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Abstract: Spatial variation of soil pH is important for the evaluation of environmental quality.
A reasonable number of sampling points has an important meaning for accurate quantitative ex-
pression on spatial distribution of soil pH and resource savings. Based on the grid distribution
point method, 908, 797, 700, 594, 499, 398, 299, 200, 149, 100, 75 and 50 sampling points, which were
randomly selected from 908 sampling points, constituted 12 sample sets. Semi-variance structure
analysis was carried out for different point sets, and ordinary Kriging was used for spatial prediction
and accuracy verification, and the influence of different sampling points on spatial variation of
soil pH was discussed. The results show that the pH value in Kenli County (China) was generally
between 7.8 and 8.1, and the soil was alkaline. Semi-variance models fitted by different point sets
could reflect the spatial structure characteristics of soil pH with accuracy. With a decrease in the
number of sampling points, the Sill value of sample set increased, and the spatial autocorrelation
gradually weakened. Considering the prediction accuracy, spatial distribution and investigation
cost, a number of sampling points greater than or equal to 150 could satisfy the spatial variation
expression of soil pH at the county level in the Yellow River Delta. This is equivalent to taking at
least 107 sampling points per 1000 km2. The results in this study are applicable to areas with similar
environmental and soil conditions as the Yellow River Delta, and have reference significance for
these areas.

Keywords: sampling; soil pH; spatial variation; ordinary kriging

1. Introduction

Soil pH is an important index for evaluation of land quality [1]. Soils with acid and
alkali over the national standard are not conducive to the utilization of land resources [2].
Therefore, it is very important to understand the spatial distribution of soil pH. At the
same time, it is of great guiding significance to accurately grasp the spatial variation
characteristics of soil pH for evaluating the salinization and acidification of the soil envi-
ronment, rational fertilization and efficient utilization of nutrients [3]. However, sampling
number affects the accuracy of soil properties and their spatial variation information and
the degree of quantitative expression. The layout pattern and sampling number must be
fully considered to ensure the accuracy of spatial interpolation in any study on spatial
variation of soil pH [4–6]. Generally speaking, the larger the sampling density, the smaller
the sample error and the higher the accuracy of the research results; however, this means
the work cycle will be prolonged, and huge manpower, material resources and financial
resources will be consumed [7]. Sampling costs also limit the sampling density to a large
extent. If the number of sampling points is reduced, the interpolation accuracy of soil pH
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spatial variation will be difficult to guarantee, and local features may not be displayed [8,9].
Therefore, it is of great significance to study the reasonable number of sampling points for
accurate quantitative expression on spatial distribution of soil pH and resource savings.

Using spatial geostatistics is one of the most accurate spatial prediction methods,
and is often used to model the spatial variability for soil properties and evaluate their
spatial uncertainty [10]. At present, a method combining geostatistics and GIS is used to
study the spatial distribution of regional soil properties from the perspective of spatial
prediction, and is also used to analyze the influence of sampling density on the spatial
variation of soil properties [11]. In recent years, many scholars have carried out much
of geostatistical research on the influences of sampling number on spatial variability for
different soil properties in different areas, such as soil organic matter [12–14], nitrogen [15],
exchangeable potassium, calcium, magnesium [16], heavy metals [17,18] and salt. [19]. The
reasonable sampling quantity of different soil properties is basically different for their
different characteristics. Even for the same specific soil index, the results of different
research are different. For example, for soil organic matter, the reasonable sampling points
of spatial variation in typical areas of Yangtze River Delta were 91 per 1000 km2 [20], and
547 per 1000 km2 in Fei County, which is a typical county of North China Plain [21]. For
soil organic carbon, 908 sampling points were reasonable in typical gully areas of the Loess
Plateau, which means that 178 sampling points were needed per 1000 km2. These studies
show that there were differences in the number of reasonable sampling points even with
the same soil index because of the differences in the natural geographical environment,
such as topography and geomorphology in different areas.

In addition, survey scale has a certain influence on reasonable sampling number.
For example, in relatively consistent geomorphic units, such as Fujian Province and its
counties, the reasonable sampling points of spatial distribution for soil organic matter were
10,000 and 11,000 for every 1000 km2, respectively [12]. The existing research methods and
conclusions still need to be tested because of the different evaluation indexes, the different
natural geographical conditions and the different influence of human activities in different
study areas.

To sum up, although many scholars have carried out relevant research on reasonable
sampling numbers, at present there are few reports on related research for soil pH. Es-
pecially, research in county-level areas is lacking on the influence of different sampling
points on the spatial variation of soil pH, and because of the fragile and salinized soil
environment in the Yellow River Delta region and great attention from the government,
it is of great significance to monitor and master the spatial distribution status of soil pH
for green development in agriculture on the premise of clarifying the reasonable sampling
numbers. Therefore, Kenli County in the Yellow River Delta was selected as the study
area, and the spatial distribution of soil pH with 12 different sampling sets was predicted
using geostatistical Kriging interpolation. The overall objectives of this research were (1) to
assess the influence of different sampling numbers on the prediction accuracy of spatial
distribution for soil pH, and (2) to determine reasonable sampling densities to determine
the spatial variation of soil pH at the county scale.

2. Materials and Methods
2.1. Study Area

Kenli County in the Yellow River Delta region was selected as the study area (Figure 1).
This county is located at the mouth of the Yellow River in the Yellow River Delta of
northern Shandong Province in China, between 37◦24′–38◦10′ N and 118◦15′–119◦19′ E [22],
with a total area of 2331 km2. It has a temperate monsoon climate, with high annual
temperature and uneven spatial-temporal distribution of precipitation. The terrain is fan-
shaped and slightly inclined from southwest to northeast [23]. The altitude ranges from
2 m to 11.61 m. The parent material is loess. The mechanical composition of the soil is
mainly sandy loam. The main soil types in Kenli County are fluvo-aquic soil and coastal
saline soil in the soil genetic classification of China. The corresponding soil group names
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from WRB are Cambisols and Solonchaks, respectively. The typical crops are cotton, rice
and wheat-corn rotation. Kenli County has rich soil resources, and is one of the most
abundant land reserve resources in the coastal areas of eastern China, with great potential
for agricultural development.
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Figure 1. Overview of the study area.

2.2. Collection and Processing of Sample Data

Based on the grid distribution point method, 1140 sampling points were used in this
research. Some points on non-agricultural land were deleted and 1000 points were left.
These sampling points were mainly distributed in cultivated land, and the interval between
sample points was about 1000 m. In the actual sampling process, we adjusted the specific
positions of these sampling points for road accessibility and crop planting. The topsoil
from 0–20 cm was taken with a shovel, and then was put into a plastic bag and brought
back to the laboratory for analysis. Although 926 samples were sampled, there were
many uncertainties and complexity in field sampling. Consequently, we eliminated some
points that were not standardized in the collection process, and removed some outliers.
Finally, 908 samples were obtained, and 797, 700, 594, 499, 398, 299, 200, 149, 100, 75 and
50 sampling points were randomly selected from these 908 sampling points (Figure 2). The
above real numbers represent the approximate number sets of 900, 800, 700, 600, 500, 400,
300, 200, 150, 100, 75, 50, respectively. Each sampling point was extracted from the last
sampling point set to compare the characteristics of different sample sets. For example, the
700 sample set was extracted from the 797 sample set, and the 299 sample set was extracted
from the 398 sample set. Combining all the sample data, a total of 12 sample sets were
formed. The sampling process was conducted by the “Geostatistical Analyst” module of
arcgis 10.0. The pH of each sample was measured in 1:2.5 mixtures of soil and deionized
water with a pH meter by a potentiometric method [24].

2.3. Spatial Prediction and Verification Method

Geostatistical methods are widely used to predict the spatial distribution of soil
properties [25–29]. In this paper, we chose the Ordinary Kriging (OK) method to predict
the spatial distribution of soil pH [30]. The OK method satisfies the intrinsic hypothesis,
and the average value of the regionalized variables is an unknown constant [31]. OK is a
linear estimation of regionalized variables, which is similar to weighted moving average in
the process of interpolation research. However, the weights of weighted moving average
are determined from different sources. The weighted sliding average weight values are
derived from known spatial functions, while the weights of ordinary kriging are derived
from spatial data analysis [31]. It is necessary to verify the prediction results after spatial
distribution prediction. In this paper, an independent verification method was adopted.
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The OK interpolation results were verified. The verification method of independent
data set extracts some samples from all samples as independent data sets, takes the re-
maining samples as simulation data sets without repetition, and takes each sample in
independent data sets as an inspection point [32]. In this paper, after 797 samples were
extracted from 908 samples, the remaining 111 samples were taken as independent verifica-
tion sets. The spatial prediction results of 12 sample sets were verified. In the verification
method of the independent data set, the most representative evaluation indexes are root
mean square error (RMSE), mean error (ME) and average standard error (ASE), which were
chosen to evaluate the accuracy of prediction.

RMSE =

√
1
N ∑n

i=1

[
Z(Xi) − Z′(Xi)

]2 (1)

ME =
1
N ∑n

i=1

[
Z(Xi) − Z′(Xi)

]
(2)

ASE =

√
1
N ∑n

i=1

[
Z′(Xi) − ∑n

i=1

(
Z′ (Xi))/N

]2
(3)

where N is the number of known samples, the actual value is Z(Xi), and the estimated value
is Z′(Xi).
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The smaller the RMSE, the closer the ME to zero, indicating that the accuracy of spatial
prediction is higher. The average standard error was used to measure the uncertainty of
the Kriging prediction value.

3. Results
3.1. Descriptive Statistics Characteristics of Soil pH for Different Sets of Sample Points

Descriptive statistics analysis was made on 12 sample sets, and the results are shown
in Table 1. The soil pH values of 908 sampling points in the study area ranged from 7.00 to
8.80, with an average value of 7.85. The soil was weakly alkaline. The coefficient of variation
was 5.35%, and the variability was weak, indicating that the alkalization degree was very
concentrated. The skewness coefficient was −0.31, and the kurtosis coefficient was 2.12.
The results of normal test on skewness coefficient and kurtosis coefficient showed that the
soil pH values of different sampling points were in accordance with normal distribution.

Table 1. Descriptive statistics characteristics of soil pH for different sets of sample points.

Sampling
Point Number

Min
(g/kg)

Max
(g/kg)

Average
(g/kg)

Standard
Deviation

(g/kg)
Skewness Kurtosis Median

(g/kg)
Variation

(%)

908 7.00 8.80 7.85 0.42 −0.31 2.12 7.90 5.35
797 7.00 8.80 7.84 0.42 −0.32 2.15 7.90 5.36
700 7.00 8.80 7.85 0.41 −0.33 2.18 7.90 5. 22
594 7.00 8.80 7.85 0.42 −0.35 2.18 7.90 5.35
499 7.00 8.80 7.86 0.41 −0.37 2.19 7.90 5.22
398 7.00 8.80 7.88 0.41 −0.37 2.18 7.90 5.20
299 7.00 8.80 7.88 0.40 −0.38 2.30 7.90 5.08
200 7.00 8.80 7.89 0.42 −0.43 2.33 7.90 5.32
149 7.00 8.60 7.90 0.42 −0.59 2.46 8.00 5.32
100 7.10 8.80 7.90 0.40 −0.35 2.40 7.95 5.06
75 7.00 8.60 7.88 0.40 −0.55 2.43 8.00 5.08
50 7.10 8.60 7.85 0.41 −0.15 2.07 7.90 5.22

The minimum value of soil pH for 100 and 50 sampling points was 7.10 g/kg, and the
minimum value of other sampling points was 7.00 g/kg. The maximum values of 908, 797,
700, 594, 499, 398, 299, 200 and 100 sample points were all 8.80 g/kg, and the maximum
values of only 149, 75 and 50 sample points were 8.60 g/kg. However, they were still very
similar. Among the 11 sub-samples, the average value and standard deviation of soil pH
also fluctuated around the average value and standard deviation of the complete set, which
indicated that although the number of sampling points decreased, the 11 samples could
still represent the complete set. The coefficient of variation of soil pH ranged from 5.06% to
5.36% among the 11 sub-samples, and the variability was weak. To sum up, the analysis of
each index of each subset showed that the selected subsets were all representative.

3.2. The Influence of Different Sampling Points on the Semi-Variance Structure of Soil pH

Semi-variance analysis of soil pH was carried out by a geostatistical method. Table 2
shows the semi-variance function values of soil pH under different sampling points. The
spatial variation structure of soil pH at other sampling densities conformed to the expo-
nential model, except for 75 sampling points. The level of decision coefficient represented
the effect of fitting the variogram by the model. The higher the decision coefficient, the
better the effect of fitting the variogram by the model [33]. The determination coefficients
of different sampling points were between 0.39 and 0.69, indicating that the model could
reflect the spatial structure characteristics of soil pH with accuracy.

The ratio of Nugget to base Sill (C0 + C) reflects the degree of spatial autocorrelation
of variables. This is considered a strong spatial autocorrelation when the ratio is less than
25%, has moderate spatial autocorrelation when the ratio is between 25% and 75%, and
has weak spatial autocorrelation when the ratio is greater than 75%. The Nugget/Sill of
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the total sample set (908 sample points) in this study was less than 25%, showing a strong
spatial autocorrelation. The Nugget/Sill of 200–800 samples in the other 11 sample subsets
was less than 25%, which indicates that these sample sets had strong spatial autocorrelation.
However, when the number of samples was less than 200, the Nugget/Sill ranged from
25% to 75% (with moderate spatial autocorrelation). When the number of samples was less
than 150, the Nugget/Sill reached 40%, which indicates that the spatial autocorrelation of
these samples was weakened.

Table 2. Parameters of semi-variance function of soil pH under different sampling points.

Sampling Point
Number Model Nugget

(C0)
Sill

(C0 + C)
C0/Sill

(%)
Range
(km) Determination Residual

926 exponential model 0.0350 0.1786 19.60 4.80 0.68 0.00
801 exponential model 0.0360 0.1778 20.25 5.13 0.72 0.00
704 exponential model 0.0360 0.1752 20.55 4.77 0.68 0.00
598 exponential model 0.0360 0.1780 20.22 4.75 0.69 0.00
502 exponential model 0.0330 0.1742 18.94 4.82 0.69 0.00
401 exponential model 0.0350 0.1750 20.00 4.70 0.60 0.00
300 exponential model 0.0350 0.1658 21.11 4.81 0.60 0.00
201 exponential model 0.0295 0.1810 16.30 4.87 0.44 0.00
150 exponential model 0.0442 0.1736 25.44 6.54 0.39 0.00
100 exponential model 0.0952 0.1914 49.74 26.52 0.64 0.00
75 spherical model 0.0869 0.1748 49.71 13.77 0.49 0.00
50 exponential model 0.1247 0.3174 39.29 160.59 0.61 0.00

The variable range represents the autocorrelation range of the variogram [34], and can
reflect the size of the autocorrelation range in the variable space. In this paper, the fitting
range of soil pH under a different number of points was more than 4 km, indicating that
the spatial autocorrelation distance was relatively large. Among them, when the number of
sampling points was reduced to 100, the range increased, reaching 26.52, which was about
five times that of the 200 sampling points.

3.3. The Influence of Different Sampling Points on the Spatial Prediction Accuracy of Soil pH

For each sample set, Kriging interpolation was used to carry out the spatial predic-
tion of soil pH. Root mean square error (RMSE), mean error (ME) and average standard
error (ASE) were used to measure the prediction accuracy of soil pH under different
sampling points.

It can be seen from Figure 3 that ME of 75, 100, 150, 200 and 300 was greater than 0,
and that of other sampling points was less than 0. The ME value varies with the number of
sampling points, but the variation does not follow the law that the ME decreases with the
increase of sample number. When the sampling points were 50 and 300, the ME values were
close to 0. In theory, the closer the ME to 0, the higher the accuracy of spatial prediction. In
this case, the value of ME is generally calculated from statistical methods. It is possible that
the independent verification results of each sample point were poor, but the residual errors
after addition and averaging were smaller. When ME is close to 0, the prediction has low
accuracy. Therefore, the ME index cannot indicate the accuracy very well at this point. On
the other hand, a single index cannot indicate the interpolation accuracy well, and multiple
indexes may be more accurate to judge the interpolation accuracy. With the decreased of
sample size, the distance of ME deviating from X axis first increased, then decreased and
then slightly increased. It basically surrounded the X axis except for 75 and 100 sample
points. Therefore, when the number of sample points was too small (75, 100), the ME of
predicted values would become larger.

The RMSE was slightly larger with 50 samples. There was no obvious change trend
with the decreased sample size, and it could remained at a certain value. This shows
that the RMSE had no obvious difference in the spatial prediction accuracy of different
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sample subsets, i.e., the accuracy of Kriging interpolation had no significant difference with
decreased sample size.
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The uncertainty of Kriging prediction was measured by the ASE. The closer the ASE
the RMSE, the more accurate the prediction of attribute value. In this study, when there
were 150, 200 and 900 samples, ASE and RMSE were basically equal, indicating that the
spatial variability of the earth was properly estimated. When the number of sampling
points was 300–800, the ASE was smaller than the RMSE, and the difference between them
was very small, indicating that these sampling points overestimated the spatial variability.
However, when the number of sampling points was less than 150, the ASE was obviously
less than the RMSE, so these sample sets could not reasonably predict the variability.

Considering the ME, RMSE and ASE, 107 sampling points per 1000 km2 could meet the
needs of spatial variation expression of soil pH in the Yellow River Delta. According to the
above analysis, we also determined that it was not enough to evaluate Kriging prediction
accuracy only by a single evaluation index. Therefore, it was necessary to use a variety of
evaluation indexes and combine them to accurately evaluate the prediction results.

3.4. Effects of Different Sampling Points on Spatial Distribution of Soil pH

To more intuitively show the influence of different sampling point sets on the spatial
distribution of soil pH, the Kriging method was used to carry out a spatial interpolation
operation (Figure 4). The eastern of Kenli County was not sampled because the area is in the
Yellow River Delta National Nature Reserve. However, for the continuity and completeness
of pictures, Kriging interpolation was extended to the entire Kenli County. When analyzing
the spatial variation characteristics of soil pH, the Yellow River Delta National Nature
Reserve in the east of Kenli County was not a focus of analysis.

In the study area, the yellow part shown on the map (Figure 4) had a large area: that
is, the soil pH in Kenli County of the Yellow River Delta was generally between 7.8 and
8.1, which proved that the soil in this area was alkaline. The areas with high soil pH
value (orange-red) were distributed in the middle and southwest of study area. With the
decreased of the number of sample points, the ability to describe details was gradually
weakened. When the number of sampling points was reduced to 100, the details of soil
pH in the middle and north of the study area were no longer detailed, and only a general
distribution trend could be seen. Therefore, considering the precision and research funds,
it is suggested that the reasonable sampling number in the Yellow River Delta should not
be less than 150.
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Figure 4. Expression diagram of soil pH spatial variation of different point sets. The letters (a–l)
represent the spatial variation expression of soil pH at 908, 797, 700, 594, 499, 398, 299, 200, 149, 100,
75 and 50 sampling points respectively. Note: The eastern of Kenli County was not sampled because
the area is in the Yellow River Delta National Nature Reserve. However, for the continuity and
completeness of maps, the result of the unsampled area was deduced and extended by the Kriging
interpolation based on the near sampled soils.

4. Discussion

Spatial variation of soil properties is controlled by various structural and random
factors. The larger the ratio of Nugget to Sill, the more obvious the influence of human
activities, such as irrigation, fertilization and cultivation. On the contrary, structural factors
such as soil parent material, climate, biology, topography and other natural factors play a
major role [35,36]. The ratio of Nugget to Sill of almost all sample sets in this study was less
than 25% and showed strong spatial autocorrelation, indicating that the spatial variation of
soil pH in the study area was mainly affected by structural components such as topography,
climate and soil parent material. When the sampling point was less than 150, the ratio
of Nugget to Sill reached 40%, indicating that the spatial autocorrelation of these sample
sets was weakened, and was influenced by structural components and random factors.
With the decreased of the number of sampling points, the small-scale structural factors and
random factors gradually increased, while the influence of large-scale structural factors
such as parent material, topography and soil type on soil pH gradually weakened, which
caused the soil pH to change strongly with the small number of sampling points.
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According to the analysis of spatial prediction accuracy of soil pH with different sam-
pling sets, the ME of predicted values gradually increased when the number of sampling
points was too small. The RMSE could basically be maintained at a certain value with a
decrease of sampling numbers, except for being slightly larger at 50 sample points. Interpo-
lation prediction error and interpolation of the distribution map had a certain synergistic
relationship with the change of sample numbers. When there were less than 150 samples,
the difference between ASE and RMSE was large. Correspondingly, the spatial distribution
maps of soil pH with less than 150 sampling points were too smooth to show the spatial
distribution of soil pH accurately. However, when the number of samples was increased
to 150 or more, details of the spatial variation expression diagram of soil pH were more
obvious, and could show the spatial variation expression of soil pH more accurately. In
addition, at 150 or more sampling points, the prediction error maps of RMSE, ME and
ASE of soil pH and the expression maps of spatial variation of soil pH in different point
sets could better predict the spatial variation of soil pH. Therefore, it was shown that the
prediction error of soil pH was consistent with the spatial distribution of soil pH.

In this paper, the influence of the number of different sampling points on the spatial
distribution of soil pH in the Yellow River Delta region was investigated by using the
ordinary Kriging method. It was concluded that the number of sampling points most
suitable for Kenli County in the Yellow River Delta region should be no less than 150; that
is, at least 107 sampling points should be taken every 1000 km2. This paper also compared
the existing literature investigating reasonable sampling numbers of soil pH. Study [37]
showed that the rational sampling number at the county scale was about 4900 samples
per 1000 km2, which was inconsistent with our findings. This may be because in that
study the area was located in a more undulating mountainous and hilly region resulting
in a reduced spatial autocorrelation of soil pH. While this result was similar to the most
reasonable number of sampling points needed for soil salinity in Kenli County of the Yellow
River Delta studied by Zhang et al. [19], it revealed that the number of sampling points for
spatial variation expression of different soil properties in areas with similar environmental
conditions may get closer.

5. Conclusions

In this paper, Kenli County in the Yellow River Delta was selected as the research
area. Twelve sample sets consisting of 908, 797, 700, 594, 499, 398, 299, 200, 149, 100, 75 and
50 sampling points were selected to study the influence of sampling number on the spatial
variation of soil pH. A reasonable sampling number was determined, which provides for
the collection of soil samples with minimum human, material and financial resources for
research on soil pH.

With the decreasing the sampling points number, the C0/Sill value of the sample
set increased, and the spatial autocorrelation decreased gradually. The variation range
of soil pH fitted by different numbers of points was greater than 4 km, and the spatial
autocorrelation distance was relatively large. When the number of sampling points was
reduced to 100, the range increased significantly, reaching 26.52, which was about 5 times
that of 200 sampling points. Comprehensive analysis of ME, RMSE and ASE showed that
when the number of sampling points was 150, prediction accuracy was the highest, which
can satisfy the spatial variation expression of soil pH in the Yellow River Delta region.

The pH value in Kenli County was generally between 7.8 and 8.1, and the soil was
alkaline. Areas with high soil pH value were distributed in the middle and southwest of
the study area. With a decreased number of sampling points, the detailed characteristics
of spatial variation of soil pH gradually disappear. When the number of sampling points
was 150, it could not only describe the spatial distribution of soil pH in detail, but also
accurately describe the spatial distribution pattern of soil pH.

Therefore, considering prediction accuracy, spatial distribution and research funding,
it is suggested that the reasonable sampling number should be no less than 150 in the
Yellow River Delta region, which is equivalent to at least 107 sampling points for 1000 km2.
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The results of this study are applicable to areas with environmental and soil conditions
similar to those in the Yellow River Delta and have reference significance for these areas.
However, the number of sampling points will be different in other areas to reasonably
express the spatial distribution of soil pH, and needs to be analyzed in combination with
local environmental conditions.
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