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Featured Application: The findings of this work can be applied in the diagnosis of other joint
diseases associated with arthritis such as osteoarthritis and Lupus.

Abstract: This work focuses on the evaluation of third-order simplified spherical harmonics (SP3)
model-based image reconstruction with respect to its clinical utility to diagnose rheumatoid arthritis
(RA). The existing clinical data of 219 fingers was reconstructed for both absorption and scattering
maps in fingers by using the reduced-Hessian sequential quadratic programming (rSQP) algorithm
that employs the SP3 model of light propagation. The k-fold cross validation method was used
for feature extraction and classification of SP3-based tomographic images. The performance of
the SP3 model was compared to the DE and ERT models with respect to diagnostic accuracy and
computational efficiency. The results presented here show that the SP3 model achieves clinically
relevant sensitivity (88%) and specificity (93%) that compare favorably to the ERT while maintaining
significant computational advantage over the ERT (i.e., the SP3 model is 100 times faster than the ERT).
Furthermore, it is also shown that the SP3 is similar in speed but superior in diagnostic accuracy to
the DE. Therefore, it is expected that the method presented here can greatly aid in the early diagnosis
of RA with clinically relevant accuracy in near real-time at a clinical setting.

Keywords: rheumatoid arthritis; simplified spherical harmonics; optical tomographic imaging;
feature extraction; classification; k-fold cross validation; sensitivity; specificity

1. Introduction

Rheumatoid arthritis (RA) is a chronic, progressive, systemic, inflammatory autoim-
mune disorder that causes chronic inflammation of the synovial membrane of small and
large joints [1,2]. Thus, people with RA can suffer from severe pain, joint stiffness, swelling
of multiple joints, and lack of joint mobility. When untreated, these symptoms can lead to
self-limiting arthritis or rapidly progressing multi-system inflammation with significant
morbidity and mortality (including cardiac, neurological, and hematological complica-
tions). Studies show that up to 14 million people around the world [3] and approximately
1.5 million people in the US [4] are affected by RA and up to 10% of individuals suffering
from RA can experience total disability [5]. In the US alone, RA leads to 9 million physician
visits per year [6]. Despite recent advances in therapeutic intervention including biological
therapies [7,8], there is currently no cure for RA [9]. The early treatment of RA, however,
has been shown to significantly improve clinical outcomes and management of the disease.
It is, therefore, important to diagnose a subject with RA as early as possible.
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Early diagnosis of RA has been attempted using various imaging modalities such as
X-ray, ultrasound (US), or MRI scans. X-ray imaging has the best-established role in the
assessment of the severity of RA [10]. Radiography can document bone damage (erosion)
that results from RA and visualize the narrowing of cartilage spaces. However, radiography
is insensitive to the early manifestations of RA, namely, effusion and hypertrophy of the
synovial membrane. US is more sensitive than radiography at assessing erosion and
synovitis, which allows clinicians to provide early diagnostic imaging at the point of care.
However, a main disadvantage of US is a high level of operator dependence for obtaining
quality images [11]. MRI is most useful in assessing soft tissue problems, avascular necrosis,
the degree of cartilage erosion, osteonecrosis, and carpal tunnel syndrome [12]. The study
showed that contrast-enhanced MRI could achieve a sensitivity and specificity of 70 and
64% [13], respectively (82.5 and 84.5% in another study [14]) for the detection of RA.
However, long data-acquisition times during which the subject needs to be immobilized,
large costs, and the need for contrast agents (e.g., gadolinium to detect increased blood
volume caused by neovascularization in the hypertrophic synovial membrane that can
be toxic for RA patients with critical renal failure) have prevented MRI from becoming a
widely used imaging modality for detection of RA. Thus, there is no single ideal modality
for imaging RA diagnosis, i.e., X-ray, US, and MRI are complementary with their own
strengths and drawbacks.

Optical imaging techniques [15–36] for the diagnosis of RA have also been extensively
studied using a continuous wave (CW) system in early works [23,26], and later a frequency
domain (FD) system [34,36], combined X-ray and photoacoustic tomography [29], and
furthermore, molecular imaging approaches such as bioluminescence and fluorescence
tomography [16,21,22]. The basis for optical methods is that in the early stages of RA, optical
properties such as absorption and scattering are expected to increase in the synovium and
the synovial fluid as the inflammatory process starts in this region. These studies were
mostly based on the diffusion equation (DE) as a model of light propagation in tissue. More
recently, a deep learning technique has also emerged as a viable tool for the diagnosis
of RA [18]. Our research team has explored the potential of DOT imaging for detecting
and characterizing RA by using the CW-ERT [25,26] and the FD-ERT [32–36]. We reported
that the CW-ERT-based DOT images yielded a sensitivity and specificity of 78 and 76%,
respectively [25], and the FD-ERT based DOT images achieved a sensitivity and specificity
of 85% and higher [34]. Later, this same FD-ERT based DOT images were re-analyzed using
advanced machine learning algorithms, which led to an improved sensitivity (96%) and
specificity (94%) [35,36].

While all these DOT results are promising for RA diagnosis, there is still room for
improvement, particularly with respect to accuracy and reconstruction speed, in order to
further the clinical utility of the technique. In other words, the high diagnostic accuracy
of FD-ERT based DOT imaging can only be achieved at the expense of reconstruction
speed, while the DE model is much faster than the ERT but not reliable for achieving
clinically relevant sensitivity and specificity. To overcome the shortcomings of these two
most common models (DE and ERT), we employed here the frequency-domain third-order
simplified spherical harmonics model (FD-SP3) [37] as an alternative to the FD-ERT for the
diagnosis of RA, for its clinically relevant accuracy and computational efficiency. It has
been shown that the SP3 model is reliable for use in much of both transport and diffusion
regimes, with higher-than-DE accuracy and similar-to-DE speed [38]. In 2017, we reported
that the FD-SP3 model was able to accurately capture the differences in optical properties
due to the onset of RA using the forward and inverse simulations of RA-affected and
healthy subjects [37].

To our best knowledge, there is no work reported on the clinical utility of FD-SP3-
based DOT imaging as applied to a large-scale clinical data. Motivated by this unmet
need, we have placed the focus of this work on the evaluation of the FD-SP3-based DOT
imaging on its ability to diagnose RA. To this end, the FD-SP3 model [37] is used in this
work to recover the absorption and scattering coefficients from the existing clinical data
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of 219 proximal interphalangeal (PIP) finger joints available from our previous clinical
study. For feature extraction and classification of FD-SP3-based DOT images, we used the
k-fold cross validation method that consists of data mining and a support vector machine
(SVM) algorithm. This is based on our previous findings [35,36] in which the SVM with
a polynomial kernel was shown to yield the highest sensitivities and specificities in the
diagnosis of RA. We compared the performance of SP3-based DOT images against the
FD-ERT-based DOT images (slow but accurate) and the FD-DE-based DOT images (fast
but inaccurate) with respect to diagnostic accuracy and computational efficiency. The
diagnostic accuracy is presented in terms of the sensitivity (Se) and specificity (Sp), and
computational efficiency in terms of the memory requirement and image reconstruction
time. Furthermore, we compared the performance of the DE, SP3, and ERT models for their
diagnostic accuracy.

In Section 2, we provide a brief description of the FD-SP3 model, the image recon-
struction algorithm, and the clinical data, followed by the method of feature extraction and
selection. Then, we present and discuss FD-SP3-based DOT images and their classification
results in in Section 3. In Section 4, we conclude this work with a summary of the key
findings presented in this work.

2. Materials and Methods
2.1. Frequency-Domain Third-Order Spherical Harmonics (FD-SP3) Light Propagation Model

The frequency-domain simplified spherical harmonics (FD-SPN) model can be ob-
tained from the time-domain simplified spherical harmonics (TD-SPN) model, assuming
that the refractive index in the medium is spatially invariant and that the discrete ordinates
(Ω̂) are independent from spatial position (i.e., ∇r · Ω̂ = 0) [39]. The SP3 model for N = 3,
along with appropriate boundary conditions, is presented below,
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where φ1 and φ2 denote composite moments of the fluence in units of Wcm−2, and
D1 = (3µa,1)

−1 and D2 = (7µa,3)
−1. The n-th order absorption coefficient is given by

µa,n = µa + (1− gn)µs, where µa is the absorption coefficient, µs is the scattering coef-
ficient, and g is the anisotropy factor. The modulation frequency of the source laser is
denoted by ω, υ is the speed of light in the medium, and

.
q denotes an internal source

of light.
Following the node based control volume finite element (CVFEM) discretization [33],

Equations (1) and (2) can be rewritten into a system of linear equations: Au = b, where A
is the discretized SP3 model, u =

(
φT

1 , φT
2
)T is the composite moments of the fluence, and b

is the source vector that accounts for boundary or/and interior light sources. This linear
system Au = b was solved using the restarted generalized minimal residual (GMRES)
algorithm [40]. The transillumination measurement M on CCD pixels can be expressed as
the following linear function:

M = Qu (3)

where Q is the measurement operator that projects the composite moments of the fluence
from the mesh surface space onto the ICCD image space.

2.2. Image Reconstruction Algorithm

The spatial distribution of absorption and scattering coefficients in finger tissue was re-
constructed with the reduced Hessian sequential quadratic programming (rSQP) algorithm
of PDE-constrained optimization [33] tailored to use the FD-SP3 model as the forward
model of light propagation in tissue.
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Following the framework of PDE-constrained optimization, the FD-SP3 image recon-
struction finds the composite moments vector u = (φ1, φ2) and the optical property vector
µ = (µa, µ′s) in an all-at-once manner such that:

min f (u, µ) = 1
2 (M−Qu)T(M−Qu)

s.t.Au = b
(4)

where Qu = P is the prediction of measurement M and the operator (¯) denotes the
complex conjugate of the complex value.

Given the current estimate of forward and inverse variables (u, µ), the rSQP scheme
gives the new iterate for both forward and inverse variables:

(u, µ)k+1 = (u, µ)k + αk∆(u, µ) (5)

where a step length αk provides a sufficient decrease in the l1 merit function, and a search
direction ∆p = (∆u, ∆µ)T can be obtained by solving the following quadratic program-
ming problem:

min∆pT∇ f + 1
2 ∆pTW∆p

s.t.∇cT∆p + (Au− b) = 0
(6)

where∇ f denotes the gradient of f (u, µ), W denotes the reduced Hessian of the Lagrangian
functional L(u, µ, λ) = f (u, µ) + λT(Au− b), and ∇c represents the gradient of the con-
straint c = Au− b. Details on the theory and implementation of the rSQP method can be
found in [33].

Note that the existing clinical data has no reference measurement taken—therefore,
standard calibration is not possible. Instead, we normalized the data by dividing the mea-
surement at each detector location by the average intensity taken over all source–detector
measurements [34]. This procedure eliminates the effects by various unknown factors such as
unknown power source and unknown detector response function. As a result, the normalized
M and P are given as

M̂ =
(

M
)−1Mi,j ; P̂ =

(
P
)−1Pi,j (7)

The indices i ∈ S and j ∈ D denote all possible sources and detectors, respectively.
Here, M and P represent the average measured intensity and the averaged predicted
intensity, respectively, and are given by

M =
1

S · D
S

∑
i=1

D

∑
j=1

Mi,j ; P =
1

S · D
S

∑
i=1

D

∑
j=1

Pi,j (8)

To improve convergence, each element of the product
(

M̂− P̂
)T(M̂− P̂

)
in Equation (4)

is further normalized by each element of the measurement norm M̂M̂ as

f (u, µ) =
1
2

(
M̂− P̂

)T(M̂− P̂
)

M̂M̂
(9)

which is implemented into Equations (4) and (6) of the rSQP algorithm with SP3 model.

2.3. Clinical Data

We reported a clinical study that imaged 219 PIP joints with the frequency-domain
DOT system [31] and analyzed their ERT-based DOT images for the diagnosis of RA [34].
Anatomically, PIP joints are located approximately in the middle of the finger, as shown
in Figure 1a, and are also primarily affected by RA. PIP joints II-IV were imaged on the
dominant hand of 33 subjects with RA and on both hands of 20 healthy control subjects,
resulting in 99 joints from subjects with RA and 120 joints of subjects without RA. The
ground truth, which is the “true” diagnosis of each joint classified either as RA or healthy,
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is available from the previous study in which each subject was evaluated and diagnosed
for RA by a rheumatologist according to the guidelines set by the American College of
Rheumatology (ACR) [41]. The source laser illuminated the finger joint on the posterior
(dorsal) side and escaping photons were measured on the anterior (palmar) side using an
intensified CCD-based detection system. In total, 11 distinct point sources (Figure 1b) and
over 100 detector points (Figure 1c) were used for each finger.
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Figure 1. An illustration of joints and a typical finger in the human hand. (a) The PIP joint (marked in
red circle) is located approximately in the middle of the finger, referred to as PIP II-IV (index, middle,
and ring fingers, respectively). (b) The positions of the 11 sources are indicated on the posterior
surface of the finger. (c) The positions of detectors (i.e., mesh nodes that map directly to a pixel on the
CCD camera-based detection system) are shown on the anterior surface of the finger section.

An example of a transillumination measurement from a single point source on the
finger surface, as captured by the ICCD-based detector system, on the posterior (or palmar)
surface of the finger is presented in Figure 2. The measurement operator (Equation (3)) is
used to extract the region of pixels that corresponds to the finger surface projected onto
the CCD image. Thus, transillumination measurements at those corresponding CCD pixel
locations were used as an input to the image reconstruction algorithm. Details of the
frequency-domain imaging system can be found in [34].
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Figure 2. Transillumination captured by the ICCD camera on the posterior (palmar) surface of a PIP
joint belonging to (a) a subject with RA and (b) a healthy control.

2.4. Feature Extraction

We provide here a detailed description of the procedure of feature extraction used in
this work. For each of reconstructed µa and µ′s images, we first selected various regions of
interest and defined all data points in each region of interest as the unique data set, and
then features were extracted from each unique data set [34].

In total, 11 unique data sets were generated: two 3D volume data sets and nine 2D
image data sets. These 11 data sets comprise the entire unstructured or structured volume
data (UV, SV), the data sets from the summation of all coronal, sagittal, transverse slices
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respectively (SC, SS, ST), the data sets from the variance between all coronal, sagittal,
transverse slices, respectively (VC, VS, VT), and also the data sets from the average of all
coronal, sagittal, transverse slices in the joint region (i.e., within ±2 mm from the center of
the PIP joint), respectively (JC, JS, JT).

From each of all 11 data sets (UV, SV, SC, SS, ST, VC, VS, VT, JC, JS, JT), the following
76 features were extracted and denoted by F01 to F76 consecutively: (1) five basic features,
(2) seven Gaussian mixture model (GMM) parameters, and (3) 13 (in 2D) or 63 (in 3D) FFT
(fast Fourier transform) coefficients. The seven basic statistical features are the maximum,
minimum, mean, variance, and the ratio of maximum to minimum of the data set. Except
for the unstructured volume data set, the additional seven features were extracted by fitting
DOT images with a 2D or 3D multivariate GMM [42] as

G(µ) = A0 exp
[

1
2
(µ− µ0)

T ∑−1
(µ− µ0)

]
(10)

where amplitude A0, covariance matrix ∑, and Gaussian mean µ0 are estimated. The
extracted features with Equation (10) are the absolute error (1 feature) between the mixture
model and the original data and the eigenvalues of the dominant positive (3 features)
and negative (3 features) Gaussians. In addition, we performed a discrete FFT of the
2D or 3D data sets, extracted the distinct FFT coefficients that best represent the original
image, and used those coefficients as the features—13 FFT coefficients for the 2D data set
and 63 coefficients for the 3D data set. All data sets and features used in this work are
summarized in Tables A1–A4 in Appendix A.

To succinctly refer to all the features, we use the notation “Feature #:Data Set:Optical
Property” throughout the rest of this work, in which Feature # represents F1 to F76, Data
Set represents UV to JT, and Optical Property represents the µa (denoted by “a”) or µ′s
(denoted by “s”) distribution. For example, F1:JS:a indicates the maximum value (“F1”) of
the joint sagittal (“JS”) slices in µa image (“a”). The FFT feature starts with F13 and ends
with F26 (in the 2D data set) and F76 (in the 3D data set). As a result, this leads to a total of
572 features (= (55 basic features + 52 GMM features + 170 FFT features)× 2 optical property
maps). This is too a large number of features to consider all the possible combinations of
features (i.e., 2572 − 1 possible combinations) in classification analysis. Therefore, we first
selected the top 30 features using the augmented Youden index Y∗ given by

Y∗
(
Se, Sp

)
= Se + Sp + αLSe + βLSp − δd− 1 (11)

where the lower bounds of the confidence intervals of Se and Sp are given by LSe and LSp,
respectively. The scaling factors α, β, and δ control the contribution of the lower bound
values (LSe and LSp) and the dimensionality (d) of the selected feature combination, and
were all set to 0.001. In this way, feature combinations with higher lower bounds and low
dimensionality are preferred. These top 30 features corresponded to 13% of the sample
size, which is acceptable for the size of feature space, as the size of feature set needs to be
10–20% of the sample size, in general [42].

2.5. Cross-Validation Algorithm

Given the top 30 features based on Equation (11), we performed the k-fold cross
validation to evaluate the ability to diagnose RA using the SP3 based DOT data. With
k = 2, the entire data set was segmented into two sets, a training set and a testing set. Here,
approximately 2/3 of the data was used to train and 1/3 was used to test. The training set
consisted of 22 subjects with RA (or 66 PIP joints) and 14 healthy individuals (or 84 PIP
joints), together resulting in 150 distinct joints. The testing set included 11 subjects with
RA (or 33 PIP joints) and six healthy patients (or 36 PIP joints). The allocation of subjects
into the training group or the testing group was done randomly to help minimize any
potential bias.
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The training set was subject to the data mining process, which yields a set of optimal
feature vectors and the corresponding choice of classification algorithm for the training
data. The testing set was not used until the optimal classifier (features and classification
algorithm) was chosen. The resulting classifier was used to subsequently evaluate the
ability to diagnose RA with the testing data. The cross validation process is summarized
by the flow chart in Figure 3. Note that the optimal classification algorithm is fixed to the
SVM [43], as described earlier in the Introduction section.
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As shown in Figure 3, this so-called k-fold process provides additional safety layers
to ensure our classification results are as unbiased as possible and thus more reliable. The
data mining process used in this work is also summarized by the flow chart in Figure 4.
Note that the leave-one-out cross validation (LOOCV) procedure was used in the data
mining process (Figure 4) to remove any bias that may be introduced into the testing. This
process was performed on DOT images obtained with the DE, SP3, and ERT models.
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3. Results
3.1. Reconstructed Absorption and Scattering Coefficients with SP3 Model

The SP3 model was used to reconstruct the absorption and scattering coefficients of all
219 fingers. The reconstruction parameters used to obtain these results are summarized
in Table 1. The absorption and scattering coefficients were rescaled by transforming
the absorption range of [0.0, 0.4] cm−1 and the scattering range of [0.0, 400.0] cm−1 to
[0.0, 1.0] cm−1. Each reconstruction required between 150 to 200 MB of RAM and took less
than 1 min on an Intel Core i9 processor.

Table 1. Summary of the values assigned to reconstruction variables.

Parameter Value

background µa 0.3 cm−1

background µs 200.0 cm−1

anisotropy factor g 0.95
refractive index of medium n 1.44

modulation frequency ω 600 MHz
GMRES forward tolerance τ 1.0× 10−12

inverse tolerance 0.01
minimum decay rate 1.0× 10−8

discrete ordinates S12 (168)
absorption coefficient range [0.0, 4.0] cm−1

scattering coefficient range [0.0, 400.0] cm−1

Figure 5 shows some of the reconstruction images of absorption (µa) and scattering
(µ′s) within and around PIP joints—more reconstruction images (32 fingers) are available in
Figures A1 and A2 in the Appendix A. The images clearly show distinct differences between
subjects with RA and the control group. The region of interest is within and around the
PIP joint that corresponds to the synovial cavity of the joint, which we expect has lower
absorption and scattering compared to the surrounding tissues (bone, muscle, ligament,
tendon). All the joints of healthy subjects are of a lower absorption and scattering in this
region of interest. However, subjects with RA exhibit elevated absorption and scattering
in that same region when compared to the control group. This suggests that the synovial
cavity of these joints has experienced significant changes in physiology due to the onset of
symptoms associated with RA.
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3.2. Classification Results of SP3 DOT Images

For each data set of the DOT images obtained with DE, SP3, or ERT, we report the
sensitivity and the specificity obtained when the data mining results were used to classify
the testing data. We report the sensitivity and the specificity at the 95% confidence intervals
(CI), which indicates the lower and upper bounds of the sensitivity and the specificity
within which we are confident that the true performance of the classifier is located (with up
to 95% confidence). The CI was computed to account for the effective sample size of our
data, which removes bias that may be introduced into our statistical parameters through
correlation between joints of the same subject [36,44].

Table 2 shows the classification results. The sensitivity and specificity and their
respective confidence intervals in the parenthesis achieved when using the reconstruction
images generated with the DE, SP3, and ERT models are summarized in Table 2. The
number of true positives (TP), false negatives (FN), true negatives (TN), and false positives
(FP) is also presented in Table 2.

Table 2. Classification results for SP3, DE, ERT based reconstructions with the k-fold method.

Model TP FN TN FP Se
[% (95% CI)]

Sp
[% (95% CI)] Youden Index Number of Features

DE 22 11 34 8 67 (47, 100) 81 (65, 100) 0.48 8
SP3 29 4 39 3 88 (78, 100) 93 (85, 100) 0.81 3
ERT 30 3 41 1 91 (83, 100) 98 (85, 100) 0.88 5

The names of the optimal features selected during the training phase and used in
the testing phase are presented in Table 3. The mean and standard error of the optimal
features corresponding to the DE, SP3, and ERT models are plotted in Figure 6. The three
optimal features chosen using the SP3 model were F01:SV:a, F02:ST:a, and F13:VT:a. The
first two features are the maximum and minimum values of the three-dimensional data and
the sum of transverse slices, respectively (refer to Appendix A for details on the naming
convention). The third feature corresponds to the largest coefficient of the FFT transform of
the variance between transverse slices.

Table 3. Names of the optimal features selected during the training phase of the k-fold method using
the SP3, the DE-, and the ERT-based reconstructions.

Model Name of Optimal Features

DE F01:ST:a, F04:JT:a, F34:SV:a, F16:VS:a, F03:SV:s, F04:VS:s, F05:VS:s, F04:VT:s
SP3 F01:SV:a, F02:ST:a, F26:VT:a
ERT F01:UV:a, F02:SV:a, F05:SV:a, F02:ST:a, F08:JT:s
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(a) ERT and (b) SP3-based reconstruction images. A two-sample Student’s t-test shows that the
differences between the features from subjects with RA and without RA are statistically significant at
the α = 0.01 level. (a) Features denoted by † are scaled by a factor of 10. (b) Features denoted by †
and ‡ are scaled by a factor of 50 and 500, respectively.
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The five optimal features chosen using ERT-based reconstruction images were F01:UV:a,
F02:SV:a, F05:SV:a, F02:ST:a, and F08:JT:s. The first three features are the maximum, minimum,
and ratio values of the three dimensional data, respectively. The fourth feature is the minimum
of the sum of transverse slices. The fifth feature is the second eigenvalue of the dominant
positive Gaussian from a Gaussian mixture model (GMM).

Together, it can be generally concluded that the optimal features are associated with
the global absolute values of the absorption and scattering data, as well as their spatial
variation within the imaged section of the finger. The difference in optimal features is
attributed to the difference in the rule for selecting the top 30 features and in the use of the
k-fold method as an additional cross-validation step.

4. Discussion

We compared the performance of the DE, SP3, and ERT models with respect to three
categories: feature extraction optimality, image classification performance, and computa-
tional efficiency.

The first category is feature extraction optimality, where we compared the number
of “optimal” features selected during the training process. In general, we prefer optimal
feature vectors with low-dimensionality as this helps reduce the probability of over-fitting
the data [36,43]. Over-fitting can result in classification results that do not generalize well
and therefore may be an unreliable predictor of future performance. In this work, the
number of optimal features was eight for the DE model, three for the SP3 model, and five
for the ERT model. As we are generally interested in the fewest possible features to avoid
over-fitting problems, it is clear that the SP3 model is superior in this category to the ERT
and DE models.

The second category to compare was the classification performance of the three mod-
els. Here, we were primarily concerned with the sensitivity and the specificity that are
computed by processing the data set reserved for testing with the classifier that results
from the training phase. In addition to seeking values of the sensitivity and the specificity
as close to 100.0% as possible, we were also interested in comparing the 95% confidence
interval for each parameter. The CI is important because it informs us of the range within
which we expect the true values of the sensitivity and the specificity to exist [35,36,44].

The reconstruction images computed with the SP3 model allow for higher sensitivity
and specificity values than the images obtained with the DE model. The DE model yielded
a sensitivity of 67% at CI (47, 100)% and a specificity of 81% at CI (65, 100)%. The SP3
model yielded a sensitivity of 88% at CI (78, 100)% and a specificity of 93% at CI (84.6,
100)%. Images computed with the ERT-based algorithm yielded a sensitivity of 91% at CI
(83, 100)% and specificity of 98% at CI (85, 100)% specificity. Thus, the SP3 model clearly
outperformed the DE model and compares favorably to the ERT.

We note that the upper bound of the CI for all models is 100%. The lower bound varies
between the models and between the sensitivity and the specificity. As in the case of the
sensitivity and the specificity values, the CI of the ERT was smaller than those obtained
with the DE and SP3 models. However, the lower bounds of the SP3 model are significantly
higher than the lower bounds of the DE model. The lower bound of the sensitivity with the
DE model is in only 47%, which is significantly lower than the 78% lower bound that was
computed with the SP3 model. Furthermore, the sensitivity computed with the DE images
(67%) is even lower than the lower bound of the sensitivity computed with the SP3 model
(78%). Similar results were observed when comparing the specificity values.

The third category in which we compared the models was computational efficiency,
which consists of the total reconstruction time and the total system resources needed. The
reconstruction times with the DE and SP3 models were similar, typically requiring less than
1 min to complete one reconstruction process on an Intel Core i9 processor. In contrast,
the reconstruction time with the ERT model exceeded 100 min on the same computing
platform [33]. Additionally, reconstructions with the ERT always required over 6 GB of
RAM, while the DE and SP3 models always required less than 200 MB of RAM [37,38].
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In the computational efficiency category, thus, the DE and SP3 models outperform the
ERT model.

Overall, all these results discussed in this section indicate that the SP3-based recon-
struction algorithm provides significant computational advantages over the ERT-based
algorithm without compromising classification accuracy. In contrast, the DE model pro-
vides computational advantages when compared to the ERT but only at the expense of
classification accuracy.

5. Conclusions

The SP3-model-based image reconstruction was performed on a set of 219 human PIP
joints, with 99 joints belonging to subjects with RA and 120 joints belonging to healthy
subjects. The k-fold cross validation was employed to evaluate the diagnostic performance
of SP3-based DOT images of absorption and scattering coefficients in the fingers. A compar-
ison of sensitivity and specificity values was made between SP3-based images, DE-based
images, and ERT-based images. The sensitivity and specificity values were 88 and 93%
with the SP3 based images, 91 and 98% with the ERT based images, and 67 and 81% with
the DE based images, respectively. It was also shown that the SP3 model performs better in
achieving the fewest optimal features than the DE and ERT models. In terms of compu-
tational efficiency, the SP3 model is approximately 100 times faster and takes 30-fold less
memory than the ERT model. In conclusion, the results presented here demonstrate that
the SP3 model provides sufficiently accurate DOT images with a sensitivity of 88% and
specificity of 93% to achieve clinically significant diagnostic results that compare favorably
to the ERT model, while leading to a significant reduction in computation time and system
resources. Therefore, it is expected that the SP3-based DOT reconstruction can translate
into direct clinical benefits, allowing researchers to image finger joints in near real-time and
to evaluate DOT images for RA diagnosis at its early stage and treatment monitoring at a
clinical setting.

Future work involves the application of the algorithms and classifiers presented in
this work to therapeutic areas of monitoring drug responses in a longitudinal clinical study,
refinement of fragmented algorithms into a clinically useful all-in-one package, and further
enhancement of the SP3 reconstruction algorithm through the use of parallel computing
neural network techniques.
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Abbreviations

CI Confidence interval
CT Computed tomography
CVFEM Control volume finite element method
DE Diffusion equation
DOT Diffuse optical tomography
ERT Equation of radiative transfer
FD Frequency domain
GMRES Generalized minimum residual solver
LOOCV Leave-one-out cross validation
MRI Magnetic resonance imaging
PDE Partial differential equation
PIP Proximal interphalangeal
RA Rheumatoid arthritis
rSQP Reduced space sequential quadratic programming
SP3 Simplified spherical harmonics with order N = 3
SVM Support vector machine
TD Time domain
US Ultrasound

Appendix A

Table A1. Definition of data sets.

Name Description

UV Unstructured entire volume data
SV Structured entire volume data
SS Summation of all sagittal slices
SC Summation of all coronal slices
ST Summation of all transverse slices
VS Variance of all sagittal slices
VC Variance of all coronal slices
VT Variance of all transverse slices
JS Average of all sagittal slices in the joint region
JC Average of all coronal slices in the joint region
JT Average of all transverse slices in the joint region

Table A2. Definition of basic statistic features.

# Description

1 Maximum
2 Minimum
3 Mean
4 Variance
5 Ratio of maximum to minimum

Table A3. Definition of GMM features.

# Description

6 Absolute error between original image and GMM
7 1st eigen value of ∑ of largest positive Gaussian
8 2nd eigen value of ∑ of largest positive Gaussian
9 3rd eigen value of ∑ of largest positive Gaussian (3D)
10 1st eigen value of ∑ of largest negative Gaussian
11 2nd eigen value of ∑ of largest negative Gaussian
12 3rd eigen value of ∑ of largest negative Gaussian (3D)
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Table A4. Definition of FFT features.

# Description

13 Absolute error between original image and image captured by the first 5 frequencies
of the FFT

14~26 Absolute value of 2D FTT coefficients
14~76 Absolute value of 3D FTT coefficients
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