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Featured Application: The accuracy in long-term prediction of the performance of a photovoltaic
(PV) park following several years of operation is essential for a number of reasons, including the
extraction of reliable data for the economic analysis, the valid support of claims regarding PV
panels’ performance degradation and other issues. The specific work was motivated by the need
to economically assess future investment in photovoltaic installations during an economic cycle
with increasing interest rates. The monitoring data from the actual operation of a 100 kW PV
park are employed in the refinement and validation of the prediction methodology. The results
are applicable to the profitability analysis of future PV investments in the region of Thessaly.

Abstract: Increased penetration of grid-connected PV systems in modern electricity networks in-
duces uncertainty factors to be considered from several different viewpoints, including the system’s
protection and management. Accurate short-term prediction of a grid-connected PV park’s output is
essential for optimal grid control and grid resilience. Out of the numerous types of models employed
to this end during the last decade, artificial neural networks, (ANNs) have proven capable of handling
the uncertainty issues of solar radiation. Insolation and ambient, or panel temperature, are most
commonly employed as the independent variables, and the system’s output power is successfully
predicted within 3 to 5% error. In this paper, we apply a common type of ANN for the long-term
prediction of a 100 kWp grid-connected PV park’s output, by exploiting experimental data from
the last 8 years of operation. Solar radiation and backsheet temperature were utilized for the ANN
training stage. The performance metrics of this model, along with a standard linear regression
model, are compared against the actual performance data. The capabilities of the ANN model are
exploited in the effort to decouple the fluctuating effect of PV panel soiling which interferes with the
efficiency degradation process. The proposed methodology aimed to quantify degradation effects
and is additionally employed as a fault diagnosis tool in long-term analysis.

Keywords: photovoltaics; air mass; forecasting; neural networks

1. Introduction

The growth in investment for the production of renewable energy is remarkable and
the recent severe threats to the energy safety of Europe due to the scarcity and soaring
gas prices led to the increasing pace in the design of a future European electricity system
characterized by a dominant share of renewable energy supply. This is in line with the stated
targets of European governments and the official position of the EU, increasing its renewable
energy target from 40 to 45%, while setting a 592 GWac (740 GWdc) target for solar in the
European Union by 2030 [1]. In Greece, currently installed peak power is 4381 MWp of
wind parks, 256 MWp of small-scale hydropower systems, 112 MWp of biomass systems,
3989 MWp of photovoltaic (PV) systems, and 352 MWp of rooftop PV systems on roofs [2].
Photovoltaics applications are widespread in the residential and commercial sector, assisted
by the continuous drop in purchasing prices which currently range from 0.20–0.40 EUR/Wp
for silicon-based photovoltaic modules with 20% efficiency [3]. Net-metering further
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boosted the expansion of PV applications in the residential sector. Its application varieties
include net-metering, virtual net-metering, and net-metering with battery systems in order
to achieve zero energy induction in the public grid. Sizing these applications demands
meteorological data, consumption data and profiles, and, most importantly, reliable solar
potential data because of the uncertainty of the solar insolation. Thus, forecasting power
output is an essential task to support the optimal sizing of these applications. The significant
expansion of electric vehicles is another application that will necessitate a close synergy
with rooftop and other PV installations [4]. Again, the system’s optimization in these cases
needs to be supported by reliable power forecasting because of the inherent uncertainty
of the availability of solar energy and the randomness of the EV charging behavior [5].
Furthermore, power forecasting of the various forms of power production is also an
important tool in electricity markets and energy markets [6,7].

Many researchers face this problem using different approaches. Hassan et al. proposed
an empirical technique using experimental data and interpolated datasheets’ information
in order to produce a mathematical equation for power prediction under various weather
conditions [8]. Huld et al. presented a method for energy rating using mathematical
models for shallow-angle reflectivity, spectral sensitivity, module efficiency dependence on
irradiance, and module temperature [9]. Zamo et al. studied PV forecasting for some power
plants in mainland France using statistical methods exploiting outputs from numerical
weather prediction (NWP) models. Forecasts were built without using technical information
on the power plants. The results showed a root mean square error (RMSE) in the range
of 9–12% [10]. Neural networks are another popular approach adopted by researchers in
PV energy forecasting. Kim et al. [6] presented the most recent research works on deep
neural networks applied in the short term (forecast horizon from 30 min to 1 week ahead)
photovoltaic power forecasting. Graditi et al. conducted a comparative analysis among
three models for energy forecasting: a phenomenological model, a multilayer perceptron
(MLP) neural network, and one based on regression analysis, applied to a dataset of an
existing PV power plant. The neural networks technique demonstrated superior accuracy in
the results [11]. Sundaram et al. proposed an artificial neural network (ANN) for the long-
term prediction of an existing 1MWp plant using three different options. Input variables
were the module’s ambient temperatures, wind speed, and global irradiance. The ANN
model with the four inputs achieved more accurate results with a mean absolute percentage
error (MAPE) of 1.68% [12]. Kardakos et al. proposed the application of the seasonal
autoregressive integrated moving average (SARIMA) model and two ANNs for energy
generation forecasting of grid-connected plants in Greece. Comparisons were conducted in
terms of normalized root mean square error (nRMSE) [13]. López Gómez et al. created an
ANN to predict power from a real PV plant in Italy. Three scenarios were investigated: data
employed for both training and prediction, data employed just for training and prediction
was compared with data from the global data assimilation system, and finally, data from
GDAS were used for training and prediction. The results show that the lack of on-site
weather measurements can be faced by means of a validated numerical weather model in
combination with machine learning techniques for PV power forecasting [14]. Kothona et al.
proposed a forecasting model based on the long short-term memory (LSTM) algorithm.
The examined parameters were solar irradiance, PV module temperature, historical PV
data, and clearness index. The results indicated that the inclusion of the clearness index as
input can improve the performance of the forecaster [15]. Omar Nour-Eddine et al. studied
PV power production data of a 5.94 kWp grid-connected PV plant in Morocco. The PV
system comprised panels of three different PV technologies. The proposed models are
an ANN and a persistence model that are applied to a data set with solar irradiance and
temperature as inputs. The results were compared in terms of mean bias error (MBE), mean
absolute error (MAE), MAPE, RMSE, and nRMSE. The ANN-based model demonstrated a
2.107% MAE and 2.645% RMSE against 2.406% and 5.185%, respectively, for the persistence
model [16]. Akhter et al. proposed a model for an hour-ahead prediction on a yearly basis
of three different PV plants, based on available data for wind speed, module, ambient
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temperature, and solar irradiation employing a long short-term memory (LSTM) recurrent
neural network (RNN) with a deep learning method, with the results compared with
regression, hybrid Adaptive neuro-fuzzy inference system (ANFIS), and machine learning
methods [17]. Natarajan et al. proposed a radial belied neural network (RBFN) with inputs
from large-scale PV plants with evaluation metrics of RMSE, nRMSE, MBE, MAE, MaxAE,
MAPE, and Kolmogorov–Smirnov test integral (KSI) and OVER metrics, skewness, and
kurtosis and variability estimation [18]. Pan et al. proposed a support vector machine
(SVM) that uses weather temperature, relative humidity, global horizontal radiation, diffuse
horizontal radiation, wind direction, and sampling time as input parameters. The output
of the model was active power and the results were a correlation coefficient R2 up to 0.997,
MSE and MAE values of 0.0349 and 0.1569, respectively [19]. Pasion et al. proposed a
machine learning technique using latitude, month, hour, ambient temperature, pressure,
humidity, wind speed, and cloud cover as independent variables and power production as
output. A distributed random forest regression algorithm modeled the combined dataset
with an R2 value of 0.94 [20]. Jaber et al. presented a prediction model for comparing the
performance of six different photovoltaic (PV) modules using artificial neural networks
(ANNs), with the basic characteristics of the PV panels’ manufacturer datasheets as cell
temperature, irradiance, fill factor, short circuit current, open-circuit voltage, maximum
power. Comparing the results to the actually measured data resulted in a 0.874% MAPE [21].
Kim et al. proposed a combination of bidirectional long short-term memory (BLSTM) with
an ANN to predict power generation for a specific hour, using four types of historical input
data: hourly PV generation (168 h ahead), hourly horizontal radiation, hourly ambient
temperature, and hourly surface temperature. The results showed that the LSTM prediction
model with the ANN estimation model using exponential moving average preprocessing
exhibited higher accuracy [6].

Another related aspect of neural network application in the building’s rooftop PV
sector is consumption forecasting. This is a useful tool for the optimal sizing of PV systems
for net-metering applications, including those with battery storage systems. Knowledge of
the building’s consumption profile is a necessary starting point for the improvement of the
building’s energy management and application of energy-saving actions. Villanueva et al.
proposed a method for predicting the consumption of household appliances by evaluating
statistical distributions (Kolmogorov–Smirnov and Pearson’s X2 tests) [22]. Kalogirou et al.
proposed a model for the prediction of energy consumption in a passive solar building in
order to generate a mapping between the above easily measurable inputs and the desired
output, i.e., the building’s energy consumption [23].

In addition to the above issues, photovoltaic applications must be based on special
techniques for fault detection, degradation investigation, and other effects such as soiling
and potential induced degradation. Neural networks offer great help in studying these
effects. Laurino et al. proposed a four-layered feed-forward artificial neural network that
learns the correlation of the IV curves with irradiance and temperature. This approach
has been also been applied to detect anomalous increases in series resistance from a
large experimental set of curves [24]. Chine et al. proposed an ANN that uses a given
set of working conditions parameters—solar irradiance and photovoltaic (PV) module’s
temperature—to predict a number of attributes such as current, voltage, and number of
peaks in the I–V curve of the PV strings. The simulated attributes were then compared
with real field measurements, leading to the identification of possible faulty operating
conditions [25]. Massi Pavan et al. studied the effect of soiling on large-scale photovoltaic
plants using two different techniques: Four Bayesian neural network (BNN) models have
been developed in order to calculate the performance at standard test conditions (STCs)
of two plants installed in Southern Italy and compare against the results of a regression
model. The results indicate that the losses due to dust accumulation on poly-crystalline
Si PV modules’ surfaces range from roughly 1 to 5% after 1 year of operation [26], which
agrees with observations from other researchers [27].
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Neural networks are a significant help in solar radiation forecasting which is necessary
for the planning, operation, and maintenance procedures of PV plants. Behrang et al. [28]
employed different ANN techniques to predict daily global radiation on a horizontal sur-
face, based on the daily mean air temperature, relative humidity, and sunshine hours. De O.
Santos et al. proposed a heterogeneous ensemble dynamic selection model, named HetDS,
to forecast solar irradiance, choosing the most suitable forecasting model from a pool of
seven well-known literature methods: ARIMA, support vector regression (SVR), multilayer
perceptron neural networks, extreme learning machine (ELM), deep belief network (DBN),
random forest (RF), and gradient boosting (GB). The experimental evaluation showed
that the proposal can overcome the single models in almost all scenarios with a small
dispersion [29].

It can be observed that the various approaches differentiate regarding the type of Neu-
ral Network, the selection of inputs, outputs, and the kind of data employed for the training
and validation. Another important selection parameter is the type of forecasting, which may
be classified into three main categories according to Das et al. [30]: (i) short-term forecasting
of PV power generation that is applied in scheduling and dispatching of electrical power,
or in the design of a PV-integrated energy management system, (ii) medium-term forecast,
carried out for periods from one week to one month for power system and maintenance
scheduling, and (iii) long-term PV power forecasting for periods from one month to one
year, which is helpful for the planning of electricity generation and distribution [30]. As
expected, long-term PV power forecasting is the most demanding task for the use of ma-
chine learning methods, which need a lot more research to understand their complications
and transform them into efficient computational tools [31]. The experience from the appli-
cation of deep learning in other related fields is useful in this context. Nguyen et al. [32]
constructed a long short-term memory (LSTM) RNN for making predictions of French
nuclear power plants’ steam generator output over a long-term horizon, in which the net-
work hyperparameters are automatically optimized by a tree-structured Parzen estimator
(TPE) algorithm. RNNs include feedback connections from the hidden/ output layer to
the preceding layers, to catch the dynamics of sequential data and reproduce previous
patterns in the future prediction. Similarly, RNNs are applied in long-term forecasting
of lithium-ion battery performance [33], membrane degradation in fuel cells [34], rolling
bearings remaining useful life [35], and machine health monitoring [36].

The current work belongs to long-term power forecasting. It focuses on the exploitation
of actual data collected from monitoring grid-connected PV systems and has three objectives.
The first objective is the comparison of an ANN model with a simple linear regression in
PV energy forecasting using actual data. The second is the evaluation of the data in order
to be useful either for forecasting or for fault diagnosis and degradation analysis. The third
is to create a methodology for the performance evaluation of a PV system and reliable
estimation of degradation rates, which is essential information for the creation of energy
forecasting models.

The rest of the manuscript is organized as follows: Section 2.1 describes the photo-
voltaic park’s details and the experimental setup employed for its monitoring. Section 2.2
describe the pre-processing and Section 2.3 introduces the forecasting methods, whereas
the results are presented and compared with actual data in Section 3. In Section 4, a com-
parative discussion of the performance of the alternative models and training approaches
is carried out, and finally, conclusions are drawn on the long-term prediction and fault
diagnosis capabilities.

2. Materials and Methods

The experimental setup employed for the monitoring of the PV park and the specific
methods implemented for power forecasting are described in this section.
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2.1. Experimental Setup

A grid-connected 99.84 kWp PV park in central Greece is monitored since 2013. The
PV park comprises 416 PV panels on the park, mounted in a fixed south-facing position at
25 degrees tilt angle. A total of 8 inverters are employed in the DC/AC transformation, with
technical characteristics presented in Appendix A. The following parameters are monitored
at 15 min intervals: solar irradiance, back panel temperature, ambient temperature, DC
voltage to the inverter, and AC power output from the inverter. The data employed in the
specific work refer to the period 1 January 2013 to 30 June 2021. The system’s technical data
and monitoring and measurement equipment are summarized in Appendix A. No system
for automatic cleaning of the panels’ surface is included.

2.2. Pre-Processing Methodology

The first step in the pre-processing methodology is the application of a quality assur-
ance procedure to the available dataset. This is a regular practice of outlier removal and
missing data imputation techniques dictated by experience in the processing of large time
series of measurements [32,37]. Specific criteria are defined for cleaning up the data, with
regard to irradiance, airmass, and inverter power output. Recordings with zero values of
inverter power output are rejected and the same is done with those with irradiance values
<50 W/m2. Airmass is another important indicator that should be taken into account with
data preprocessing [38]. According to previous experience, data records with AM > 10 are
also rejected.

2.3. Forecasting Methodology

Following the preprocessing, the first step in the forecasting methodology is the
application of the first three years’ (2013–2015) data in training (i) a linear regression model
and (ii) a feed-forward artificial neural network (FF ANN) with one hidden layer (MLP).
The input parameters for both models are in-plane irradiance and backsheet temperature
and the single output parameter is AC inverter power output.

The structure of the FF ANN is shown in Figure 1. It is implemented by the use
of the open-source machine learning framework: Tensorflow (Python programming lan-
guage) [39]. The input layer comprises two input nodes, namely, irradiance (G) and
backsheet temperature (Tp) (Figure 1). The hidden layer comprises 20 nodes, each one
containing a sigmoid activation function [40]. The Levenberg–Marquardt optimization
algorithm is employed for training [41,42].
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Training the neural network can be envisaged as the fitting of a complex curve through
the training data, until it can approximate it with the highest possible accuracy, by employ-
ing loss minimization algorithms and kernels (weights) and biases optimization. Since
this complex fitting will be employed in the prediction of the future behavior of the PV
park, it is very important to exclude erroneous or noisy information from the dataset. This
explains the required careful quality assurance procedure included in the preprocessing
of the datasets. The performance of these models is assessed based on the measurements
of the last five and a half years in the dataset (2016–2021). As a next step in the forecast-
ing methodology, training of the FF ANN was carried out based on the first five years’
(2013–2017) data and the performance of the neural network was assessed based on the
measurements of the last three and a half years in the dataset (2018–2021).

The statistical metrics employed for the assessment of the accuracy of prediction are
the root mean square error (RMSE), normalized root mean square error (nRMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE), mean bias error (MBE),
and Pearson correlation coefficient (COR), which are the most common metrics employed
in the literature comparisons [28,43,44]. They are defined as follows:

MAE =
∑N

i=1|Pmi − Pfi|
N

(1)

MAE =
∑N

i=1|Pmi − Pfi|
N

(2)

nRMSE =

√
∑N

i=1(Pmi − Pfi)
2√

∑N
i=1(Pmi)

2
(3)

MAPE =
100%

N ∑N
i=1
|Pmi − Pfi|

Pmi
(4)

MBE =
∑N

i=1(Pmi − Pfi)

N
(5)

COR =
COV(Pmi, Pfi)√
V(Pmi)

√
V(Pfi)

100% (6)

where N is the number of samples in the time series, Pmi and, Pfi denote the measured and
predicted value of the modeled variable at the time step i (i = 1, N). In the definition of the
Pearson correlation coefficient, (COR), COV denotes the covariance of the two variables
(measured and modeled values), and V is the variance of each respective variable.

Another important metric that will be computed in our study is the yearly performance
ratio (PR) which is defined in Appendix B.

3. Results

First, it is important to conduct a sensitivity analysis in order to correlate input
parameters, irradiance, and back panel temperature with the output parameter (power
output) and—consequently—energy production. An additional, important parameter that
assists this sensitivity analysis procedure is the airmass [45], which defines the direct optical
path length of the Sun’s rays through the Earth’s atmosphere, expressed as a ratio relative
to the minimum path length vertically upwards at the solar zenith. This coefficient is
useful for characterizing the modification of the solar spectrum after traveling through the
atmosphere. It is also intensively investigated as a valuable predictor in meteorological
models [46]. For our purposes, airmass is routinely calculated for the available system’s
performance data according to Appendix B. Figure 2 classifies the electricity produced by
the PV park according to the respective, dimensionless airmass values, which was found
convenient to divide among six classes (AM1–AM2, AM2–AM3, AM3–AM4, AM4–AM5,
AM5–AM10, AM10, and beyond) [47].
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Figure 2. Percentage of electricity production in the six airmass classes defined, during the 8-year period.

According to the results of Figure 2, more than 90% of electricity production corresponds
to conditions with Airmass values in the range of 1 to 4. Moreover, 99% of the production is
achieved for airmass values <10. For this reason, data for higher values are rejected as discussed
in Section 2. Data with values of irradiance smaller than 50 W/m2 are also rejected. Figure 3
shows that only 7.5% of electrical energy production is achieved for irradiance values smaller
than 200 W/m2. As already mentioned in Section 2, records that correspond to irradiance values
lower than 50 W/m2 are rejected. These points represent in total, less than 1% of the annual
electricity generation. Exclusion of the above-mentioned records with low information quality
significantly improves the prediction accuracy of the neural networks since we avoid training
the NN with noisy data with low information value.
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The percentages of electricity production in the different backsheet temperature classes
defined in the pre-processing are presented in Figure 4. More than 99% of the total electricity
production occurs in the four backsheet temperature classes between 15 and 55 ◦C.
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Figure 4. Percentage of energy production in the different backsheet temperature classes during the
8-year period.

Figure 5 shows the observed linear trend in the evolution of AC power output with
irradiance. On the other hand, backsheet temperature has also a general linear trend with
irradiance. However, according to the technical datasheet of the PV panels, there is a nega-
tive effect of backsheet temperature on the panel’s efficiency. These two conflicting trends
produce the correlation in Figure 6 between power output and temperature, characterized
by a wide margin of possible backsheet temperatures associated with each AC output level.

The situation is more clearly depicted in Figure 7, where the correlation between power
output, temperature, and irradiance is apparent. The PV panels’ manufacturers describe the
correlation of these three parameters with characteristic curves and temperature coefficients.
STCs include irradiance (1000 W/m2), temperature (25 ◦C), and spectrum corresponding
to AM 1.5. The lack of availability of spectral measurements is adjusted by the introduction
of the airmass factor. Air mass quantifies the length of trail of the Sun’s beams through the
Earth’s atmosphere [48].
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Figure 7. Correlation between AC power output, irradiance, and backsheet temperature.

Figure 8 shows the correlation between power output and airmass in different classes
of irradiance. It is observed that power output has an exponential trend. Airmass factor
calculation should operate as an indicator in order to compare values of time series in
different seasons and hours when sunbeams have the same length of trail.

Next, we proceed to compare the results of the ANN and the linear regression model
predictions to the actual performance during characteristic periods in the years 2016 to 2021.

Figure 9a compares the results of the linear regression model and the ANN with the
actual performance data during three consecutive cloudy days in 2016. As expected, the
prediction with the more complex (nonlinear) curve fitting of the ANN is always closer to
the actual data. The same behavior is observed during the sunny days (Figure 9b).

The comparison continues with three consecutive cloudy days in 2017, followed by
three sunny days (Figure 10). The performance of the ANN is more accurate in these
examples from 2017. The linear regression model lacks accuracy in prediction, especially
during the high insolation time during the noon hours of sunny days.
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The comparison continues in Figure 11 with three cloudy and three sunny days, with
similar findings. The ANN prediction continues to be closer to the measurement, as seen
by the qualitative comparison in Figure 11.
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Figure 11. Comparison between real power output and two models forecasting for three cloudy (a)
and three sunny days (b) for 2018.

In summary, as regards the years 2016 to 2018, which are closer to the training period, the
characteristic results of Figures 9–11 show that both models forecast the power output with a very
good accuracy, the ANN model being generally superior. The nRMSE values fluctuated between
4.6 and 7.4% for the ANN model and 6.2–8.8% for the linear regression model. Respectively,
MAPE values fluctuate between−2.27 and−1.32% for the ANN model and−1.81 and−1.13%
for the linear regression model. It is important to note additionally that during these years the
performance ratio (PR) was in the range of 0.86–0.88.

Now, as one moves at more distance from the training period, Figure 12 shows that
both models forecast the power output with a remarkably higher nRMSE error value for
2019 compared to the previous years. nRMSE values are 11.2% for the ANN model and
12.5% for the linear regression model. The respective MAPE values are −5.97 for the ANN
model and −5.75% for the linear regression model. It must be noted here that this year was
characterized by a very low PR of 0.84. On the other hand, both models have an increase in
RMSE error and especially 9.8% and 9.7% for the ANN and regression model, respectively.
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Figure 12. Comparison between actual power output and the one forecasted by the two models, for
three cloudy (a) and three sunny days (b) for 2019.

Shifting attention to the year 2020 (Figure 13), the situation further deteriorates with
the prediction accuracy of both models, which both overpredict the electricity output of the
PV park. Obviously, this behavior must be related to the rate of efficiency deterioration
of the PV panels. During the assessment of the first six years of operation of the specific
PV park [47], the degradation rates of normalized efficiency for the first two AM classes,
which have the highest impact on total energy production, varied between 1.28 and 6.92%.
The degradation rate was variable during the years. Thus, the degradation embodied in
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the first three years’ data employed in the training of both models, cannot be expected to
predict with high fidelity its evolution during the next several years.
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Figure 13. Comparison between real power output and two models forecasting for three cloudy (a)
and three sunny days (b) for 2020.

Figure 14 shows that during the next year, 2021, for the first time an underestimation
in forecasting values is observed by both models. This is further supported by the values of
MAPE which are now positive. This fact would probably indicate an error in the irradiance
sensor. To allow for a better assessment of the situation, a comparison of the calculated
average PV plant efficiency for the period 2016–2021 is presented in Table 1.

Appl. Sci. 2022, 12, 6458 13 of 22 
 

PV park [47], the degradation rates of normalized efficiency for the first two AM classes, 

which have the highest impact on total energy production, varied between 1.28 and 6.92%. 

The degradation rate was variable during the years. Thus, the degradation embodied in 

the first three years’ data employed in the training of both models, cannot be expected to 

predict with high fidelity its evolution during the next several years. 

  
(a) (b) 

Figure 13. Comparison between real power output and two models forecasting for three cloudy (a) 

and three sunny days (b) for 2020. 

Figure 14 shows that during the next year, 2021, for the first time an underestimation 

in forecasting values is observed by both models. This is further supported by the values 

of MAPE which are now positive. This fact would probably indicate an error in the 

irradiance sensor. To allow for a better assessment of the situation, a comparison of the 

calculated average PV plant efficiency for the period 2016–2021 is presented in Table 1. 

  
(a) (b) 

Figure 14. Comparison between real power output and two models forecasting for three cloudy (a) 

and three sunny days (b) for 2021. 

Table 1. Statistical and energy metrics. 

 2016 2017 2018 2019 2020 2021 

Average η [%] 13.93 13.99 13.99 13.47 13.97 15.17 

Standard deviation [%] 1.04 1.51 1.21 1.56 1.36 1.74 

4. Discussion 

The application of linear regression (M1) and ANN (M2) provides insight into the 

effectiveness of these models in understanding and predicting the operation of a PV plant 

Figure 14. Comparison between real power output and two models forecasting for three cloudy (a)
and three sunny days (b) for 2021.

Table 1. Statistical and energy metrics.

2016 2017 2018 2019 2020 2021

Average η [%] 13.93 13.99 13.99 13.47 13.97 15.17
Standard deviation [%] 1.04 1.51 1.21 1.56 1.36 1.74

4. Discussion

The application of linear regression (M1) and ANN (M2) provides insight into the
effectiveness of these models in understanding and predicting the operation of a PV plant
over the period of a decade. It is clear that the ANN model achieves better statistical metrics
than the regression model, as expected by the published experience of other researchers.
However, as one moves further away from the training period, both models show a
significant differentiation in performance, especially during the years 2019–2021. This
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fact indicates a possible drop in the PV plant’s performance that may be explained either
by an expected degree of the degradation rate of the PV panel or by the soiling effect as
there exists no systematic cleaning procedure in the plant. Another explanation could
point to an error in the irradiance measurement system. The irradiance sensor described in
Appendix A is by itself a reference PV cell, thus subjected to soiling with an adverse effect
on the irradiance values recorded.

Energy generation metrics in the form of PR and Total PV performance, indicate a de-
creasing trend from 2016 to 2019 that is coincident with the manufacturer’s warranties. On
the contrary, PR and total PV performance show an increase during 2020–2021. Moreover,
the average performance for the year 2021 is significantly higher than the years 2016–2018.
This fact points to an erroneous irradiance sensor. Figure 15 points to this fact by the
comparison of irradiance–airmass correlations of the years 2013 and 2021. The readings for
2021 indicate a systematic shift to lower values of insolation producing useful electricity in
all the airmass ranging from 1–10. This refers to a drift of sensor output.
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Figure 15. Comparison of measured Irradiance of 2013 and 2021 in correlation with airmass.

A closer look in Figure 16 reveals the problem with the soiled irradiance sensor. More
specifically, the day of 26 April is a clear sky, sunny day; however, the sensor does not read
correctly the maximum irradiance value of about 1000 W/m2. The same observation can
be carried out for the next three days, which are days with intermittent clouds; however,
the maximum irradiance in the sunny intervals is always recorded at reduced levels.

Table 2 summarizes the calculated statistical and energy metrics of models M1 (regression
model) and M2 (FF ANN trained with three-year data), for the years 2016 to 2021.

Figure 17 shows the trend of MAPE and nRMSE of the two models’ predictions with
time. In general, an increase in error is observed over the years. However, this increase
is not monotonous, as also observed in Table 2. Of course, one cannot expect the specific
approach to be very accurate for long-term forecasting, because of the erratic nature of the
efficiency degradation rate of an ensemble consisting of a large number of PV panels, which
are not regularly cleaned from dust and soiling. However, it is employed here as a useful
tool for fault detection and degradation analysis. Previous studies, which investigate the
efficiency degradation of PV plants and especially in Greece, point to an average annual
degradation rate in the range of 1–4% [47]. These findings converge—on average—with
the general trends resulting from the proposed method (Figure 17). Furthermore, the effect
of heavy soiling is another important factor that may decrease energy production by up
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to 6.5% on an annual basis [49]. Heavy soiling was observed during the spring of 2019 in
Central Greece which resulted in an average decrease of 5.6% [27] in energy generation.
This fact may be related to the observed deterioration in the models’ performance for
2019. One must keep in mind that the dust and soiling effects are reversible, e.g., by the
short-term accumulation and the subsequent meltdown of snow on the panels’ surface.
This fact may partially explain the characteristic error fluctuations from year to year in
Figure 17.
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Table 2. Statistical and energy metrics for 2016–2021 (M1 and M2 versions).

2016 2017 2018 2019 2020 2021

M1 1 M2 2 M1 1 M2 2 M1 1 M2 2 M1 1 M2 2 M1 1 M2 2 M1 1 M2 2

N [samples] 14,416 14,107 14,231 14,312 14,477 6233 6233

RMSE [W] 3.4 2.4 4.8 4.1 3.2 2.4 6.4 5.7 0.1 0.1 12.7 10.8

MBE [W] 97.6 122.5 64.1 74.6 90.1 108.4 302.6 314.5 43.4 83.7 −340.4 −270.3

MAPE [%] −1.81 −2.27 −1.13 −1.32 −1.74 −2.10 −5.75 −5.97 −0.82 −1.59 6.28 4.99

MAE [W] 258.5 147.1 306.8 148.5 267.5 148.5 411.8 328.6 395.4 349.9 625.0 470.6

nRMSE [%] 6.6 4.6 8.8 7.4 6.2 4.6 12.5 11.2 9.7 9.8 15.9 13.5

COR 0.992 0.997 0.984 0.989 0.993 0.996 0.977 0.982 0.981 0.983 0.969 0.958

PR 0.87 0.88 0.86 0.84 0.89

kWh/kWp 1530.67 1571.27 1459.5 1527.2 1545.89

ηaverage [%] 13.93 13.99 13.99 13.47 13.97 15.17
ηstandard deviation [%] 1.04 1.51 1.21 1.56 1.36 1.74

1 Regression model. 2 Feed-forward artificial neural network trained with 3-years’ data.

Now, degradation is an important factor that must be considered in the long-term pre-
diction of a PV plant’s performance. In the specific case study, due to the above-mentioned
implications of fluctuating dust and soiling effects that overlap with the monotonous
efficiency degradation, the short training period of three years may be the cause of the
propagation of this instability. In order to further investigate this matter, it was decided to
extend the training period of the ANN by two more years, to a total of five years. This is
model version M3, which is added in Figure 17 and Table 3, for the years 2019 and 2020.
Now, it is interesting to compare in Table 3 the prediction errors of this second scenario for
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the remaining years 2019 and 2020. The improvement in the MAPE and nRMSE with the
5-year training of the ANN model is also apparent in Figure 17 (years 2019–2020).
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Table 3. Statistical and energy metrics for 2019–2020 (all three model versions).

2019 2020

M1 1 M2 2 M3 3 M1 1 M2 2 M3 3

N 14,312 14,477

RMSE [W] 6.4 5.7 5.5 0.1 0.1 0.1

MBE [W] 302.6 314.5 276.2 43.4 83.7 46.6

MAPE [%] −5.75 −5.97 −5.24 −0.82 −1.59 −0.89

MAE [W] 411.8 328.6 300.2 395.4 349.9 346.4

nRMSE [%] 12.5 11.2 10.8 9.7 9.8 9.2

COR 0.977 0.982 0.983 0.981 0.983 0.984

PR 0.84 0.89

kWh/kWp 1527.2 1545.89

ηaverage [%] 13.47 13.97

ηstandard deviation [%] 1.56 1.36
1 Regression model. 2 Feed-forward artificial network (3-year training period). 3 Feed-forward artificial network
(5-year training period).

Table 3 compares the performance prediction for 2019 and 2020 for the regression model
and FF ANN with 3-year training, and the FF ANN with 5-year training. The ANN models’
performance is improved with the extended training; however, there is not yet available a fair
ground for comparison between the two ANN training scenarios: the monitoring of the PV
park must be extended for at least two more years in order to assess whether the extension of
the training period improves the performance for long-term analysis.

5. Conclusions

Artificial Neural Networks along with traditional regression methods were applied
in the long-term power output forecasting of a PV park, aimed at the reliable assessment
of PV panels’ efficiency degradation rate and fault diagnosis. The models employed are a
linear regression model and a feed-forward ANN model. Available data from the 8-year
monitoring period were employed. Initially, data from the first three years of operation
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were used for training the ANN and feeding the regression model. As expected, the ANN
model achieves smaller NRMSE errors than the regression model in the validation process.
However, both model’s prediction deteriorates over the years, presumably due to the
fluctuating effect of PV panel soiling on the PV park’s performance. Extension of the
training period from 3 to 5 years led to an improvement in the neural network performance
in short-term prediction. However, at least two more years of monitoring of the PV park
would be required to assess the performance for long-term analysis. An additional outcome
from the analysis for 2021 data was the spotting of an irradiance sensor’s fault which was
confirmed by the energy metrics, performance ratio, and yearly averaged PV performance.
In its current state of development, the proposed methodology is appropriate for short-term
analysis and as a fault diagnosis tool in long-term analysis. Further development in the
methodology will be necessary to improve its long-term predictive capacity by decoupling
the soiling effects from normal efficiency degradation.
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Nomenclature

AM Air mass
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
BLSTM Bidirectional long short-term memory
COR Pearson correlation coefficient
DBN Deep belief network
ELM Extreme learning machine
FFANN Feed-forward artificial neural network
GB Gradient boosting
GDAS Global data assimilation system
HETDS Heterogeneous dynamic selection
KSI Kolmogorov–Smirnov integral
LSTM Long short-term memory
MAPE Mean absolute percentage error
MBE Mean bias error
MAPE Mean absolute percentage error
MAE Mean absolute error
MaxAE Maximum absolute error
MLP Multilayer perceptron
NN Neural network
nRMSE Normalized root mean square error
NWP Numerical weather prediction
PR Performance ratio
PV Photovoltaics
RBFN Radial basis function neural network
RF Random forest
RMSE Root mean square error
RNN Recurrent neural network
STC Standard test conditions
SARIMA Seasonal autoregressive integrated moving average
SVM Support vector machine
SVR Support vector regression
TPE Tree-structured Parzen estimator
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Appendix A

Table A1. Technical data of the PV modules.

Yingli 60 Cell YGE SERIES

Module Type YL240P-29b

STC NOCT

Power output W 240 174.3
Module efficiency % 14.7 13.3

Voltage at Pmax W 29.5 26.6
Current at Pmax A 8.14 6.56

Open-circuit voltage V 37.5 34.2
Short-circuit current A 8.65 7.01

Normal operating cell
temperature (NOCT)

◦C 46 ± 2

Temperature coefficient of Pmax %/◦C −0.45
Temperature coefficient of Voc %/◦C −0.33
Temperature coefficient of Isc %/◦C 0.06

Temperature coefficient of Vmpp %/◦C −0.45
Dimensions(L/W/H) Mm 1650/990/40

STC: 1000 W/m2 irradiance, 25 ◦C cell temperature, AM = 1.5, G spectrum according to EN 60904-3. Average
relative efficiency reduction of 5% at 200 W/m2 according to EN 60904-3. NOCT: open-circuit module operation
temperature at 800 W/m2 irradiance, 20 ◦C ambient temperature, 1 m/s wind speed.

Table A2. Technical characteristics and efficiency ratings of inverters.

Fronius IG Plus 150 V-3

PDC,MAX W 12,770
IDC,MAX A 55.5
UDC,MIN V 230

UDC,START V 260
UDC,R V 370

UDC,MAX V 600
PAC,R W 12,000

IAC,MAX A 17.4
UAC,R V 3-NPE 400/230

Maximum efficiency ηinv % 95.9
ninv at 5% PAC,R (230 V/370 V/500 V) % 91.8/92.5/91.1
ninv at 20% PAC,R (230 V/370 V/500 V) % 94.7/95.1/94.6
ninv at 50% PAC,R (230 V/370 V/500 V) % 95.3/95.9/95.3
ninv at 100% PAC,R (230 V/370 V/500 V) % 94.0/95.2/95.1

PDC,MAX W 12,770
IDC,MAX A 55.5
UDC,MIN V 230

UDC,START V 260

Table A3. Irradiance sensor characteristics.

Sensor Mono-Crystalline Si-Sensor

Sensor voltage 75 mV at 1000 W/m2

Accuracy ±5% (yearly average)
Ambient temperature −40 to +85 ◦C

Design Sensor mounted on z-shaped aluminum profile
Dimensions 55 × 55 × 10 mm

Fronius Product Nr. 43.0001.1189



Appl. Sci. 2022, 12, 6458 18 of 20

Table A4. Temperature sensor characteristics.

Sensor PT 100

Measuring range −40 ◦C to +188 ◦C

Accuracy ±0.8 ◦C ( in the range −40 ◦C to +100 ◦C)

Design Sensor on adhesive film for surface measurements

Dimensions Apendix32 × 32mm

Fronius Art. Nr. 43.0001.1190

Appendix B

Performance ratio calculation [50]:

YF =
E

PSTC

(
kWh
kW

)

YR =
H

GSTC

(
kWh
kW

)
PR =

YF

YR

Airmass calculation [51]:

AM = COS( zs )
−1 P

P0

P
P0

= exp(−0.0001184h)
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