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Abstract: In order to solve the problem that the measurement noise covariance may be unknown
or change with time in actual multi-target tracking, this paper brings the variational Bayesian ap-
proximation method into the trajectory probability hypothesis density (TPHD) filter and proposes
a variational Bayesian TPHD (VB-TPHD) filter to obtain measurement noise covariance adaptively.
By modeling the unknown covariance as the random matrix that obeys the inverse gamma distribu-
tion, VB-TPHD filter minimizes the Kullback–Leibler divergence (KLD) and estimates the sequence of
multi-trajectory states with noise covariance matrices simultaneously. We propose the Gaussian mix-
ture VB-TPHD (AGM-VB-TPHD) filter under adaptive newborn intensity for linear Gaussian models
and also give the extended Kalman (AEK-VB-TPHD) filter and unscented Kalman (AUK-VB-TPHD)
filter in nonlinear Gaussian models. The simulation results prove the effectiveness of the idea that the
VB-TPHD filter can form robust and stable trajectory filtering while learning adaptive measurement
noise statistics. Compared with the tag-VB-PHD filter, the estimated error of the VB-TPHD filter is
greatly reduced, and the estimation of the trajectory number is more accurate.

Keywords: trajectory PHD filter; variational Bayesian approximation; noise covariance matrix;
inverse Gamma distribution; estimation of trajectory

1. Introduction

Multi-target tracking technology based on random finite sets (RFS) has achieved great
development in recent years [1–4]. It not only overcomes the problem of excessive associ-
ation calculation due to increasing number of targets in traditional multi-target tracking
technology based on the data association algorithm [5,6]. It can also solve the tracking
difficulties caused by uncertain factors, such as detection parameters and new targets in
the environment with an unknown clutter rate [7–9]. The filtering technology developed
by RFS has been used in many successful applications, such as aerial warning [10], marine
monitoring [11,12], computer vision [13] and sonar detection [14].

PHD filter [15,16] is the first-moment approximation of multi-objective Bayesian filter
based on random finite set, which recurses multi-objective density in the single-objective
state space. Compared with the cardinalized PHD filter [17], generalized label multi-
Bernoulli (GLMB) filter [18], Poisson multi-Bernoulli mixture (PMBM) filter [19] and other
filters, the PHD filter is the most basic RFS filter with the lowest computational complexity.
The multi-objective posterior density and cardinality propagated by the PHD filter are
subjected to Poisson distribution, and the elements in each cardinality are independently
and identically distributed.
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Take the frame structure of PHD filter into consideration, the dynamic track of the tar-
get cannot be obtained directly, and dynamic correlation cannot be automatically generated
at different moments of the same target. The key to improve multi-target tracking technol-
ogy is producing a PHD filter that can form the trajectory without discarding the historical
state while capturing the current target state. Instead of labeling the PHD components for
trajectory construction [20–22], Angel et al. proposed the TPHD filter for trajectory [23],
which uses the trajectory instead of target as the basic variable of trajectory space [24]
under the similar structural framework to PHD filter. The trajectory state is estimated in a
principled way, which requires a minimum KLD [25] to propagate an approximate PHD
subject to the Poisson distribution given by a fast implementation of the Gaussian mixture.
On the basis of TPHD, the jump Markov model (JMS) was recently used to achieve highly
dynamic maneuvering target’s trajectory, and the derivation of JMS-TPHD closed solution
proved its tracking effectiveness [26]. In addition, in order to achieve the combination of
target tracking and classification, trajectory information was used in [27], combined with
the JTC model to classify the trajectory generated by different targets, and the trajectory
showed better performance than the PHD filter after confirming the dynamic model based
on posterior probability.

It is unlikely to regard the covariance of the measurement noise of the target as a
priori knowledge in the practical application, so the measurement noise will change with
time followed by the environmental interference. When the estimated noise covariance
is different from the actual covariance, PHD will have a partial estimation, resulting in
inaccurate state estimation, false target error, wrong cardinality of targets along with
the reduced performance and reliability of the filter. To solve the problem of unknown
covariance of measurement noise, the least square method was initially used to approximate
the noise error [28]. In addition, the interactive multi-model [29] and particle method [30]
were also used to solve the problem of measurement noise covariance, but it required a huge
amount of calculation. On the other hand, a robust filter with the minimum interference can
be achieved under the worst influence of unknown measurement noise on the estimation
error [31]. This kind of filter can tolerate the change of noise to the maximum extent rather
than realizing adaptive estimation. Refs. [32–34] modeled a random matrix according to the
conjugate prior distribution of the covariance. On this basis, variational Bayesian inference
is carried out to achieve adaptive noise covariance estimation. The method is mainly used
to recurse the joint posterior distribution of the target state and covariance matrix through
decomposition of the fixed form distribution of the factors. In comparison, the framework
of variational Bayesian approximation can not only effectively reduce the operation cost,
but also achieve the purpose of adaptive joint estimation.

We hope to explore an innovative filter that can perform stably under the condition
of unknown covariance of measurement noise. By introducing the variational Bayesian
approximation into the framework of the TPHD filter (VB-TPHD), we model a matrix
of covariance as a random matrix of inverse Gamma distribution and estimate the noise
covariance sequence adaptively with the passage of tracking time by combining the joint
distribution of the inverse gamma and Gaussian. The trajectories can also be determined
more precisely. VB-TPHD can avoid labeling each Gaussian component and managing the
track after filtering [35]. In the specific implementation part of the algorithm, we propose
the AGM-VB-TPHD filter to be applied to the linear Gaussian model under the condition of
unknown newborn intensity [9]. For the nonlinear Gaussian model [36,37], we also provide
two solutions, namely the AEK-VB-TPHD filter and AUK-VB-TPHD filter. Two simulation
results show their feasibility. Under the condition of unknown and time-varying covariance
of measurement noise, the VB-TPHD filter performs better trajectory tracking than the
tag-VB-PHD filter does [20,34], and it also has stronger robustness.

The rest of the paper is organized as follows: Section 2 introduces the background and
material on trajectory PHD filters. In Section 3, we give the derivation of equations and
theoretical basis of the VB-TPHD filter. In Section 4, the implementation of the VB-TPHD
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filter under linear and nonlinear conditions is given in detail. Section 5 simulates the
tracking performance of the VB-TPHD filter. Finally, Section 6 draws a conclusion.

2. Background
2.1. Elements

By the target state space extended to trajectory state space, the trace concentration
of the basic variable X not only contains the target position and velocity information at
current time k, but also becomes the collection of position and velocity of information since
the previous moments; this also means that the expansion of trajectory state from target
formation must be considered under the condition of starting time t (0 ≤ t ≤ k) or less.
The trajectory duration step is i (1 ≤ i ≤ k − t + 1). After adding the time factor, we
represent a single trajectory as the basic variable X = (t, x 1:i

)
[24] and the trajectory set

space is defined as
Tk = ](t,i)∈Ik

{t} × Ri×nx , (1)

where × represents the Cartesian product, ] represents the disconnected union, and I
is the range of the above time factor (t, i). In order to better distinguish the states of the
trajectory set, element X is used to represent the trajectory set and element X is used to
represent a single trajectory, so the trajectory set or multiple trajectories can be represented
by single trajectory X as

Xk =
{

X1, . . . , XNk

}
∈ F(Tk), (2)

where F(T k) is a subset of the total finite set space of the trajectory set space Tk. Similar to
the target point, the probability hypothesis density (PHD) Dp(X) based on the trajectory
set can be obtained from the set integral below

Dp(X) =
∫

F(Tk)
p(X)δX =

∞

∑
Nk=0

1
Nk!

∫
p
({

X1, . . . , XNk

})
dX1:Nk , (3)

where p(·) represents the multi-trajectory density. By integrating PHD on a set F(T k), the
expected number of trajectories on the set can be obtained.

2.2. Variational Bayesian

Suppose a multi-target tracking scenario in a two-dimensional scenario at time k;
there are nk target states in the state space χ and mk measurements are located in the
measurement set Z. Thus, multi-objective states and measurements can be expressed by
finite sets [15] as

xk =
{

x1, . . . , xnk

}
∈ χ, (4)

Zk =
{

z1, . . . , zmk

}
∈ Z (5)

Because the sensor can be in different environments at different times and the covari-
ance of measurement noise is unknown, it is necessary to estimate the trajectory state and
measurement noise jointly in the process of filtering. The covariance of measurement noise
is generally set as Rk = {R k,1, . . . . . . Rk,mk

} ∈ R.
Let us assume that the target and the measurement noise are independent, so the

dynamic state of the target and the noise covariance matrix are also independent. The joint
prior and posterior densities of the target state and the measurement noise covariance can
be given by the transformed Chapman-Kolmogorov equation [32]:

p
(
xk, Rk|z 1:k−1

)
=
∫

p
(
xk |x k−1

)
p
(

Rk|R k−1
)

p
(
xk−1, Rk−1|z 1:k−1

)
dxk−1dRk−1, (6)

p(xk, Rk|z 1:k) =
p(zk |x k, Rk)p

(
xk, Rk|z 1:k−1

)∫
p(zk |x k, Rk)p

(
xk, Rk|z 1:k−1

)
dxkdRk

, (7)
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where p(z k|xk, Rk) represents the likelihood function of target and measurement noise
at time k. Due to p(R k|R k−1

)
being unknown, the prior p(x k, Rk|z 1:k−1

)
is difficult to

obtain, and thus it is unable to launch a posteriori p(x k, Rk|z 1:k). Since x and R are coupled
in the likelihood function, the variational Bayesian method [32] is used to decouple the
coupling. Since the dynamic state of the target is independent of the noise covariance
matrix, a posterior p(x k, Rk|z 1:k) can be written as

p(xk, Rk|z 1:k)
∼= QX(xk)QR(Rk) (8)

In order to find the posterior target state and noise covariance matrix, respectively, the
optimal solution is obtained by minimizing KL divergence and variational approximation.

KL[Q X(xk)QR(Rk)||p (xk, Rk|z 1:k)] =
∫

QX(xk)QR(Rk)log
QX(xk)QR(Rk)

p(xk, Rk|z 1:k)
dxkdRk (9)

2.3. The TPHD Filter

Imagine a multi-trajectory scenario. Given the posterior PHD at time k − 1 in the
scenario, some of the trajectories will disappear, the surviving trajectories will join up with
new target points, and some independent target points will be generated at time k. The
purpose of the TPHD filter is to identify the true multi-trajectory state from numerous
measurements accurately and in a timely manner. The TPHD filter is the output of optimal
Poisson approximation by minimizing KLD criterion through Bayesian filtering framework
under the condition that the multi-trajectory density is assumed to be Poisson distribution.
Before the standard TPHD filter prediction step, the following assumptions [23] are made:

Assumption 1. Each trajectory evolves independently, so the trajectory set at the next time is the
combination of surviving trajectories and the point targets of the new birth. The newborn target
density γ(·) is subjected to the Poisson distribution.

Assumption 2. However, each trajectory continues to survive with the probability of ps,k(·) and
then obtains a point target with the transition density of f (·).

Assumption 3. The multi-trajectory density πk−1(·) obeys the Poisson distribution.

Based on the above assumptions, the prediction step of single trajectory PHD at time k
can be expressed as follows:

Dωk (X) = Dξk (X) + Dγk (X), (10)

where
Dγk

(
t, x1:i

)
= Dγ(t, x)δk[t], (11)

Dξk

(
t, x1:i

)
= ps,k

(
xi−1

)
f
(

xi|x i−1
)

Dπk−1

(
t, x1:i−1

)
δNk

[t], (12)

where δ[·] represents the discrete generalized Kronecker delta variable, Nk = {1, . . . , k}
represents the set of the time at which the trajectory is located. State transition density
f (·) and survival probability ps,k(·) work together in the k − 1 time trajectory of posterior
PHD Dπk−1(·) to form a surviving trajectory prior PHD Dξk (·). According to [24], when
t + i − 1 6= k at the end time of trajectory, the trajectory disappears, which is not
considered; only the alive trajectory is considered in Equation (12).

Before the standard TPHD filter update step, the following assumptions [23] are made:

Assumption 4. The trajectory formed by independent target generates the corresponding observa-
tion and the target can be detected with the probability of pD,k(·) or omitted with the probability of
1− pD,k(·).

Assumption 5. The prior trajectory density ω(·) after the prediction step and the clutter of the
scenario obey Poisson distribution.
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Assumption 6. The measurements come from generated targets and clutter independently.

Based on the above assumptions, the update step of single trajectory PHD at time k
can be expressed as follows:

Dπk (X) = Dωk (X)Lzk (X) = Dωk (X)×(
1− pD,k

(
xi)+pD,k

(
xi)× ∑

z∈Zk

lk
(

z|x i
)

λcc+
∫

pD,k(xi)lk
(

z|x i
)

Dτ
ωk (xi)dxi

)
,

(13)

where

Dτ
ωk

(
xi) = k

∑
t=1

∫
Dωk

(
t, x1:k−t+1

)
dx1:k−t, (14)

where λc is the clutter rate of the trajectory space at time k and c is the reciprocal of the area
of the trajectory space. Lzk (X) indirectly denoted that the TPHD trajectory is associated
with the measurement of the pseudolikelihood function and measuring likelihood lk( z|x i)
actually represents the similarity degree between the filtering trajectory and measurement.
The higher the degree of similarity, the larger measuring likelihood grows. Dτ

ωk

(
xi) is the

marginal prior multi-trajectory density obtained by integrating the entire trajectory.
What can be seen from the above equation of the prediction step is the new trajectory

to track a continuation of the survival and the confirmation at current time; it will not
affect the state trajectory of the past time. Instead, the update step is to use measurement
at the current time to adjust the long trajectory within limited period. Tracking the target
state in the past plays the role of smoothing, which is the critical difference between the
conventional PHD filter.

3. Adaptive TPHD Filter with Unknown Measurement Noise
3.1. The Extended State Space Model

To solve the trajectory filtering in the background of unknown measurement noise
covariance, we extend the noise covariance on the target set at a single time to the noise
covariance sequence on the trajectory set and then build an extended state space model. We
track in state space Tk = ](t,i)∈Ik

{t} × Rinx × Ui until time k can set up on the extended
trajectory set Xk =

{
X1, . . . , XNK

}
∈ F(Tk), X indicates the extended trajectory state set.

Define the state element X as measurement factors are introduced

X =
(

X, R1:i
)
=
(

t, x1:i, R1:i
)
∈ Tk, (15)

where X is defined in the same way as in the Section 2, and R1:i ∈ Ui represents the
covariance sequence of measurement noise in the extended trajectory state space, which
is also different from the conventional trajectory state space. Similar to the point target,
given the extended multi-trajectory density function p(·) and the number of trajectories
Nk, the probability assumption of Dp

(
X
)

bearing based on the extended state space can be
obtained by the set integral below:

Dp
(
X
)
=
∫

Tk
p
(
X
)
dX =

∞
∑

Nk=0

1
Nk!

s
p
({

X1, . . . , XNk

}
∪
{

R1:i
1 , . . . , R1:i

Nk

})
dX1:Nk dR1:i

1:Nk
(16)

3.2. TPHD Using VB Approximation

The development of robust PHD gradually solves the problem of multi-target tracking
in the case of unknown detection contour and unknown clutter rate. Comparatively
speaking, the processing of unknown measurement noise covariance is more difficult.
TPHD provides an excellent framework for us to employ variational means and can also be
used to spread the posterior probability of the extended trajectory state X.

The multi-trajectory density propagated by TPHD filter in the trajectory space is
Poisson distribution, which is no longer established in extended state space from Section 3.1.
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VB-TPHD minimizes KL divergence to achieve the best Poisson approximation above
all. It is assumed that the dynamic models and the measurement noise covariance are
independent of each other, and therefore, ps,k

(
X
)
= ps,k

(
xi−1), pD,k

(
X
)
= pD,k

(
xi).

Proposition 1. Given a posterior PHD Dπk−1(·), VB-TPHD can be derived from the follow-
ing equations:

Dωk

(
X
)
= Dξk

(
X
)
+Dγk

(
X
)
, (17)

where
Dγk

(
t, x1:i, R1:i

)
= Dγ

(
t, x1:i, R1:i

)
δk[t], (18)

Dξk

(
t, x1:i, R1:i

)
= ps,k

(
xi−1

)
· f
(

xi|x i−1
)

g
(

Ri|R i−1
)

Dπk−1

(
t, x1:i−1, R1:i−1

)
δNk [t]. (19)

Similar to the background part, VB-TPHD also only considers the survival trajectory.
We put the proof of Proposition 1 in Appendix A. When t + i − 1 6= k at the end of the tra-
jectory, the disappearing trajectory and unknown covariance sequence are not considered.

Proposition 2. Assume that the TPHD can predict the trajectory densityDωk

(
X
)

at time k, then
the VB-TPHD equation can be given as follows:

Dπk

(
X
)
= Dωk

(
X
)(

1− pD,k
(
xi))

+ pD,k
(

xi)× ∑
z∈Zk

lk
(

z|x i, Ri
)

Dωk

(
t, x1:i, R1:i

)
λcc+

s
pD,klk

(
z|x i, Ri

)
Dτ

ωk

(
xi, Ri

)
dxidRi

,
(20)

where

Dτ
ωk

(
xi, Ri

)
=

k

∑
t=1

x
Dωk

(
t, x1:k−t+1, R1:k−t+1

)
dx1:k−tdR1:k−t (21)

Since the update measurement is only used contacted with the marginalized trajectory
density at time k, the marginal prior trajectory density Dτ

ωk

(
xi, Ri

)
and measuring density

lk
(

z|x i, Ri
)

are adopted to calculate the updated trajectory in the extended state space.
Proof of Proposition 2 can be seen in Appendix B. In this way, the bridge between the
trajectory estimation and target measurement is established. Because R and g(R i|R i−1

)
are

unknown, the measuring density caused by lk
(

z|x i, Ri
)

is not available that contributes to
the filtering disability being able to proceed. We use the variational method to define the
joint density function DDk

(
x1:i, R1:i|z

)
:

DDk

(
x1:i, R1:i|z

)
= lk

(
z|x i, Ri

)
Dωk

(
t, x1:i, R1:i

)
(22)

The posterior trajectory state density and noise covariance matrix are separated, and
the joint density function is approximately expressed as

DDk

(
x1:i, R1:i|z

)
∼= DXk

(
x1:i
)

DRk

(
R1:i
)

(23)

The method of minimizing KL divergence is used as shown below. The smaller the KL
divergence, the closer the left and right sides of Equation (23).

KL
[

DXk

(
x1:i)DRk

(
R1:i)‖DDk

(
x1:i, R1:i|z

)]
=
∫

DXk

(
x1:i)DRk

(
R1:i)log

(
DXk (x1:i)DRk (R1:i)

DDk (x1:i ,R1:i |z )

)
dx1:idR1:i

(24)
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Considering the DXk

(
x1:i) and DRk

(
R1:i) are both coupling, fix DRk

(
R1:i) to obtain

DXk

(
x1:i) and vice versa.

DXk

(
x1:i
)

∝ exp
(∫

logDDk

(
x1:i, R1:i, zk|z 1:k−1

)
DRk

(
R1:i
)

dR
)

,

DRk

(
R1:i
)

∝ exp
(∫

logDDk

(
x1:i, R1:i, zk|z 1:k−1

)
DXk

(
x1:i
)

dX
)

(25)

VB-TPHD not only contains the TPHD key factors including starting time and duration
namely time factors as well as trajectory state factor, but also includes track and the
corresponding noise covariance sequence. For the trajectory state and covariance matrix
coupled in the likelihood function, the accuracy of the estimated covariance matrix increases
as the accuracy of the trajectory state estimation is improved at the same time, which is
specified in the next section.

4. Analytical Implementation of VB-TPHD
4.1. The Implementation of Gaussian Mixture VB-TPHD Filter

In the previous section, we obtained the theoretical derivation that variational Bayesian
can be well applied to the TPHD filter. In this section, we hope that it can be applied to the
Gaussian model to deduce the sequence of measurement noise covariance. It can be seen
that the measuring likelihood lk

(
z|x i, Ri

)
in Equation (20) only involves measurement

noise covariance at the present; therefore, we let VB-TPHD filter perform adaptive estima-
tion of the measurement noise covariance at the current time. Consider that if the state and
measurement noise covariance at each moment in the extended state space are included
in the calculation, it will add a lot of calculation burden to filter. Therefore, in order to
simplify the filtering mechanism of VB-TPHD and improve the filtering efficiency, we
only handle the measurement noise covariance at the current time in the tracking process.
Thus, the long covariance sequence of measurement noise is not needed to be considered
in every single step. Therefore, VB-TPHD derived in the previous section can be further
simplified. A posterior PHD of the trajectory at time k can be expressed as Dπk

(
t, x1:i−1, Ri

)
.

Equation (19) in the prediction step and Equation (21) in the update step can be expressed
as follows, respectively:

Dξk

(
t, x1:i, Ri

)
= ps,k

(
xi−1) f

(
xi, Ri|x i−1, Ri−1

)
Dπk−1

(
t, x1:i−1, Ri−1

)
δNk [t]

= ps,k
(

xi−1) f
(

xi|x i−1
)

g
(

Ri|R i−1
)

Dπk−1

(
t, x1:i−1, Ri−1

)
δNk [t],

(26)

Dτ
ωk

(
xi, Ri

)
=

k

∑
t=1

∫
Dωk

(
t, x1:k−t+1, Rk−t+1

)
dx1:k−t (27)

In this section, we deduce the concrete implementation of the Gaussian mixture VB-
TPHD filter in the scenario of the linear Gaussian model. According to the parameter
definition of multi-trajectory PHD, we make the following assumptions:

Assumption 7. The given target obeys the Gaussian linear dynamic model, and the measurement
model is also a Gaussian linear model:

f
(

xi|x i−1
)
= N

(
xi; Fxi−1, Q

)
, (28)

h
(

z|x i
)
= N

(
z; Hxi, R

)
, (29)

where F ∈ Rnx×nx represents the state transition function of the single-moment target, H ∈ Rnz×nx

represents the measurement transition function of the single-moment target, and Q ∈ Rnx×nx rep-



Appl. Sci. 2022, 12, 6388 8 of 25

resents the known covariance of process noise. R ∈ Rnz×nz represents the unknown covariance of
measurement noise.

Based on Equations (28) and (29), the two densities on the right side of Equation (23)
can be set as specified distributions. Let DXk

(
x1:i) obey the Gaussian distribution. Accord-

ing to inverse gamma distribution being the conjugate prior distribution of the covariance
matrix under Gaussian distribution, DRk

(
Ri) is modeled as a random matrix which obeys

the inverse Gamma distribution and generally the optimal solution of both is obtained by
using the variational Bayesian approximation. Inverse gamma distribution turns out to be
the natural approximating distribution to achieve the goal with the simple form. DXk

(
x1:i)

with DRk

(
Ri) should be designed as follows:

DXk

(
x1:i
)
= N

(
x1:i; m̂, P̂

)
, DRk

(
Ri
)
=

d

∏
j=1

IG
((

σj
)2; αj, βj

)
(30)

where m̂ and P̂ denote the mean and covariance of the Gaussian distribution, d represents
the dimension of the measurement noise covariance and IG

(
· ; αj, βj

)
represents the

inverse Gamma distribution with freedom parameter αj and scale parameter β j.

4.1.1. Newbirth Driven by Measurements

Due to the uncertainty of newborn target location, the prior known intensity is usually
artificial to avoid taking the whole detection area into the calculation of the target inten-
sity [15,16] when the TPHD filter initializes the newborn intensity. However, newborn
targets may appear in the coverage range of undefined newborn intensity in practical appli-
cations, so the filter may ignore such newborn targets and result in missed detection. The
measurement values obtained from each scan were adaptively generated to the newborn
intensity and the dependence of prior known intensity was removed.

Based on the measurement set Zk =
Jγk
∑

j=1
zj

k at time k (the number of measurements

Jγk ), the newborn intensity Dγk

(
X
)

can be modeled as

Dγk

(
X
)
=

Jγk

∑
j=1

wj
γk

(
N
(

X; k, mj
γk , Pj

γk

) d

∏
l=1

IG
((

σ
l,j
γk

)2
; α

l,j
γk , β

l,j
γk

))
, (31)

wj
γk =

K
Jγk

, (32)

mj
γk= H−1

k zj
k, (33)

Pj
γk= H−1

k diag
((

σ1:d
γk

)2
)
(H−1

k

)T
, (34)

where the new generated trajectory states comply with the normal distribution of mean mj
γk

and covariance Pj
γk . Additionally, the corresponding covariance matrices of measurement

noise are diagonal matrices. αl
γk

and βl
γk

are the degrees of freedom and scale parameters
of the inverse gamma distribution, respectively. Hk represents the measurement transition
function, and K is the constant. Considering that the measurement set at time k is composed
of the measurement set generated by clutter and targets, the weight of the new component
is set as a uniform small value. The setting of small weight can reduce the amount of
the TPHD filter calculation and the impact of large clutter on true targets as well as the
false alarm rate. In order to highlight the performance of the adaptive noise covariance
estimation of VB-TPHD, αl

γk
and βl

γk
are usually fixed and small values, relatively.
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4.1.2. The Step of Prediction

Given the expansion of the k − 1 time trajectory in space trajectory PHD,

∑
Jk−1
j=1 wj

k−1(N(t, x1:ik−1 ; tj
k−1, m̂j

k−1, P̂j
k−1)∏d

l=1 IG((σ
l,j
k−1)

2
; α

l,j
k−1, β

l,j
k−1)), in which the mean

m̂j
k−1 ∈ Rik−1nx , covariance P̂j

k−1 ∈ Rik−1nx×ik−1nx , tj
k−1 represents the start time of the

trajectory, i j
k−1 represents the duration of the trajectory and j is the serial number of

the trajectory.

Assumption 8. Survival probability and detection probability are set as constant values in trajec-
tory filter:

ps,k
(
X
)
= ps, pD,k

(
X
)
= pD (35)

Proposition 3. Based on Assumptions 1–3 and Assumptions 7 and 8, there is the Gaussian mixture
form of VB-TPHD prediction:

Dωk

(
X
)
= Dγk

(
X
)
+ps

Jξk

∑
j=1

wj
ξk

(
N
(

X; tj
ξk

, m̂j
ξk

, P̂j
ξk

) d

∏
l=1

IG
((

σ
l,j
ξk

)2
; α

l,j
ξk

, β
l,j
ξk

))
, (36)

where
wj

ξk
= pswj

k−1, (37)

m̂j
ξk

=

[
(m̂j

k−1)
T

,
.
(F · m̂j

k−1)
T
]T

, (38)

P̂j
ξk

=

 P̂j
k−1 P̂j

k−1

.
F

T

.
FP̂

j
k−1

.
FP̂

j
k−1

.
F

T
+Q

, (39)

.
F =

[
0

1,ij
k−1−1

, 1
]
⊗ F, (40)

α
l,j
ξk
= ρ · αl,j

k−1, β
l,j
ξk
= ρ · βl,j

k−1, (41)

where tj
ξk

represents the starting time of the extended trajectory state and ρ is the attenuation factor
which is considered to be suitable for 0.9–0.95 according to [29].

The above expression can be mainly predicted based on the surviving extended trajec-
tory state Xξk bearing at k − 1. The noise covariance parameters of the surviving extended
tracking state at k − 1 should be multiplied by the fading factor ρ. The proof of Proposition
3 is arranged in Appendix C. The surviving extended tracking component and the newly
formed extended trajectory component should be combined as the integral Gaussian compo-

nents after the step of prediction, m̂
1:Jξk

+Jγk
ωk =

{
m̂

1:Jξk
ξk

, m
1:Jγk
γk

}
, P̂

1:Jξk
+Jγk

ωk =

{
P̂

1:Jξk
ξk

, P
1:Jγk
γk

}
,

w
1:Jξk

+Jγk
ωk =

{
w

1:Jξk
ξk

, w
1:Jγk
γk

}
, α

1:Jξk
+Jγk

ωk =

{
α

1:Jξk
ξk

, α
1:Jγk
γk

}
, β

1:Jξk
+Jγk

ωk =

{
β

1:Jξk
ξk

, β
1:Jγk
γk

}
.

4.1.3. The Step of Update

After the prediction step, the update step is carried out under the framework of
variational Bayesian. Gaussian mixture VB-TPHD calculates the new information and
adjusts the mean according to the measurement value zk ∈ Zk and continuously updates
the error covariance to obtain the optimal trajectory state and noise covariance.
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Proposition 4. Based on Assumptions 4–8, as PHD Dωk

(
X
)

can be predicted as the extended
trajectory at time k, the extended trajectory update of PHD Dπk

(
X
)

can take the following forms:

Dπk

(
X
)
= (1− p D) Dωk

(
X
)

+ pD ∑
zk∈Zk

Jξk
+Jγk
∑

j=1

[
wj

πk N
(

X|t j
πk

, m̂j
πk , P̂j

πk

)
·

d
∏
l=1

IG
((

σ
l,j
πk

)2
; α

l,j
πk , β

l,j
πk

)]
,

(42)

α
l,j
πk = α

l,j
ωk+0.5, (43)

.
H =

[
0

1,ij
k−1

, 1
]
⊗ H, (44)

ẑj
k=

.
Hm̂

j
πk

, (45)

To obtain the optimal parameters, it is supposed to adjust and update the components. The loop
should be started with the record of the loop number n:

(
σ

l,j,n
πk

)2
= diag

(
β

1,j,n
πk

α
1,j
πk

, . . . . . . ,
β

d,j,n
πk

α
d,j
πk

)
(46)

Sj,n
k =

(
σ

l,j,n
πk

)2
+

.
HP̂

j
ωk

( .
H
)T

, (47)

K j,n
k = P̂j

ωk

( .
H
)T(

Sj,n
k

)−1
, (48)

m̂j,n
πk = m̂j

ωk+K j,n
k

(
z− ẑj

k

)
, (49)

P̂j,n
πk = P̂j

ωk
−K j,n

k

.
HP̂

j
ωk

, (50)

β
j,l,n+1
πk = β

j,l
ωk+0.5 ×

(
zk −

.
Hm̂

j,n
k

)2
+0.5 ×

(
.

HP̂
j,n
πk

( .
H
)T
)

, (51)

Assume that the predicted track set is updated according to the measurement set at time k

and the cycle number n is recorded. Break the loop, and export m̂j,n
πk ,P̂j,n

πk ,Sj,n
k and

(
σ

l,j,n
πk

)2
when

m̂j,n
πk tends to be a fixed value to calculate the weights of each Gaussian component updated:

wj
πk =

pDwj
ωk N

(
ẑj

k, Sj,n
k

)
λcV + pD ∑

Jξk
+Jγk

j=1 wj
ωk N

(
ẑj

k, Sj,n
k

) (52)

We put the proof of Proposition 4 in Appendix D.

4.1.4. Other Contents about the Implementation

The biggest difference between TPHD and PHD lies in the different object within the
filter processing, although they have similar prediction and update steps. The former is
the processing of state sequence, namely trajectory. The longer the filtering time, the more
states need to be calculated and stored as well as the greater the computational burden [23].
Here, the L-scan trajectory processing method is proposed. When the update window
length L is small, its computational efficiency is almost the same as PHD. When the filtering
duration I < L, only the trajectory state within the duration range is processed, while once
the filtering duration I ≥ L, only the trajectory state within the current moment, and the
previous L time is processed.

It is necessary to prune and absorb the Gaussian components in the current extended
state space after the update step in order to ensure the efficiency of operation and achieve
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better joint extraction of state and noise covariance. Set the upper limit of the number
of Gaussian components Imax and the weight threshold εp. Cut out the weight number I
whose weight is greater than the threshold:

I =
{

j ∈ {1, . . . , Jk}: wj
k > εp

}
(53)

Above, the number of Gaussian components is directly processed from the threshold
value. In order to ensure the validity of the remaining Gaussian components, the current
Gaussian components with high similarity are retained based on the Mahalanobis distance
principle. This process is absorption. Specifically, by calculating the Mahalanobis distance
between each Gaussian component and the maximum Gaussian component of the current
moment weight, if the distance is less than the set threshold εa, the serial number S of
Gaussian component is selected as

S =

{
j ∈ I :

(
m̂j

km̂i
k

)T(
P̂j

k

)−1(
m̂j

k−m̂i
k

)
≤ εa

}
, (54)

where i = argmax(w j
k

)
, then the weight of one of the Gaussian components correspond-

ing to L is appropriately increased and the other Gaussian components are deleted so as to
achieve the purpose of controlling the number of Gaussian components.

The last step of VB-TPHD is the extraction of trajectory in extended state space. Similar
to PHD, the number of trajectory can be estimated as

Nk= round

(
Jk

∑
j=1

wj
k

)
(55)

Sort all Gaussian components from high to low according to their weights, screen
out Nk Gaussian components with high weight and finally extract the joint covariance of
trajectory as follows: {(

t1, ij
k, m̂j

k,
(

α
l,j
k , β

l,j
k

)d

l=1

)}
, j = 1 : Nk (56)

4.2. Nonlinear Implementation of VB-TPHD Filter

The TPHD filter can provide closed solution under iteration, which can be regarded as
a very effective multi-trajectory filtering method under the linear Gaussian model and can
obtain the ideal effect through the Gaussian mixture form based on the Kalman filter. Now
assume that both the state process and the measurement process are nonlinear Gaussian
models [16]:

xk = ϕk(xk−1, υk), (57)

zk= hk(xk, νk), (58)

where ϕk(·) and hk(·) are known nonlinear dynamic and measurement equations, υk and
νk are state noise and the measurement noise of Gaussian distribution, and Qk and Rk are
covariances of state noise and measurement noise, respectively.

It is not feasible to use the Gaussian mixture VB-TPHD filter to process nonlinear
Gaussian models directly, but it can still be applied to nonlinear systems through an
improved Kalman filter, such as extended Kalman (EK) filter for linearing locally nonlinear
Gaussian systems [36] and an unscented Kalman (UK) filter that approximates nonlinear
Gaussian systems using precisely selected σ points [37,38]. Then, the realization of AEK-
VB-TPHD and AUK-VB-TPHD is given in detail.

The key steps of AEK-VB-TPHD and AUK-VB-TPHD are shown in Algorithms 1
and 2. These two filters not only adopt the L-scan method to avoid including the whole
trajectories into the calculation like AGM-VB-TPHD, but also execute the operation of



Appl. Sci. 2022, 12, 6388 12 of 25

pruning, absorption and state extraction according to Equations (53)–(56). It is worth
mentioning that because TPHD is the trajectory involved in the iterative cycle and the
filtering state is multi-dimensional, the weight u of σ points will be negative, which leads
to the negative determination of the estimated covariance matrix and the next Cholesky
decomposition cannot be carried out. Therefore, SVD [38] is used for the decomposition of
the matrix in AUK-VB-TPHD.

Algorithm 1. Prediction and Update for the AEK-VB-TPHD Filter.

Step 1. (Prediction for newborn targets)
Input: zk ∈ Zk, K, h−1

k .

Output: {w j
γk

, mi
γk

, Pi
γk

, (α l,j
γk

, β
l,j
γk )

d
l=1

}Jγk

j=1
.

for j = 1: Jγk
(number of measurements)

use Equations (32)–(34).
end for

Step 2. (Prediction for existing trajectories)

Input: ps, Φj
k, υ

j
k, ρ, {w j

πk−1
, m̂j

πk−1 , P̂j
πk−1

, (α l,j
πk−1

, β
l,j
πk−1 )

d
l=1}

Jπk−1
j=1 .

Output: {w j
ξk

, m̂j
ξk

, P̂j
ξk

, (α l,j
ξk

, β
l,j
ξk
)d

l=1

}Jξk

j=1
.

for j = 1, . . . , Jξk

use Equations (37)–(38) to obtain wj
ξk

, m̂j
ξk

.

P̂j
ξk

=

 P̂j
πk−1 P̂j

πk−1

( .
F

j

k−1

)T

.
F

j
k−1P̂j

πk−1

.
F

j
k−1P̂j

πk−1

( .
F

j

k−1

)T
+Gj

k−1Qk−1 (G
j
k−1

)T

,

Where
.
F

j
k−1=

[
01,ij

k−1−1, 1
]
⊗ Fj

k−1, Fj
k−1 =

∂Φj
k(xk−1,0)
∂xk−1

∣∣∣∣
xk−1=mj

k−1

,

Gj
k−1 =

∂Φj
k

(
mj

k−1,υj
k

)
∂υ

j
k

∣∣∣∣∣
υ

j
k=0

.

use Equation (41) to obtain (α
l,j
ξk

, β
l,j
ξk

)d

l=1
.

end for
Step 3. (Update for all trajectories)

Input: pD,lz= Jγk
,H j

k,{w j
ωk

, m̂j
ωk , P̂j

ωk
, (α l,j

ωk
, β

l,j
ωk )

d
l=1

}Jωk= Jγk
+Jξk

j=1
(combine Output of Step

1&2)

Output: {w j
πk

, m̂j
πk , P̂j

πk
, (α l,j

πk
, β

l,j
πk )

d
l=1

} Jπk
=(lz+1)Jωk

j=1
.

(Update for undetected trajectories)
for j = 1, . . . , Jωk

wj
πk= (1− p D)w

j
ωk

,

m̂j
πk= m̂j

ωk , P̂j
πk
= P̂j

ωk
,

α
l,j
πk= α

l,j
ωk , β

l,j
πk= β

l,j
ωk , for l = 1, . . . , d.

end for
(Update for detected trajectories)

for each zk ∈ Zk
for j = 1, . . . , Jωk

α
l,j
πk = α

l,j
ωk+0.5, β

l,j
πk = β

l,j
ωk , for l = 1, . . . , d.

m̂j,0
πk = m̂j

ωk , P̂j,0
πk = P̂j

ωk
.

H j
k =

∂H j
k(xk ,0)
∂xk

∣∣∣∣
xk=mj

ωk

,
.

H
j
k =

[
01,ij

k−1, 1
]
⊗ H j

k, U j
k =

∂H j
k

(
mj

ωk ,Rj
ωk

)
∂ν

j
k

∣∣∣∣∣
Rj

ωk=0

.

Then iterate the following a few. e.g., N, steps:
use Equations (46) and (48)–(51) to obtain m̂j,n

πk , P̂j,n
πk , β

l,j,n
πk , Rl,j,n

πk

where Sj,n
k = U j

kRl,j,n
πk (U j

k

)T
+

.
H

j
k P̂j

ωk

(
.

H
j
k

)T
.
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Algorithm 1. Cont.

Set m̂j
πk = m̂j,N

πk , P̂j
πk = P̂j,N

πk
, β

l,j
πk = β

l,j,N
πk .

Qj(zk)= N
(

zk;
.

H
j
ωk

m̂j
k, Sj,n

k

)
, w

lz Jωk+j
πk = pDwj

ωk Qj(zk).

end for

w
lz Jωk+j
πk =

w
lz Jωk +j
πk

λcV+∑
Jωk
i=1 w

lz Jωk +i
πk

, for j = 1, . . . , Jωk

end for

Algorithm 2. Prediction and Update for the AUK-VB-TPHD Filter.

Step 1. (Prediction for newborn targets)
follow Step 1 of Algorithm 1.

Step 2. (Prediction for existing trajectories)

Input: ps, Φj
k, υ

j
k, α, β, k, ρ, {w j

πk−1
, m̂j

πk−1 , P̂j
πk−1

, (α l,j
πk−1

, β
l,j
πk−1 )

d
l=1

}Jπk−1

j=1
.

Output: {w j
ξk

, m̂j
ξk

, P̂j
ξk

, (α l,j
ξk

, β
l,j
ξk
)d

l=1

}Jξk

j=1
for j = 1, . . . , J ξk

wj
ξk
= pswj

ξk
,

.
mj

ξk−1
=

[
mj

πk−1

0

]
,

.
P

j
ξk−1

=

[
Pj

πk−1 0
0 Qk−1

]
{ .

mj,s
ξk−1

, uj,s
ξk−1

, s
}
= ut

{
.

mj
ξk−1

,
.
P

j
ξk−1

, α, β, k
}

. for s = 0, . . . , 2NUM.

.
mj

ξk−1
=

2n
∑

s=0
uj,s

ξk−1
Φk
( .
m j,s

ξk−1
, υk

)
,

.
X

j
ξk−1

=
2n
∑

s=0
uj,s

ξk−1

.
(m

j
ξk−1
−Φj

k
( .
m j,s

ξk−1
, υk)),

m̂j
ξk

=

[(
m̂j

πk−1

)T
,
( .

mj
ξk−1

)T
]T

, P̂i
ξk

=

 P̂j
πk−1 P̂j

πk−1 (
.
F

j
k−1

)T

.
F

j
k−1P̂j

πk−1

.
X

j
ξk−1

diag(u j,s
ξk−1

)
( .

X
j

ξk−1

)T

,

where
.
F

j
k−1 =

[
01,ij

k−1−1, 1
]
⊗Φj

k.

use Equation (41) to obtain (α
l,j
ξk

, β
l,j
ξk

)d

l=1
.

end for
Step 3. (Update for all trajectories)

Input: pD, lz= Jγk
, α, β, k, hk, {w j

ωk
, m̂j

ωk , P̂j
ωk

, (α l,j
ωk

, β
l,j
ωk )

d
l=1

}Jωk= Jγk
+Jξk

j=1
(combine Output

of Step 1&2)

Output: {w j
πk

, m̂j
πk , P̂j

πk
, (α l,j

πk
, β

l,j
πk )

d
l=1

} Jπk
=(lz+1)Jωk

j=1
.

(Update for undetected trajectories)
for j = 1, . . . , Jωk

wj
πk= (1− p D)w

j
ωk

,

m̂j
πk= m̂j

ωk , P̂j
πk
= P̂j

ωk
,

α
l,j
πk= α

l,j
ωk , β

l,j
πk= β

l,j
ωk , for l = 1, . . . , d.

end for
(Update for detected trajectories)

for each zk ∈ Zk
for j = 1, . . . , Jωk

α
l,j
πk = α

l,j
ωk+0.5, β

l,j
πk = β

l,j
ωk , for l = 1, . . . , d.

m̂j,0
πk = m̂j

ωk , P̂j,0
πk = P̂j

ωk
.

Then iterate the following a few. e.g., N, steps:
use Equation (46) to obtain Rl,j,n

πk

.
mj,n

πk
=

[
m̂j,n

πk

0

]
,

.
P

j,n
πk

=

[
P̂j,n

πk 0
0 Rl,j,n

πk

]
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Algorithm 2. Cont. { .
zj,n,s

πk
, uj,n,s

πk , s
}
= ut

{
.

mj,n
πk

,
.
P

j,n
πk

, α, β, k
}

. for s = 0, . . . , 2NUM

.
zj,n

πk
=

2n
∑

s=0
uj,n,s

πk hk
( .
z j,n,s

πk
, Rl,j,n

πk ),
.
Z

j,n
πk

=
2n
∑

s=0
uj,n,s

πk ·
( .
z j,n

πk
−hk

( .
z j,n,s

πk
, Rl,j,n

πk )),

Sj,n
k =

2n
∑

s=0
uj,n,s

πk

.
Z

j,n
πk
(

.
Z

j,n
πk
)

T
,

.
G

j,n
k =

2n
∑

s=0
uj,n,s

πk ·
( .
z j,n

πk
− .

zj,n,s
πk

)(
.
zj,n

πk
− .

zj,n,s
πk

)T ,

K j,n
k =

.
G

j,n
k /Sj,n

k ,

m̂j,n
πk = m̂j

ωk+K j,n
k

(
z− ẑj

k

)
, P̂j,n

πk
= P̂j

ωk
−K j,n

k ×
( .

G
j,n

k

)T
,

β
l,j,n+1
πk = β

l,j
ωk+0.5×

(
zk−

.
H

j
km̂j,n

πk

)2
+0.5×

(
2n
∑

s=0
uj,s

πk

.
zj

πk

( .
z j

πk

)T
)

,

Set m̂j
πk = m̂j,N
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(

zk;
.
zj

ωk
, Sj

k

)
, w

lz Jωk+j
πk = pDwj
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end for

w
lz Jωk+j
πk =

w
lz Jωk +j
πk

λcV+∑
Jωk
i=1 w

lz Jωk +i
πk

, for j = 1, . . . , Jωk

end for

Remark 1. Noted that AUK-VB-TPHD is more suitable to non-differentiable nonlinear models
than AEK-VB-TPHD, which avoids the complicated and error-prone Jacobian matrix calculation.

5. Simulation and Discussion
5.1. Scenario 1

To prove the tracking performance of Gaussian mixture VB-TPHD, a two-dimensional
extended trajectory space scenario with unknown and constant noise covariance is de-
signed in Scenario 1. Suppose there are four targets can form trajectories in the scenario
and each target obeys the linear Gaussian dynamic and measurement model such as
Equations (28) and (29), that is, it moves at a constant velocity. Each model is expressed
as follows:

Fk =

[
I2 ∆I2
02 I2

]
, Qk = σ2

υ

[
∆4

4 I2
∆3

3 I2
∆3

3 I2 ∆2 I2

]
, (59)

Hk =
[
I2 02

]
, Rk= diag(σ 2

ν1
, σ2

ν2
),

where I2 and 02 represent 2 × 2 identity matrix and zero matrix, respectively, and ∆
represents the scanning period. In scenario 1, ∆ = 1 s, συ = 1.8 m/s represents the standard
deviation of the process noise. Similarly, σν1 and σν2 represent the unknown quantity of the
standard deviation of the measurement noise. The state of the target in the extended space
can be written as follows: the first and second dimensions are the x and y coordinates of
the target, respectively, and the third and fourth dimensions are the fractional velocities
of the target in the x and y direction respectively. The first and second dimensions of
measurement obtained are the x and y coordinates of the measurement, respectively. Next
are some settings for the scenario parameters. The size of scenario is set to [0, 1000] m × [0,
1000] m and the total tracing duration is set to 100 s. The trajectory survival probability is
set as ps = 0.99 and the detection probability is set as pD = 0.98. The clutter generated in
each scan obeys the uniform distribution and its number obeys the Poisson distribution
with the parameter λ = 5. The true unknown measurement noise covariance Rk is set to be
diag(4, 4).

The initial state, birth time and death time of the trajectory in the specific extended
state space are shown in Table 1. The threshold of pruning is set as εp = 10−4, the threshold
of absorption is set as εa = 4 and the maximum Gaussian component number is set as
Jmax = 70. The simulation in scenario 1 adopts L-scan approximation whose L = 5. The
covariance matrix for measurement noise obeys the inverse Gamma distribution. The initial
parameters are α1 = β1 = 1, α2 = β2 = 1, and the given fading factor is ρ = 0.95.
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Table 1. The information of true targets.

Initial Targets States Birth Time/s Death Time/s

Target 1 {100; 400; 12.14; 4.86} 2 45
Target 2 {450; 300; −3.43; 4.29} 2 65
Target 3 {100; 150; 6.15; 0.77} 15 85
Target 4 {100; 400; 3.75; −3.75} 20 100

In scenario 1, we conduct 1000 Monte Carlo runs with MATLAB 2021a on 2.50 GHz
Intel I5 laptop. GOSPA metric [39] is used to evaluate the performance of extended
trajectory estimation. Simulation parameters are set as p = 2, c = 10, α = 2. The GOSPA
error of the target is decomposed into GOSPA localization cost, GOSPA missed target cost
and GOSPA false target cost. From these aspects, the root mean square error (RMS) of
Monte Carlo runs is obtained to analyze the filter.

Figure 1 reflects the true tracking of the four targets and it can be seen that a good track
is formed in the extended state space. Figures 2–4 respectively show the average standard
deviation of the measurement noise, the average cardinality estimated by AGM-VB-TPHD
and the comparison with the other filters under the GOSPA metric.
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distribution. The closer the cardinality to the true value is, the lower the target losing 
probability is, and the more stable the tracking performance is. Figure 3 shows that AGM-

Figure 1. (a) The trajectory estimates of AGM-VB-TPHD until time 40. (b) The trajectory estimates
of AGM-VB-TPHD until time 75. (c) The trajectory estimates of AGM-tag-VB-PHD until time 40.
(d) The trajectory estimates of AGM-tag-VB-PHD until time 75. The blue line represents the true
trajectories of the targets in the period, the circle represents the starting point of the trajectory, the
triangle represents the end point of the trajectory, different trajectories are marked with different
color styles and the black asterisk represents the measurement at the current time.
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Figure 2 shows the estimation process of AGM-VB-TPHD filter for the unknown
measurement noise standard deviation. In the period with new targets’ appearance, larger
standard deviation estimation may occur. However, as time goes by, the two independent
components of standard deviation approach the unknown true standard deviation adap-
tively and gradually tend to be stable. To highlight the performance of AGM-VB-TPHD
filters, we conducted the simulations of the adaptive newborn intensity Gaussian mixture
tag-VB-PHD (AGM-tag-VB-PHD) filter [20,34], AGM-TPHD filter with larger estimated
covariance (R1 = diag(40, 40)) and smaller estimated covariance (R2 = diag(0.25, 0.25)) for
comparation under the same parameters.

The effective number of tracking targets at each time can be seen from the cardinality
distribution. The closer the cardinality to the true value is, the lower the target losing
probability is, and the more stable the tracking performance is. Figure 3 shows that AGM-
VB-TPHD filter and AGM-tag-VB-PHD filter have little difference in the estimation of
target number and are more accurate than that whose covariance estimation is wrong.
When the estimated covariance is R1, the position parameters of the covariance of the
new intensity are much smaller than the estimated covariance parameters, resulting in the
estimation mismatch, so that the filter cannot detect the target immediately while a new
target is generated. When the estimated covariance is R2, it can be seen from Figure 3 and
the GOSPA missed target cost in the Figure 4 that the degree of target missed detection is
serious. This is because the covariance estimation is too small to cover the range of targets
that should be detected, resulting in a large loss of targets.
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Figure 4. Comparison of adaptive and false estimation of AGM-VB-TPHD as well as AGM-tag-VB-

PHD under GOSPA metric. (a) RMS GOSPA error of filters. (b) RMS GOSPA localization cost of 

filters. (c) RMS GOSPA missed target cost of filters. (d) RMS GOSPA false target cost of filters. 

5.2. Scenario 2 

To prove the tracking performance of VB-TPHD in nonlinear scenarios and the effect 

of update window length L on filtering, we design a two-dimensional extended trajectory 

space scenario with unknown and time-varying noise covariance. Suppose there are two 

targets that can form trajectories in the scenario and each target makes a constant turning 

motion. The dynamic and measurement model are shown in the Equations (57) and (58): 

    Fk=

[
 
 
 
 
 
 1    

sin(ω)

ω
    0    

-(1-cos(ω))

ω
0

0
1-cos(ω)

ω
  1           

sin(ω)

ω
 0

0    cos(ω)    0       -sin(ω)     0
0   sin(ω)     0         cos(ω)    0

 0        0        0              0         1]
 
 
 
 
 
 

,,          QB
k
=

[
 
 
 
 
 
 
 συ

Δ2

2
0 0

συΔ 0 0

0 συ

Δ2

2
0

       0      συΔ 0
       0        0 σtΔ]

 
 
 
 
 
 
 

, (60) 

Q
k
= Bk × Bk

T,        hk(xk,0)=

[
 
 
 
 arctan(

p
x,k

p
y,k

)

√p
x,k
2 +p

y,k
2

]
 
 
 
 

,           Rk=diag(σνr
2 ,σνd

2 )  

where, Δ = 1 s, συ = 1.8 m/ss2 represents the velocity standard deviation of the process 

noise and σt = (𝜋/180)2 rad/ss2 represents the angular velocity standard deviation of the 

process noise. σνr
 and σνd

 represent the unknown parameters of the standard deviation 

of the measurement noise. The former four dimensions of the state quantity of the target 

in the extended space are the same as the linear model and the fifth dimension is the 

Formatted: Font: Palatino Linotype

Formatted: Font: Palatino Linotype, Not Italic

Figure 4. Comparison of adaptive and false estimation of AGM-VB-TPHD as well as AGM-tag-VB-
PHD under GOSPA metric. (a) RMS GOSPA error of filters. (b) RMS GOSPA localization cost of
filters. (c) RMS GOSPA missed target cost of filters. (d) RMS GOSPA false target cost of filters.

From the square GOSPA error on the upper left of Figure 4, we can see that the error
of AGM-VB-TPHD filter is the smallest and the tracking effect is the best. The performance
of the AGM-VB-TPHD filter is obviously better than that of the AGM-tag-VB-PHD filter
under the three indexes of localization, missed detections and false targets. The AGM-
tag-VB-PHD filter is based on labeling each PHD component. It does not improve the
accuracy of the PHD itself, and if multiple components extracted have the same label, it
will cause missed target and false detection. A larger estimated covariance will lead to a
larger range of target detection. As part of the measurement is redundant clutter, there will
be the generation of wrong targets. A large covariance can lead to a small estimated error
of target localization, but it is still inferior to the AGM-VB-TPHD filter under the overall
GOSPA metric. If the estimated covariance is too small, the target will be missed. After the
adaptive covariance is stabilized, the AGM-VB-TPHD filter shows the best performance in
the three indicators clearly. Based on overall evaluation, the AGM-VB-TPHD filter has the
smallest GOSPA error and the most accurate number of estimated trajectories.

5.2. Scenario 2

To prove the tracking performance of VB-TPHD in nonlinear scenarios and the effect
of update window length L on filtering, we design a two-dimensional extended trajectory
space scenario with unknown and time-varying noise covariance. Suppose there are two
targets that can form trajectories in the scenario and each target makes a constant turning
motion. The dynamic and measurement model are shown in the Equations (57) and (58):

Fk =


1 sin(ω)

ω 0 −(1−cos(ω))
ω 0

0 1−cos(ω)
ω 1 sin(ω)

ω 0
0 cos(ω) 0 − sin(ω) 0
0 sin(ω) 0 cos(ω) 0
0 0 0 0 1

, Bk =


συ

∆2

2 0 0
συ∆ 0 0

0 συ
∆2

2 0
0 συ∆ 0
0 0 σt∆

, (60)
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Qk = Bk × Bk
T , hk(x k , 0) =

arctan( px,k
py,k

)
√

p2
x,k+p2

y,k

, Rk = diag(σ2
νr

, σ2
νd
)

where, ∆ = 1 s, συ = 1.8 m/s represents the velocity standard deviation of the process
noise and σt = (π/180)2 rad/s represents the angular velocity standard deviation of the
process noise. σνr and σνd represent the unknown parameters of the standard deviation of
the measurement noise. The former four dimensions of the state quantity of the target in
the extended space are the same as the linear model and the fifth dimension is the angular
velocity of the target. The first and second dimensions are the azimuth and distance of the
relevant observation point (set as the origin of coordinates). Next are some settings for
the scenario parameters. The scenario size is set to [0, π/2] rad × [0, 1200] m and the total
tracking duration is set to 100 s. The trajectory survival probability is set as ps = 0.99 and
the detection probability is set as pD = 0.99. The clutter generated in each scan obeys the
uniform distribution and its quantity obeys the Poisson distribution with parameter λ = 3.

The initial state, time of birth and time of death and measurement noise covariance
of the trajectory in the extended state space are shown in Table 2. Note that target 2 is
divided by the bound of time 50 and the standard deviation of measurement noise in the
first period is diag(π/180,2) and in the second period is diag(1.5π/180,3). The threshold of
pruning is set as εp = 10−4, the threshold of absorption is set as εa = 4 and the maximum
number of Gaussian components is set as Jmax = 70. The covariance matrix for quantitative
measurement of noise obeys the inverse Gamma distribution. The initial parameters are
α1 = 1, β1 = π/180 × 0.01, α2 = β2 = 1, and the given attenuation factor is ρ = 0.95.

Table 2. The information of true targets.

Initial Targets States Birth
Time/s

Death
Time/s σνr σνd

Target 1 {100; 550; 6.76; 0.95; −π/207 } 2 100 2π/180 5

Target 2 {600; 600; 1.45; 5.99; −π/207 } 15 100 π/180; 1.5π/180 2;3

Similar to the linear scenario simulation, we also conducted 1000 Monte Carlo runs
on the trajectory set with MATLAB 2021a on 2.50 GHz Intel I5 laptop. In scenario 2,
the trajectory metric [40] is used to evaluate the performance of the extended trajectory
estimation, and the parameters are set as p = 2, c = 10, γ = 1. The target RMS trajectory
metric error (TM) consists of localization, missed targets, false targets and track switching.

Figures 5–9 show when the length L of the update window is set to 5. Figures 5 and 6
respectively show the trajectories of AEK-VB-TPHD filter with the AUK-VB-TPHD filter
and the average value after the Monte Carlo runs of standard deviation of measurement
noise. It can be seen that even under the condition of nonlinear and time-varying covariance,
the VB-TPHD filter can still perform well in the estimation of trajectory and noise standard
deviation. In Figure 5, the tag-VB-PHD filter delivers poor performance. When AUK-tag-
VB-PHD is used to track target 2, there is a series of wrong targets deviated from the true
trajectory, and tremendous trajectory switching errors are produced after targets cross.

In terms of cardinality distribution, the AEK-VB-TPHD filter and AUK-VB-TPHD
filter in Figure 7 are significantly improved, whose estimated numbers are closer to the
true value compared with the AEK-tag-VB-PHD filter and the AUK-tag-VB-PHD filter. In
scenario 2, the trajectory metric [40] is used to evaluate filter performance and the influence
of different L-scan window lengths on filter estimation performance is compared. From
Figures 8 and 9, it can be seen that the AEK-VB-TPHD filter and the AUK-VB-TPHD filter
are basically superior to the AEK-tag-VB-PHD filter and the AUK-tag-VB-PHD filter in
the trajectory measurement; additionally, the former two filters are very close under the
trajectory metric. AEK-tag-VB-PHD and AUK-tag-VB-PHD provide considerable errors
in missing targets, false targets and trajectory switching obviously, especially when two
trajectories are close or cross.
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first period is diag(π/180,2) and in the second period is diag(1.5π/180,3). The threshold of 

pruning is set as εp = 10-4, the threshold of absorption is set as εa = 4 and the maximum 

number of Gaussian components is set as J
max

 = 70. The covariance matrix for quantitative 

measurement of noise obeys the inverse Gamma distribution. The initial parameters are 

α1 = 1, β
1
 = π/180 × 0.01, α2 = β

2
 = 1, and the given attenuation factor is ρ = 0.95. 

Table 2. The information of true targets. 

 Initial Targets States 
Birth 

Time/s 

Death 

Time/s 
𝝈𝝂𝒓

 𝝈𝝂𝒅
 

Target 1 {100; 550; 6.76; 0.95; -π/207} 2 100 2π/180 5 

Target 2 {600; 600; 1.45; 5.99; -π/207} 15 100 π/180; 1.5π/180 2;3 

Similar to the linear scenario simulation, we also conducted 1000 Monte Carlo runs 

on the trajectory set with MATLAB 2021a on 2.50 GHz Intel I5 laptop. In scenario 2, the 

trajectory metric [40] is used to evaluate the performance of the extended trajectory esti-

mation, and the parameters are set as p = 2, c = 10, γ = 1. The target RMS trajectory metric 

error (TM) consists of localization, missed targets, false targets and track switching. 

Figures 5–9 show when the length L of the update window is set to 5. Figures 5 and 

6 respectively show the trajectories of AEK-VB-TPHD filter with the AUK-VB-TPHD filter 

and the average value after the Monte Carlo runs of standard deviation of measurement 

noise. It can be seen that even under the condition of nonlinear and time-varying covari-

ance, the VB-TPHD filter can still perform well in the estimation of trajectory and noise 

standard deviation. In Figure 5, the tag-VB-PHD filter delivers poor performance. When 

AUK-tag-VB-PHD is used to track target 2, there is a series of wrong targets deviated from 

the true trajectory, and tremendous trajectory switching errors are produced after targets 

cross. 
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Figure 6. (a) Standard deviation estimation of theta of AEK-VB-TPHD and AUK-VB-TPHD. (b) 

Standard deviation estimation of distance of AEK-VB-TPHD and AUK-VB-TPHD (L =5). 
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Figure 7. The black line represents the cardinality of true targets, the blue line represents the cardi-
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Figure 5. (a) The trajectory estimates of AEK-VB-TPHD until time 85. (b) The trajectory estimates of
AUK-VB-TPHD until time 85. (c) The trajectory estimates of AEK-tag-VB-PHD until time 85. (d) The
trajectory estimates of AUK-tag-VB-PHD until time 85. The trajectory of the true target is marked
with blue line segments in the period, the circle represents the starting point of the track, the triangle
represents the end point of the trajectory, different trajectories are marked with different color styles
(L = 5) and the black asterisk represents the measurement at the current time.
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Figure 6. (a) Standard deviation estimation of theta of AEK-VB-TPHD and AUK-VB-TPHD. (b) Stan-
dard deviation estimation of distance of AEK-VB-TPHD and AUK-VB-TPHD (L = 5).

Table 3 shows the average time required by AEK-VB-TPHD and AUK-VB-TPHD
under different window lengths to achieve similar covariance estimation effect. With the
increase of L, the time of the two filters both increase. The time increases dramatically
especially after L = 10. On the other hand, the time of AUK-VB-TPHD is basically almost
3 times that of AEK-VB-TPHD. Table 4 combined with Figure 10 shows the RMS TM errors
of AUK-VB-TPHD and AEK-VB-TPHD under different filter windows L. Increasing L can
reduce the RMS TM error and improve the estimation performance of trajectory. When L is
less than 5, increasing L can improve the trajectory performance significantly. In addition,
the filtering error of AUK-VB-TPHD is slightly smaller than that of AEK-VB-TPHD, which
has a slight advantage in filtering performance.
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Figure 6. (a) Standard deviation estimation of theta of AEK-VB-TPHD and AUK-VB-TPHD. (b) 

Standard deviation estimation of distance of AEK-VB-TPHD and AUK-VB-TPHD (L =5). 
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Figure 7. The black line represents the cardinality of true targets, the blue line represents the cardi-

nality estimation of AEK-VB-TPHD, the red line represents the cardinality estimation of AUK-VB-
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Figure 7. The black line represents the cardinality of true targets, the blue line represents the
cardinality estimation of AEK-VB-TPHD, the red line represents the cardinality estimation of AUK-
VB-TPHD and the green line represents the cardinality estimation of AEK-tag-VB-PHD. The yellow
line represents the cardinality estimation of AUK-tag-VB-PHD (L = 5).
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Figure 8. Comparison of VB-TPHD and tag-VB-PHD using EK and UK nonlinear realization forms
under RMS TM metric under time-varying noise measurement (L = 5).

Table 3. The average run time of the AEK-VB-TPHD and AUK-VB-TPHD filters.

L 1 2 5 10 30

AEK-VB-TPHD 1.6515 1.8393 2.0058 2.4287 5.8131

AUK-VB-TPHD 3.0019 3.3813 4.7062 6.9537 21.7574

Table 4. The RMS TM error of the AEK-VB-TPHD and AUK-VB-TPHD filters.

L 1 2 5 10 30

AEK-VB-TPHD 9.6936 9.0836 8.1520 8.0454 7.9827

AUK-VB-TPHD 9.6791 9.0779 7.9009 7.6279 7.5668
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Figure 9. Comparison of VB-TPHD and VB-PHD using EK and UK two nonlinear implementation 

forms under the decomposition of RMS TM metric with time varying measurement noise. (a) RMS 

TM error of localization. (b) RMS TM error of false targets. (c) RMS TM error of missed targets. (d) 

RMS TM error of switching cost (L = 5). 

Figure 9. Comparison of VB-TPHD and VB-PHD using EK and UK two nonlinear implementation
forms under the decomposition of RMS TM metric with time varying measurement noise. (a) RMS
TM error of localization. (b) RMS TM error of false targets. (c) RMS TM error of missed targets.
(d) RMS TM error of switching cost (L = 5).
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6. Conclusions

In this paper, we construct the extended trajectory state space under the background
of unknown measurement noise covariance, derive the VB-TPHD closed solution by intro-
ducing the variational Bayesian approximation into the TPHD filter framework and obtain
the joint estimation of the noise covariance sequence and the posterior trajectory state.
Considering the filtering efficiency, we only include the noise parameters at the current
time in the updating process.
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Under the Gaussian model, the extended trajectory state can be modeled as the
product of the inverse gamma with the Gaussian mixture. We use the AGM-VB-TPHD
filter to complete the trajectory estimation at a constant velocity under the linear model. In
addition, AEK-VB-TPHD and AUK-VB-TPHD also have good application effects on the
trajectory estimation of the constant angular velocity turns under the nonlinear model. It
can be seen from the simulation that VB-TPHD can obtain the statistical information of the
dynamic trajectory state with measurement noise effectively and accurately. It improves
the estimation of trajectory state and number compared with the adaptive filter based on
tag-PHD. The results show the validity and effectiveness of our algorithm along with the
implementation and prove that TPHD is an excellent filtering framework.

We suppose that the proposed filter can be applied into maneuvering target detection
and the tracking of a harsh and unknown environment in radar and sonar systems. Addi-
tionally, the fault-tolerant systems with low-cost integrated GPS/INS positioning systems
would be suitable. The next research direction is to apply extended targets and group
targets to the framework of TPHD so as to achieve better and more accurate multi-target
tracking from the perspective of trajectory.
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Appendix A

Before proposition 1 is put forward, we discuss the prerequisite of VB-TPHD filter
that the measurement noise covariance is stochastic with the independent dynamic models
and the survival probability along with detection probability are also independent of the
covariance, ps,k

(
X
)
= ps,k

(
xi−1), pD,k

(
X
)
= pD,k

(
xi). Therefore, according to [29], there

is the equation as follows:

f
(

xi, Ri|x i−1, Ri−1
)
= f

(
xi|x i−1

)
g
(

Ri|R i−1
)

(A1)

Connected with Equation (12), the surviving extended trajectory PHD can be written as

Dξk

(
t, x1:i, R1:i

)
= ps,k

(
xi−1) f

(
xi, Ri|x i−1, Ri−1

)
Dπk−1

(
t, x1:i−1, R1:i−1

)
δNk [t]

= ps,k
(
X
)

f
(

xi|x i−1
)

g
(

Ri|R i−1
)

Dπk−1

(
t, x1:i−1, R1:i−1

)
δNk [t],

= ps,k
(

xi−1)· f(xi|x i−1
)

g
(

Ri|R i−1
)

Dπk−1

(
t, x1:i−1, R1:i−1

)
δNk [t],

(A2)

where f (·) and g(·) denote state transition density as well as noise covariance transition
density. Obviously, the newborn extended trajectory PHD Dγk

(
t, x1:i, R1:i

)
follows by

Equation (11):
Dγk

(
X
)
= Dγk

(
t, x1:i, R1:i

)
= Dγ

(
t, x1:i, R1:i

)
δk[t], (A3)

Dωk

(
X
)
= Dγ

(
t, x1:i, R1:i

)
δk[t]+ps,k(xi−1)· f (xi|x i−1)g(Ri|R i−1)Dπk−1

(
t, x1:i−1, R1:i−1

)
δNk [t] (A4)
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Therefore, the whole extended trajectory PHD consists of the surviving extended
trajectory PHD and the newborn extended trajectory PHD.

Appendix B

The update step of single trajectory PHD at time k can be expressed as Equations (13) and (14)
in [23]. This theorem shows the target-to-measurement association in multi-trajectory. Now,
we want to extend the concept to the extended trajectory space and hope the measuring
density can only involve the single target currently instead of the whole trajectory at
different times. According to Assumptions 4–6, the density of measurement in the extended
trajectory space is referred to by [1,23]

`k({z1, . . . , zn}|{x1, . . . , xm})

= e−λc

[
n
∏

p=1
λc

.
c
(
zp
)][ m

∏
p=1

(
1− pD

(
xp
))]

× ∑
σ∈Ξn,m

∏
p:σp>0

pD(xp) l
(

zp |x p

)
(1−pD(xp))λc

.
c(zσp)

,

(A5)

where σ ∈ Ξn,m represents the whole likely associations between n measurements and m
targets whether it can be detected or not, which follows the principle of one measurement
for one target. Therefore, we can obtain the pseudolikelihood function of the PHD filter:

LZk

(
xi, Ri

)
=
(

1− pD,k
(
xi))+pD,k

(
xi)× ∑

z∈Zk

lk( z|x i, Ri)

λcc+
s

pD,k(xi)lk( z|x i, Ri)Dτ
ωk
(xi, Ri)dxidRi (A6)

Dτ
ωk

(
xi, Ri

)
is given by Equation (21). The final posteriori extended trajectory density

can be derived from the pseudolikelihood function of VB-TPHD filter:

Dπk

(
X̂
)
= Dωk

(
t, x1:i, R1:i

)
LZk

(
xi, Ri

)
= Dωk

(
t, x1:i, R1:i

)(
1− pD,k

(
xi))

+ pD,k
(

xi)× ∑
z∈Zk

lk
(

z|x i, Ri
)

Dωk

(
t, x1:i, R1:i

)
λcc+

s
pD,k

(
xi
)
lk
(

z|x i, Ri
)

Dτ
ωk

(
xi, Ri

)
dxidRi

(A7)

Appendix C

Equations (36)–(40) mainly describe the generation of wj
ξk

, m̂j
ξk

, P̂j
ξk

in the step of
prediction under Gaussian model, which can be found in [23]. Hence, it will not be
explained too much in this appendix. It is worth noting that α

l,j
k−1 and β

l,j
k−1, the freedom

and scale parameters of the inverse gamma distribution, increase the covariances by a
factor ρ resulting in improving the stability by the VB method through the iterations.

Appendix D

The proof of Proposition 4 is described in this appendix. The process of updating
in the VB-TPHD filter is on the basis of the TPHD filter, which is elaborated in detail
in [23]. Hence, the basic Equations (44)–(50) and (52) will not be explained in this appendix.
It is critical to calculate parameters of the inverse gamma distribution estimated with a
fixed-point iteration. Section 3.2 obtains posterior distribution of the trajectory state and
the noise covariances by a factorized free form distribution. With the concrete distributions
in Section 4, DXk

(
x1:i

πk

)
and DRk

(
Ri

πk

)
can be achieved further:

∫
logDDk

(x1:i
πk

, Ri
πk

, zk|z 1:k−1)DRk (Ri
πk
)dRi

πk

= − 1
2 (zk−

.
Hm̂

j
πk
)

T
Ri−1

R(zk−
.

Hm̂
j
πk
)

− 1
2 (m̂πk−m̂j

ωk )
T

P̂j
πk
−1(m̂j

πk−m̂j
ωk )+C1,

(A8)
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where 〈·〉R =
∫
(·)DRk (Rk)dRk represents the expected value about the approximating

distribution of DRk (Rk) and C1 represents terms independent of x1:i
πk

.∫
logDDk

(
x1:i

πk
, Ri

πk
, zk|z 1:k−1

)
DXk

(
x1:i

πk

)
dx1:i

πk

= −
d
∑

l=1

(
3
2+α

l,j
πk

)
ln
((

σ
l,j
πk

)2
)
−

d
∑

l=1

β
l,j
πk(

σ
l,j
πk

)2

− 1
2 ∑ 1(

σ
l,j
πk

)2

(
zk−

.
Hm̂

j
πk

)2

l
X+C2,

(A9)

where 〈·〉X =
∫
(·)DXk (X k)dXk. It can be seen that the parameters of DRk (Rk) and DXk (X k

)
are able to be found with standard matrix manipulations. We evaluate the expectations
in Equations (A8) and (A9) to handle the parameters α

l,j
ωk and β

j,l
ωk through this step by

matching them with the statistical characteristics of the Gaussian on the left and right sides:

α
l,j
πk = α

l,j
ωk+0.5 (A10)

β
l,j
πk = β

l,j
ωk+0.5×

(
z− m̂j

πk

)2
+0.5×

(
.

HP̂
j
πk

( .
H
)T
)

(A11)
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