. Introduction

Eye-tracking techniques have been gradually applied in different fields, such as remote
task of the servo platform motion, which is helpful to achieve accurate manipulation
and highly human-machine interaction [1,2]. Some methods have been implemented to
accurately estimate the line-of-sight and output gaze points [3–5]. When people wear
on Head-mounted eye-tracking device, gazes the scene displayed on the Head-mounted
display to complete remote tasks. This process contains persons’ interaction object and
gaze region, and the output gaze points contain different meanings [6,7]. For visual
characteristics, people’s gaze attention is uncertain, so that the gaze points have uncertain
meanings [8–11], they use gaze points within a set range and time threshold or with other
interaction modes. It is challenging to use eye-tracking gaze points to accurately manipulate
the servo platform. Therefore, this paper research the classification of gaze points method
from the visual characteristics factor [12–14], in order to understand the meaning of gaze
point to manipulate the servo platform.

Vella [10] uses a Clustering method to describe gaze points feature and to recognize
user. Kim [11] adopts Support vector machines (SVM) method to recognize the gaze
direction. Boisvert [12] proposes a framework to apply Random Forest Algorithm (RF)
for highlighting features that distinguish behavioral differences observed across visual
task and understanding gaze behavior. Fuchs [13] uses Gaussian Hidden Markov Models
(GHMM) to analysis gaze and estimate the current proximal intention. Coutrot [14] relies
on Hidden Markov models (HMM) to classify scan-path fixations and infer an observer-
related characteristic. Qiu [15] proposes Conditional Random Field model (CRF) to classify
eye fixation data and Lafferty [16] uses this model CRF to classify sequence data. The same
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Benfold [17] uses CRF method according head motion, walking direction, and appearance
to estimate coarse gaze direction. Above all, these research have used different classifica-
tion and recognition methods to the eye gaze information, but these need more related
information to input, and for our application is not clear.

Huang [18] fuses the visual saliency and task-dependent in eye-tracking gaze to learn
eye attention transfer and predict gaze information. Related studies [19–23] on gaze point
prediction take into account the integration of visual saliency and human gaze attention
transfer, that is, the underlying visual characteristics of eye gaze visual characteristics and
human brain consciousness attention. The similar research on Named entity recognition
studies [24–27] need to encode input features and output recognition sequences, these are
applicated in weapon, product quality and language areas.

According to above work, this paper research only has gaze point and gaze image
as the input, will need encoding the inputting feature, then understanding the gaze point
meaning to classify and recognize using based on CRF model. The clustering method [10]
only needs to consider the distance relationship between data by looking for distance
iteration of data. The SVM method [11] classifies the data types by looking for a hyperplane
of data. Therefore, the proposed method is also compared with these two methods. The
RF method [12] build many estimators including all feature to classify. The gaze points
observed by the correlated HMM model method [14] are independent of each other, and
the labeling at the current moment is only related to the labeling at the previous moment.
However, the gaze point recognition often requires more features, and the labeling of the
current moment should be related to the previous moment and the next moment. The
GHMM method [13] to consider the distribution of features. The CRF model method [16]
can customize the feature function, which express not only the dependence between
observations, but also the complex dependence between the current observation and
multiple states before and after. This can efficiently overcome the problems faced by HMM
model. However, its disadvantage is that the sequence features require to be manually
extracted. So, this paper based on CRF, with little input considered visual characteristics,
and do some ways to solve our problem. That is different from other research.

This paper proposes a gaze points classification method based on CRF and visual
characteristics to extract the meaning of gaze points for a more accurate manipulation of
servo platform, while the servo platform visually aim the target. Considering the saliency
of images and task-related attention in human eye gaze tasks, the visual features of gaze
images and gaze points are described, the LSTM model [18] is introduced to merge the
two described feature relationships, and the CRF model is used to mark and classify the
eye-tracking gaze points. The proposed method aims at classifying the gaze points from the
perspective of visual characteristics and improving the accuracy of eye-tracking interaction.
In the application of eye-tracking, the potential of eye-tracking interaction is fully utilized,
and the isolated eye gaze point is removed.

The main contributions of this paper are summarized as follows.

(1) A novel hybrid classification model is proposed, introducing visual characteristics
about gaze scene image and gaze point;

(2) The method achieves automatic and efficient analytical processing of gaze points in
eye-tracking interaction.

This remainder of this paper is organized as follows. Section 2, describes the gaze
point classification method of conditional random field based on visual characteristics.
Section 3, presents the experimental process and data. Section 4, shows the experimental
results and the comparison with other related methods. Finally, the conclusions and future
work are drawn in Section 5.

2. Proposed Method
2.1. The Proposed Method Framework

Figure 1 shows the process of gaze point classification in the Conditional Random Filed
(CRF) model based on the visual characteristics. More precisely, the gaze images and gaze
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points are input, various features are extracted and merged, through the establishment of
the CRF learning model, and finally acquire the gaze points after classification are obtained.
This section describes the specific implementation of the proposed method. Section 2.2
briefly introduces the CRF model. Section 2.3 presents the feature of the gaze images.
Section 2.4 shows the feature of the gaze points. Section 2.5 describes the merge of the
two features. Section 2.6 presents the specific implementation of the CRF gaze points
classification based on visual characteristics.
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2.2. Conditional Random Field Model

The Conditional Random Field (CRF) [15,16] is a discriminative undirected graph
model which models the conditional probability of multiple variables after a given obser-
vation, in order to solve the problem of sequence labeling. The CRF model often assumes
that the observation sequence is x = {x1, x2, · · · , xn}, and the corresponding class label
sequence is y = {y1, y2, · · · , yn}. The CRF can then construct a conditional probability
model P(y|x), expressed as Equation (1),

P(y|x) = 1
Z

exp
(

∑ ∑ PV(yi−1, yi, x, i) + ∑ ∑ PU(yi, x, i)
)

, (1)

where PV(yi−1, yi, x, i) is the Transition Feature Function of the neighboring class marker
positions on the whole observation sequence, PU(yi, x, i) is the State Feature Function of
the marker positions i on the observation sequence, and Z is the normalization constant,
also known as the normalization factor.

It can be seen from Equation (1) that the representation of the model mainly consists
of feature function expressions. Therefore, the relevant feature functions of the gaze point
should be established.

2.3. Expression of Image Saliency Feature

The human eye gaze at image contains rich feature information such as color, texture
and structure. Different description methods of image feature have different advantages
and disadvantages. In this paper, multiple feature factors are efficiently fused to describe
the image target in order to enhance the robustness of visual feature descriptions of different
images [28].

With the dominant role of objective human task, the saliency of the target task in
the images is prior to other elements. However, the human attention is also affected by
the image local contrast, target edge region and center bias prior [29–31], which affects
the final output gaze point. An example of images saliency for different methodological
visual characteristics are shown in Figure 2. The first column in the image of local contrast
factor efficiently distinguishes the target region. The second and fourth columns of the
images distinguish the target region relative to the background prior factor, and the fifth
column of the images distinguishes the target region significantly relative to the center bias
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factor. However, in the third column of the images, the three methods used to distinguish
the target “person” are not outstanding. However, the bright part of the image clearly
distinguished, and the local contrast is relatively distinct from the target on the right side
of the image.
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Figure 2. Example of visual characteristics saliency cues expression by different methods.

Different salient features are used to represent the salient regions of the image [15,32,33].
This paper uses three color spaces (RGB, Lab and HSV), and extracts three features as image
saliency features. Table 1 shows the target region pixel feature representation.

Table 1. Pixel features per target area.

Feature Definition Dimension

RGB Average RGB value of target area 3
Lab Average Lab value of target area 3
HSV Average HSV value of target area 3

The characteristics of target area p in gaze image I are expressed as:

mp(i, j) =
{

mp−R, mp−G, mp−B, mp−L, mp−a, mp−b, mp−H , mp−s, mp−V

}
, (2)

where mp(i, j) ∈ Rc,(i, j) is the pixel position of the target area, and c is the feature dimension.
Figure 3 shows the specific representation of the pixel features mp of the target area.
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Initially gazing at the image, the image saliency region feature is Gs
0 = maxmp(i, j), the

28× 28 image block feature centered at (i, j) in the target region can be extracted to express,
where pixel (i, j) in target p area is the most attractive target region, then the saliency
feature of the next moment image saliency region will be expressed as a 28× 28 image
block feature centered at before gaze point in the target region.



Appl. Sci. 2022, 12, 6462 5 of 21

2.4. Expression of Gaze Point Feature

During the gazing, the gaze point in each gaze image is D = {d1, d2, . . . , dt}, where
dt is the position of the gaze point falling in the image task target at moment t. A certain
relationship exists between the gaze points, and it is possible to predict the image area
where the next attention appears by the previous gaze point. Considering the different gaze
differences of different people, 14× 14 image block at this gaze point location is extracted
as the visual feature, and the color features of RGB, Lab and HSV color spaces of the image
block are extracted as the visual feature representation of this gaze point. The image block
color space features corresponding to each group of the sequence of the attention point can
be expressed as Ga =

{
Ga

1, Ga
2, . . . , Ga

t
}

, where Ga
t denotes the image block color features

corresponding to the attention point at moment t. The color features are calculated as
described in Section 2.3.

2.5. The Fusion of Features

The relationship between the target of gaze image and gaze point features is estab-
lished, and the relationship between gaze points is described.

The graph model relationship based on CRF is shown in Figure 4, where the yellow
and red points, respectively, represent the classification marker layer and the gaze point
after classification, and the blue points represent the gaze point sequence described by
different features. In the classification marker layer, each node is connected to its neighbors.
The solid yellow line indicates that the nodes are connected to their neighboring nodes,
and the red nodes are jointly affected by the class markers of the surrounding yellow
nodes. In the observation layer, each blue node indicates the corresponding features, the
image saliency features and gaze point features, and they are connected to the nodes in
the corresponding classification marker layer, which indicates that these features affect the
classification marker results.
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Figure 4. Graph model relations based on CRF.

Each node interacts with its neighbors in the classification and observation layer, and
these nodes together determine the final classification label. A fusion module about image
saliency and gaze point features is constructed by applying different weights to different
feature channels in order to express the attention region, which can represent the output
position of the gaze point. The LSTM model [18] is introduced to predict the channel weight
vector in order to fuse the image visual features with the gaze point features for training
the prediction of the attention region at the next gaze region. The module takes Gs

t−1 and
Ga

t−1 as input and outputs the predicted channel weight vector ωt. Gs
t−1 = mp is the t− 1

moment salience feature of the target in the image, which is also related to Ga
t−1.

The fusion module framework is presented in Figure 5.
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In the Figure 5, the channel weight extractor C takes the previous moment saliency
features Gs

t−1 and the gaze point features Ga
t−1 as input. From each channel, the features of

the gaze point location Ga
t−1 are projected to the region Gs

t−1 in order to obtain the channel
weights ωt−1:

ωt−1 = C
(
Gs

t−1, Ga
t−1
)
, (3)

where C is the nonlinear function denoting the cropping and averaging operation, and
ωt−1 denotes the feature representation of the region of attention around the gaze point at
moment t− 1.

The transfer probability P score of the gaze state is f P
t−1 = P

(
Ga

t−1
)
∈ [0, 1], which

indicates how likely the first gaze point occurs in the target. A channel weight vector is
extracted for each gaze point to learn the transitions between gaze points, and learn the
relationship between gaze points. That is, a series of channel weight vectors extracted from
images with gaze points are used to train the LSTM and output the probability score of
gaze transfer. In the testing process, given a channel weight vector, the training outputs
a channel weight vector which represents the region of gaze point at the next gaze. The
predicted gaze probability channel weight vector is expressed as:

ωt = f P
t−1·ωt−1 +

(
1− f P

t−1

)
·L(ωt−1), (4)

where L(ωt−1) is the channel weight vector output by training.
The mapping of gaze points predicted by gaze transfer probability is then computed as:

Ga
t =

n

∑
c=1

ωt[c]·Gs
t [c], (5)

where c is the channels dimension, denotes the c-th dimension/channels of ωt/Gs
t .

2.6. CRF Model Implementation Details

In the gaze image I, the target area is first manually marked:

RT =
{

r
(
rx, ry

)∣∣rx ∈
[
x, x′

]
, ry ∈ [y, y′]

}
, (6)

where r
(
rx, ry

)
denotes the area of the target in image I, rx ∈ [x, x′], ry ∈ [y, y′] represents

the range of values of the area, the location of the gaze point within this range. We classify
and label the visual characteristics of the labeled gaze point as Y.

The training dataset contains gaze points D, gaze image I and gaze points of classifi-
cation markers Y. Using the previously designed model, the corresponding relationship
between these elements in the training samples is established, the classification of test gaze
points is estimated, and the useful meaning gaze points are obtained. The CRF model is
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developed for input feature decoding, according to Equation (1) of Section 2.2, and the
probability function is given by:

P(Y|G) =
1
Z

exp{−E(Y|G(D, I)}, (7)

where G is the feature of the gaze point which is a fused visual feature to the gaze point
representation. Y is the feature of the gaze point class marker, and E is expressed as:

E(Y|G(D, I)) = ∑ ∑ PU(Yi, G(D, I)) + ∑ PV(Yi−1, Yi, G(D, I)), (8)

where PU and PV are, respectively, unary feature function and binary neighborhood feature
function of the gaze point, PU denotes the function between feature G and class label Y at a
moment of gaze, which is used to describe the influence of the feature on the class label.

Using the previous analysis, PU is expressed as:

PU(Yi, G(D, I)) = PU(Yi, Gt), (9)

where Yi is the i-th feature of marked gaze points.
The neighborhood feature function between each gaze point Yi−1 and Yi is used to

describe the relationship between neighboring gaze points:

PV(Yi−1, Yi, G(D, I)) = PV(Yi−1, Yi, Gt), (10)

The specific Gt describes the encoding and relationship building for various inputs in
the previous section, using CRF as a decoder for the interpretation of the above relationship:

y∗ = arg max scoreY∈Yx (Y, G(D, I)), (11)

The maximum fractional output is calculated using the Viterbi algorithm [24], where
y∗ denotes the predicted classification gaze points, Y presents the marked gaze points and
Yx denotes the possible gaze points.

In summary, the proposed gaze point classification method of conditional random
field based on visual characteristics is summarized as follows (Algorithm 1):

Algorithm 1: A method for gaze point classification based on conditional random field and
visual characteristics

Input: Training data and Testing data, containing gaze points D, gaze images I and marker gaze
points Y.
Output: The optimal classification gaze points y∗ of Testing gaze points
1. Extracting the features of gaze images Gs

t and the features of gaze points Ga
t

2. The weight predictor based on LSTM to obtain the weight vector ωt of each feature channel of
the gaze point (Equation (4)), fusing the features of gaze point and gaze image
3. Inputting all feature information into CRF to decode and acquire the corresponding
training parameters
4. Extracting feature information for the gaze point and gaze image in the test data
(Equations (9) and (10))
5. Calculating the function E (Equation (8)) using the step 3, to find the optimal classification gaze
points y∗ of the test gaze points (Equation (11))
6. return Classification result of gaze points

The parameters of the proposed method are shown in Table 2:



Appl. Sci. 2022, 12, 6462 8 of 21

Table 2. The parameters of the proposed method.

Parameters Meanings

I Gaze image
D Gaze points
Y Marked gaze points

mp(i, j) The pixel (i, j) feature in the target region
Gs

t Gaze image I features at t moment
Ga

t Gaze point D features at t moment
y∗ Gaze point sequence after predictive classification

3. Experiment
3.1. Experimental Device

A head-mounted eye-tracking device (Figure 6), is used in [34–36]. This device has an
accuracy of 0.38◦. Gaze points are collected in the experiment using this device. The scene
camera and servo platform at the remote end in Figure 6, are used to realize the aiming
equipment of the simulated servo platform. The center “+” of the scene camera follows the
coordinate of the gaze point “+” to perform visual aiming.
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Figure 6. Eye-tracking device.

The experimenters wear on the head-mounted eye-tracking device designed in this
study. The eye camera collects the human eye image, and the head-mounted display
shows the scene image information transmitted by the remote servo platform camera. The
experimenter watches the scene image on the display, carries out the target gaze, and sends
the gaze points to the servo platform to convert it into the servo movement values, so as to
perform the control of the servo platform with eye-tracking gaze point. Figure 7 shows the
visual aiming relationship between the gaze point and servo platform scene camera center
“+”. When the center blue “+” of the scene camera and the green “+” of the gaze point are
stably landed on the central stability region of the target, the visual aiming of the servo
platform is performed. In the experimental verification of this study, the head-mounted
eye-tracking device in Figure 6 is used to collect gaze point data, and the head-mounted
display shows the scene image of gaze.
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3.2. Experimental Data

The existing public saliency image datasets CSSD, DUTS, ECSSD, HKU-IS, PASCAL-S
and SOD [37], contain different complex scenes and targets. In this study, the existing
saliency datasets are used and 100 images that contain “person” are selected as shown in
Figure 8, where the “person” in the images is the gaze target. In addition, other 6 scene
images in our real scene are selected for gazing target “person”. In order to ensure the
uniformity of the gaze result, each image is set as 1920 × 1080 pixels. The head-mounted
eye-tracking device (Figure 6) collects human eye images and calculates the gaze point
data. Each image is gazed at 5 s. 200 gaze points and 5 groups of gazes are completed
by 5 experimenters, leading to a total of 100,000 gaze points data. The collected data are
divided into 3 groups for training and 2 groups for testing, and the gaze point sequence
classification experiments are carried out. Figure 9 presents an example of the distribution
of gaze points obtained by gazing at different images collected from the same group of gaze
point sequences representing the same graph shape color size. The study in this experiment
uses python language based on pytorch library for training, prediction, and completing the
comparison tests, with the learning rate of 0.0001.
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3.3. Evaluation Criteria

The classification results are evaluated and analyzed from both objective and subjective
perspectives. For the analysis of subjective results, the distribution of Gaze points (Ra, Gaze
point ratio) and the degree of concentration (Co, Concentration) are compared to analyze the
feasibility of the proposed method for classifying gaze points. For the analysis of objective
results, the results of the proposed method are compared with the existing methods of
the same category, specifically from the quantitative indexes of precision-recall (Precision-
Recall) and weighted values (We, Weighted values).

(1) Ra

The Gaze point ratio (Ra) measures the percentage of classification gaze point, which
reflects the degree of attention distribution of the gazed target. The larger the Ra, the more
attention is distributed on the target. Ra is computed as,

Ra =
Dgazepoint number

Ygazepoint number
, (12)

where Dgazepoint number is the number of classified gaze points on the target and Ygazepoint number
is the total number of gaze points in the images.

(2) Co

The concentration (Co) reflects the distribution density of gaze points classified. The
larger the Co, the smaller the concentration of gaze attention and vice versa:

Co =
1

D− 1

i=D

∑
i=0
|Di − Di−1|, (13)

where |Di − Di−1| is the distance between two neighboring gaze points of the classified
gaze points.

(3) Precision-Recall

The Precision-Recall (PR) is an evaluation based on the overlap between manually
labeled and classified gaze points. The higher the accuracy and recall, the better the
algorithm’s filtering and classification results:

precision = DS∩DT
DS

recall = DS∩DT
DT

, (14)

where DS is the classified gaze points and DT is the manually marked gaze points.
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(4) We

The Weighted values (We) reflect the comprehensive performance of the algorithm
and are used to count the accuracy and recall rate between the gaze points of different
targets and their valid points in the same gaze image, which comprehensively reflects the
validity and reliability of the algorithm. They are defined as:

We =
(
1 + β2)·precision·recall
β2·precision + recall

, (15)

In this paper, β = 0.3, which focuses more on the precision values.

4. Experimental Results and Analysis
4.1. Classification Results of Gaze Points

Figure 10 shows the gaze point classification process. The experimental results are
analyzed from two aspects: subjective result analysis where the result of gaze point clas-
sification is analyzed from gaze point visualization, and objective analysis of the results,
where the proposed method is compared with the relevant data classification method.
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Figure 10. The classification process of gaze point classification. (a) the gaze images; (b) the gaze
points corresponding to each image; (c) the gaze point classification results.

Compared with related classification method, the clustering method [10], the SVM
method [11], the RF method [12], the GHMM method [13], the HMM method [14] and the
CRF method [16] to further analyze proposed method results.

4.2. Subjective Result Analysis

Figure 11 presents the result of gaze points classification. The first row shows a
visualization of the original gaze points. The second row shows the visualization result of
gaze point classification by the proposed method.
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Statistical calculation and analysis are performed on the method of visual gaze points
(Figure 11). The results of Ra and Co of gaze concentration, as well as the subjective ratio
of the sample gaze point classification results are shown in Figure 12. It can be seen that
the distribution of gaze points in different gaze images is different, and the concentration
degree of gaze is also different.

It can be seen from Figure 11 that there are many targets in the No. 1, No. 2, No. 3
gaze image, while the main target is clear, and the attention is relatively concentrated in
the fixation process. In an example of image background watching a single task the main
target is only one. When watching a gaze image in the process of test, there are 51 images
of this type in the 100 images. Therefore, we analysis the concentrated attention is shown
in Table 3, the result of scene image gazing with large target significantly, and average Ra
and Co values after classification are analyzed by various methods, the gaze images and
gaze points data are from our collect data. The proposed method Co = 16.44 is the lowest,
Ra = 69.67% is higher than other five methods. In addition, the gaze points classification
results reflect the well gaze attention.

Table 3. Result of scene image gazing with large target saliency.

Clustering [10] SVM [11] RF [12] HMM [14] GHMM [13] CRF [16] Proposed Method

Ra 86.47% 67.01% 61.63% 67.52% 62.66% 66.33% 69.67%
Co 19.21 16.98 20.03 17.48 19.87 17.52 16.44

In Figure 11, No. 4, No. 5, No. 6 gaze images in the target are more than in other
images. In general, the visual characteristics of prominent performance are observed. The
attention during the gaze is more scattered, and gaze exists for each target. The No. 4
image background single gaze task has a main target for the third person. The No. 5 image
in the background is complex, but the relatively visual distribution of clear gaze task has
main target for the second person. The No. 6 image in the background complex target is
not prominent, and the main target of the gaze task is the first person. There are 49 images
of such type in 100 images, and a statistical analysis of the gaze attentional concentration
is shown in Table 4 with related methods, the gaze images and gaze points data are from
our collect data. The proposed method Ra = 49.67% is the highest, Co = 21.39 is lower
than other five methods. In addition, the gaze points classification results reflect the well
gaze attention.
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Table 4. Result of scene image gazing with small target saliency.

Clustering [10] SVM [11] RF [12] HMM [14] GHMM [13] CRF [16] Proposed Method

Ra 32.16% 48.61% 40.31% 48.24% 48.37% 48.87% 49.67%
Co 19.38 23.55 22.73 21.14 23.56 21.42 21.39

In general, the subjective result show that gazing images with different visual char-
acteristics can have different effects on human attention and gaze results. The proposed
method considers the human visual characteristics during gaze, which is more reasonable,
and the classification of gaze points for targets is more relative with the physiological
characteristics of people. Simultaneously, the results also showed that in such analysis of
gaze point, the relative gaze point of concentration is high, and is relatively better for the
gaze point interaction accuracy and stability.

4.3. Objective Result Analysis

Table 5 shows the comparison of gaze point classification results by different related
algorithms in the example images of Figure 11. The proposed method outperforms the
relevant algorithms in terms of precision, recall, and comprehensive performance.

Table 5. Comparison of sample gaze test evaluation results.

1 2 3 4 5 6

Clustering [10]
Precision 89.38% 73.65% 56.21% 90.21% 76.53% 97.64%

Recall 96.31% 96.98% 97.02% 49.37% 95.32% 84.81%
We 89.91% 75.14% 58.23% 84.44% 77.79% 96.43%

SVM [11]
Precision 84.33% 85.78% 88.36% 83.59% 84.61% 86.17%

Recall 86.99% 85.92% 87.01% 84.04% 83.91% 85.06%
We 84.54% 85.79% 88.24% 83.62% 84.55% 86.07%

RF [12]
Precision 82.46% 83.61% 83.01% 82.86% 83.45% 84.26%

Recall 82.68% 83.85% 83.25% 82.96% 83.63% 85.24%
We 82.56% 83.73% 83.16% 82.91% 83.57% 84.69%

HMM [14]
Precision 86.33% 85.95% 62.06% 89.04% 84.19% 86.14%

Recall 85.77% 86.23% 63.54% 88.53% 84.96% 86.26%
We 86.28% 85.97% 62.17% 88.99% 84.25% 86.14%

GHMM [13]
Precision 85.79% 84.96% 63.99% 88.78% 84.16% 86.35%

Recall 85.65% 85.63% 63.65% 88.96% 84.31% 86.64%
We 85.71% 85.38% 63.78% 88.81% 84.27% 86.43%

CRF [16]
Precision 86.21% 85.52% 88.91% 88.76% 84.99% 86.28%

Recall 85.98% 85.48% 86.04% 89.03% 85.59% 85.71%
We 86.19% 85.51% 88.66% 88.78% 85.04% 86.23%

Proposed method
Precision 86.21% 85.99% 89.15% 89.27% 84.65% 96.58%

Recall 85.98% 86.17% 86.38% 89.41% 85.22% 86.95%
We 86.19% 86.00% 88.91% 89.28% 85.61% 96.61%

It can be seen from Table 5 that the overall performance of the proposed method is
well and stable. The results of the image No. 1 in Figure 11 of the gaze points are classified
using the clustering method in [10]. Although the various evaluation values are higher,
because the fact that classification of the data is iteratively calculated in terms of the distance
situation between the data, this method is simply considered from the distribution distance,
and the results after visualization are clear (Figure 13), containing many gaze points that
do not belong to the target range. The result of the image No. 3 in Figure 11 shows that
too many gaze points of the target are classified (Figure 14), which instead makes the
various evaluation values low. Similarly, the classification SVM method in [11] also has a
relatively good classification result for gaze points. Although the data characteristics are
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considered, the factor relationship between human visual characteristics is not considered.
The proposed method is based on the ideological basis of research [14,16,24] for integrated
research, which not only considers the feature establishment of gaze points, but also the
relationship between features. It also integrates the influence of human visual characteristics
into learning, and the overall result is higher than the objective evaluation value of the
five methods.
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Similarly, the results of the test data are statistically analyzed and the gaze points
classification results of 100 gaze images are evaluated. Figure 15 presents the average
comparison of test experimental results.
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It can be seen from Figure 15 that the final evaluation results of the proposed method,
Precision = 86.81%, Recall = 86.79%, We = 86.79%, they are still better than those of rele-
vant methods. In general, the proposed method has slightly improved the comparison
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indexes compared with similar data classification methods, and the comparison of compre-
hensive performance is also slightly advantageous. However, the improved performance
is not very prominent, and the percentage of improvement is not large. According to
the presented analysis, on the one hand, the method still lacks the comprehensiveness of
feature description in the description of gaze points and fails to better describe the feature
relations between gaze points, and therefore the final classification result is not significantly
superior to that of relevant methods. However, in the process of analysis from the starting
of feature establishment, the method tries to establish gaze point features based on visual
characteristic from different areas, and the same learning and training classification results
are also better. On the other hand, this study tackles the case where the data distribution
of the original gaze points is relatively concentrated, and the proportion of unintentional
saccade is small. No matter what kind of gaze point classification is used, the distribution
of the gaze points is more concentrated than that of the gaze consciousness, which is easy
to classify.

4.4. Real Scene Image Gaze Points Classification and Application

Through the previously mention research on the classification of gaze points, the eye-
tracking technology is used to control the servo platform and perform the visual aiming
of the servo platform. Specifically, the experimenters wear on the eye-tracking device,
and gaze at the targets on the display (the image transmitted by the scene camera on the
servo platform) are verified. In addition, the original gaze point and the gaze point after
classification are compared. Part 1 shows the gaze at real images experiment. Part 2 further
shows the real-time servo platform visual aiming.

Part 1: experimenters gaze at the “person” (as for target) in the school and select six scenes
to illustrate. Figure 16 presents the comparison of gaze points during the real images gazing.
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Table 6. Comparison of real images gaze test evaluation results.

1 2 3 4 5 6

Clustering [10]

Ra - 81.87% 96.31% 91.34% 86.52% 84.17%
Co - 61.23 56.86 44.11 37.13 43.62

Precision - 93.62% 94.34% 96.68% 94.23% 96.51%
Recall - 94.13% 94.25% 97.04% 93.96% 96.35%

We - 93.97% 94.31% 96.79% 94.17% 96.42%

SVM [11]

Ra - 63.58% 95.33% 91.26% 84.55% 80.74%
Co - 30.21 56.27 43.91 33.23 39.42

Precision - 93.65% 95.16% 96.37% 95.11% 95.63%
Recall - 93.78% 95.35% 96.24% 94.97% 95.52%

We - 93.71% 95.26% 96.32% 95.03% 95.58%

RF [12]

Ra - 53.95% 74.62% 89.11% 83.46% 75.93%
Co - 40.58 56.37 48.74 43.61 39.96

Precision - 91.12% 92.24% 92.64% 91.39% 92.45%
Recall - 92.33% 92.41% 91.58% 91.42% 92.58%

We - 91.65% 92.37% 92.53% 91.40% 92.51%

HMM [14]

Ra - 56.33% 63.86% 90.28% 80.24% 77.69%
Co - 26.31 21.64 59.03 28.31 33.41

Precision - 94.95% 94.17% 95.38% 94.64% 96.72%
Recall - 94.77% 94.22% 95.42% 94.81% 96.78%

We - 94.81% 94.20% 95.40% 94.76% 96.75%

GHMM [13]

Ra - 51.91% 64.23% 91.02% 79.36% 78.44%
Co - 27.52 21.35 48.22 26.98 34.06

Precision - 93.88% 94.91% 95.64% 94.35% 95.99%
Recall - 94.97% 94.22% 95.69% 94.97% 96.84%

We - 94.63% 94.64% 95.67% 94.83% 96.63%

CRF [16]

Ra - 53.16% 60.65% 91.64% 83.94% 80.73%
Co - 22.93 17.52 42.97 26.82 29.46

Precision - 94.53% 95.32% 96.65% 96.01% 97.01%
Recall - 94.58% 95.29% 96.87% 96.44% 96.35%

We - 94.55% 95.30% 97.76% 96.23% 96.79%

Proposed method

Ra - 51.91% 59.77% 91.34% 82.27% 79.83%
Co - 21.47 16.98 43.74 25.41 27.53

Precision - 95.33% 95.68% 97.21% 96.39% 98.15%
Recall - 95.78% 95.35% 97.19% 96.78% 98.17%

We - 95.69% 95.62% 97.21% 96.44% 98.16%

In Figure 16, (1) the target of gaze is not specified, and the gaze points are widely
distributed; (2) and (3) the gaze target is the person on the right; (4) the gaze target is
designated as the second person; (5) the gaze target is the person on the right side of the
step; (6) the gaze target is the person on the steps. In each image, the first row presents the
gaze image, the second row presents the original gaze points, and the third row presents
the classified gaze points. It can be clearly seen that the proposed method classifies the
gaze points associated with the target “person”.

Table 6 presents the comparison of real images gaze test evaluation results. The
proposed method can classify real scene images gaze points, the Co is the lowest, the Ra
is better than other methods result, and the Precision, Recall and We all is better than
others result. These further show our method have a well classification result based on
visual characteristics, and in gazing process gaze target long time that with different
attention distribution. So, when we manipulate servo platform accuracy aiming visual,
need understanding the meaning of gaze point to use.

Part 2: experimenter gaze the center of target, as shown in Figure 17. Figure 17a is
gaze target. During the gazing process, interference to the target Figure 17b and the target
Figure 17c will appear from different positions to the target. The position of the “+” in the
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center of the servo platform scene camera during the gaze test is recorded. When the blue
“+” and green “+” overlap in the target center of the stable area, the servo platform visual
aiming is achieved.
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Figure 17. Test scene of the target center gaze. (a). Gazing target; (b). Interference target; (c). Interference target.

Figure 18 shows the state of gaze point and servo platform scene camera following
and visual aiming during gazing. Figure 18a is the gaze target, Figure 18b is the appearance
of the first interference target, Figure 18c is the appearance of the second interference target.
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Figure 19 shows the distribution of gaze points in the experimental visual aiming
process. Figure 19a is the distribution of gaze points of the original output, and Figure 19b
is the distribution of gaze points after classification.
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The experimental results show that the proposed method can efficiently classify the
gaze points of the target and make the servo platform camera more accurately follow and
aim achieving the servo platform visual aiming.

In summary, the proposed gaze points classification method based on visual character-
istics is experimentally tested by gazing at different 100 images, 6 real scene images and
target. It can be seen that the distribution of gaze points in different gaze images reflects
the different attention and gaze concentration of human eyes. For the gaze at a single
background and a prominent target, the distribution of gaze points is highly concentrated.
For the image having a complex background and no prominent target, the distribution
of gaze points is scattered and widely distributed. The subjective and objective results
obtained by the proposed method demonstrate that it achieves a high degree of gaze
attention. In 100 gaze images average Precision = 86.81%, Recall = 86.79%, We = 86.79%,
In 6 real scene the best Ra = 91.34%, Co = 16.98, Precision = 98.15%, Recall = 98.17%,
We = 98.16%. These are also better and stable than those obtained by other methods. How-
ever, the evaluation values are not particularly improved. This is the presented study of
visual characteristics and human physiological characteristics has not taken into considera-
tion the different influencing factors, and there is no applicability for the establishment of
various relationships. These still need to be further explored in future studies. Simultane-
ously, the experiment results of this study show the applicability of eye-tracking of gaze
points classification, in order to achieve servo platform visual aiming.
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Figure 20 present the gaze process 24 different time visual aiming state.
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5. Conclusions

This paper studied the gaze points classification based on visual characteristics, aiming
at the head-mounted eye-tracking device to gaze control servo platform, and achieve servo
platform visual aiming. The gaze points can be automatically analyzed and classified, so
as to achieve accurate visual aiming of servo platform. Through feature encoding of gaze
image and gaze points, an establish the learning relationship between features. The CRF
model is further input to output the predicted gaze points classification. The experimental
results show that the proposed method performs feature analysis of gaze points from
different angles. Compared with the relevant algorithms, it can be clearly seen from the
subjective results that the proposed method can efficiently classify target gaze points. In
addition, the objective comparison with relevant algorithms shows that the proposed
method has improved the accuracy, recall rate and weight value. Furthermore, it can be
applied to more accuracy achieve visual aiming of servo platform.

In future work, we aim at further studying the human-oriented, autonomous and
efficient eye-tracking modes, in order to be able to understand the meaning of gaze points.
In addition, the application of gaze point, should do more online experiment research. This
can improve the effective use of gaze points, and accurately perform the human-computer
interaction application of eye-tracking.
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