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Abstract: Cochlear implants provide hearing perception to people with severe to profound hearing
loss. The electrode array (EA) inserted during the surgery directly stimulates the hearing nerve,
bypassing the acoustic hearing system. The complications during the EA insertion in the inner ear
may cause trauma leading to infection, residual hearing loss, and poor speech perception. This work
aims to reduce the trauma induced during electrode array insertion process by carefully designing a
sensing method, an actuation system, and data-driven control strategy to guide electrode array in
scala tympani. Due to limited intra-operative feedback during the insertion process, complex bipolar
electrical impedance is used as a sensing element to guide EA in real time. An automated actuation
system with three degrees of freedom was used along with a complex impedance meter to record
impedance of consecutive electrodes. Prediction of EA direction (medial, middle, and lateral) was
carried out by an ensemble of random forest, shallow neural network, and k-nearest neighbour in
an offline setting with an accuracy of 86.86%. The trained ensemble was then utilized in vitro for
prediction and correction of EA direction in real time in the straight path with an accuracy of 80%.
Such a real-time system also has application in other electrode implants and needle and catheter
insertion guidance.

Keywords: complex bipolar impedance; electrode array trajectory; classifier-in-a-loop; machine
intelligence

1. Introduction

The cochlear implant (CI) has established itself as the state-of-the-art and most suc-
cessful artificial prosthesis used by humans. It is an electronic device that is used to treat
severe-to-profound hearing loss as an alternative to a normal mechanical hearing system [1].
An electrode array (EA) along with a mic, transmitter–receiver pair, and a speech processor
directly stimulates the neurosensory auditory nerves. During the last 30 years, around
0.6 million people have received CI system whereas only 10,000 were CI recipients thirty
years ago, mainly due to strict candidacy criteria [2]. Even with this success, postoperative
hearing outcomes are still variable and limited partly due to inefficiency in the process of
placing the electrode array (EA) in the right position inside scala tympani (ST) [3].

Among several other factors, such as device parameters, aetiology, hearing loss pro-
gression, extent of residual hearing, and device programming, trauma induced during the
surgical insertion of EA has paramount importance and should be reduced to minimum
to achieve reasonable hearing outcomes [4–6]. The process of atraumatic insertion pos-
sesses several challenges: the size of cochlea/ST, position of facial nerve with respect to
cochlea opening, the insertion axis, and associated trajectory and inconsistency of mental
representation of insertion axis among surgeons. Preserving the internal tissue structures
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during insertion, such as basilar membrane, osseous lamina, and spiral ligament, are fun-
damentally important for better hearing perception post-surgery [6,7]. Translocation of EA
from ST to scala media (SM) or scala vestibuli (SV) is a major cause of residual hearing loss
that can to lead poor CI performance throughout a patient’s life [8]. EA tip foldover and
buckling may also cause trauma and reduces the frequency selectivity [9]. Inter-cochlear
inflammatory response and fibrosis development are caused by the trauma induced during
EA insertion that may result in degradation of both electrical and acoustic hearing [10].

To minimize the trauma and better position the EA, as well as eliminate the risk of
insertion failure, different EA design, insertion, and surgical techniques (manual, semi-
automated, and automated) have been developed [11,12]. However, there is still need for
a method for prediction and correction of EA position inside the ST. The system ideally
keeps track of EA trajectory with sensing capabilities and applies corrective measures
where necessary. EA insertion cannot be imaged either internally or externally due to lack
of line of sight from outside and very narrow internal structure. However, there is the
possibility of computed tomography (CT) scans during surgery to guide the array but
excessive CT scans expose the patients to the ionization radiation [13]. Some researchers
have also developed electrode arrays with integrated sensors. For example, Clark et al. [14]
developed a magnetic guided insertion system in which a magnetically tipped EA is guided
as it is inserted in to the cochlea with the help of a externally placed manipulator magnet.
The external magnet placed close to the patient’s head applies magnetic torque to the
array tip, causing it to bend away from the ST walls. The solution provided by [15] is
based on microelectromechanical (MEM) technology. High-density silicon-based electrode
arrays are developed with integrated mechanism for stimulation, recording, and position
control. Having mentioned these systems, it is still not possible to integrate sensors in the
commercially available EAs due to rigidity introduced by the sensor that defeats the very
purpose of trauma-less insertion.

In addition to other paradigms, robotic systems can also help in reducing damage to
the inner structure due to their potential increased accuracy compared to manual surgery
by hand. Such robotic systems are experimentally used for EA insertion with preplanned
paths using CT imaging technology [16,17]. This technique is also known as image-guided
insertion; however, guidance is not continuous and there is no feedback control system. A
robotic system integrated with a force sensor also provides useful feedback information
that has the potential to reduce the trauma. Studies have found that damage to the inner
ear are directly associated with the forces exerted by the EA on the inner structure during
the insertion [18–20]. Some studies also suggested that ultra-low-speed insertion with a
robotic tool also helps minimize the insertion forces [21–23]. Such systems cannot provide
local force profiles, and they can only have start–stop feedback control.

We have considered complex electrical impedance of electrode contacts as sensing
elements, as all commercially available CI systems have impedance measuring capabilities.
However, the measurement system can only record impedance magnitude and is used for
post-operative check of electrodes’ functioning (working, short, or open circuit). Impedance
measuring of an electronic circuit would need some modifications to be used for continuous
recording of complex impedance during insertion. Impedance sensing exploits the change
in chemical reactivity around electrodes in a conductive material (i.e., perilymp in ST) that
changes due to its surroundings (change in amount of fluid between electrode and wall,
different tissue structure inside ST) [24]. Studies have shown that there is a relation between
electrode impedance recording and their distance from the ST walls during insertion. A
number of research groups have demonstrated this fact to various degrees using different
stimulation approaches (monopolar, bipolar), electrode array types (straight, perimodiolar),
insertion techniques (standard insertion technique (SIT), advance off style (AOS)), and
ST modalities (plastic model, cadaver) [25–28]. We have chosen the bipolar impedance
measurement method as our sensing modality as previous studies [25,26] have shown good
promise for its efficacy for EA–wall distance prediction. Having said that, another study [29]
has shown that the tetrapolar impedance measurement technique reduces noise/artefacts
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at the electrode–electrolyte junction. Tripolar and tetrapolar impedance measurement
also needs to be investigated in cochlear implantation. Electrical impedance is also used
for detection of EA insertion failure and translocation [30–32]. Most recently, electrode
impedance recordings were used for insertion depth estimation [33].

The limitations of the above-mentioned systems are that they were tested as only
the sensing modality, and they were not tested as a feedback system that can predict, as
well as make, corrective measures during insertion. Additionally, the final placement of
electrode array into ST mainly depends on the insertion angle or trajectory; however, there
is limited intra-operated information regarding the optimum trajectory. The aim of the
current study is to utilise complex impedance recordings for the development of a complete
feedback loop system. This system compromises an actuation unit, impedance measuring
unit, machine learning classifier for trajectory prediction, and feedback control unit. This
system provides a data-driven approach and is experimentally tested for prediction and
correction of EA trajectory during insertion in a plastic ST model.

2. Materials and Methods
2.1. Experimental Setup

Complex bipolar impedance data recording of the electrodes during the insertion
process was carried out by a system comprising a three-degree-of-freedom actuation
system, a saline-filled plastic cochlea model, an impedance meter, and an electrode array
attached to the actuation system.

The electrode array is Oticon Medical’s Evo with 20 platinum–iridium electrodes. The
EA has an active length of 24 mm. As shown in Figure 1A, electrodes are individually
wired and connected to the 20-pin header socket. Electrodes are evenly spaced but their
size reduces from basal to apical electrode, as shown in Figure 1B,C.

Figure 1. (A) Electrode array with associated wiring (wraped in silicon carrier) soldered and glued
to a female connector, (B) close-up version of 20 electrode contacts, (C) part of electrode array
under microscope.

An actuation system shown in Figure 2 was used for controlled insertion of EA in the
ST model. This system has three DoF, where it can be moved horizontally, vertically and
rotationally. The vertical stage was connected on the horizontal stage and the rotational
stage was placed on the vertical stage. A holder was placed on the rotational stage to place
EA for insertion. The EA was inserted from three different directions to form different
trajectories during insertion.

The overall configuration chain of impedance measurement and its detailed block
diagram is shown in Figure 3. The EA was connected with the impedance meter through
the female header connector. Bipolar impedances of electrode pairs were recorded using
a voltage divider circuit, where DUT is an electrode pair (EP) in series with a known
resistance, as shown in Figure 4. A voltage signal 1 V p-p at 1 kHz frequency is applied to
the series circuit through an NI DAQ 6211 device’s analogue output port, and voltages are
recorded across both electrode pair and known resistance using the same device’s analogue
input ports. The current through the circuit is calculated using the known resistance (R)
and voltage (VR) across it using Ohm’s law, as shown in Figure 3B. Impedance magnitude
of the electrode pair is calculated using the relation |Z| = VEP/Ic. The impedance phase
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is calculated by subtracting the current phase from the phase of voltage across EP. In our
previous study, it was shown that impedance phase and its resistive and reactive parts are
also useful for classification of different trajectories [28]. Using geometrical representation,
we can extract Cartesian coordinates (R and X) with the help of polar coordinates (|Z|
and θ), as shown in Figure 3B. We collected bipolar impedance magnitude (|Z|), phase
(θ), resistance (R), and reactance (X) of eight electrode pairs. The setup configuration
chain of the impedance meter is shown in Figure 3A. EA is connected to the multiplexer
that selects a certain EP to act as a DUT in the voltage divider circuit. NI DAQ devices
(6211 and 6009) are responsible for all analogue input/output voltage signals and digital
control signals to the multiplexer (C1–3 and C4–6), respectively. These control signals select
particular electrodes to make an EP. A custom MATLAB GUI application handles all the
data input/output to the DAQ devices and processing to spit out the required features
(|Z|, θ, R, and X). These features will further be used for our machine-learning-based
prediction of trajectory and position of electrode array during the insertion.

Vertical stage

Horizontal Stage

Rotational Stage

Electrode Array

ST model

Modiolar

Middle

Lateral

Figure 2. Three-DoF actuation system for electrode array insertion in ST model. Graphical represen-
tation of insertion from three different directions are in the inset.
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Figure 3. (A) Impedance measurement setup configuration chain, (B) detailed block/circuit diagram
for the complex impedance measurement system. The diagram is colour-coded according to the
sections of the system.
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NI DAQ 6211 Device DUT
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AI1

AI GND

AI2

AO GND

Figure 4. Basic design concept of impedance meter with DAQ device.

2.2. Data Recording

The EA is inserted into a 2:1 scaled-up 2D plastic ST model 137 times in three different
directions (medial, middle, lateral). The speed of insertion remained constant at 0.08 mm/s
throughout the experiments. The data recording of four electrical features of eight EPs
were carried out sequentially during the insertion. We found in our previous study that all
four features mentioned above are important and even one pair of electrodes can give a
reasonable prediction of electrode trajectory. In this study, we use data recordings of most
apical electrode pairs for both offline and online trajectory prediction and correction. For
every mm of insertion, there is one sample of each feature (|Z|, θ, R, X). Therefore, there
would be n samples of each feature for n mm insertion (|Z|1, θ1, R1, X1....|Z|n, θn, Rn, Xn).

2.3. Offline Analysis

In our previous study, we concentrated only on full insertion prediction and partial
insertion prediction using multiple EPs data only in the offline setting. In this study,
machine learning algorithms, namely, shallow neural network (SNN) [34], support vector
machine (SVM) [35], k-nearest neighbour (kNN) [36], and random forest (RF) [37], were
used for offline analysis of trajectory and position prediction. Offline prediction entails
recording of the data and then analysing it for prediction accuracy. In online (real-time
when there are limits to latency) prediction, the trained model is tested in real time and its
prediction accuracy is validated. Real-time prediction of trajectory and position of electrode
array was carried out using only the most apical EP data recordings. An ensemble of the
three best performing classifiers (SNN, kNN, and RF) with majority voting mechanism was
chosen as our final predictor, as shown in Figure 5.

Dataset

Test Dataset

Training 
Dataset

Random Forest

Shallow Neural 
Network

K-nearest 
neighbour

Majority Voting Final predictor

Figure 5. Ensemble of classifier for real-time classification.

2.4. Classifier-in-a-Loop System

Recently, advancements in machine learning techniques, sensing technologies, and
computation capabilities in the control systems have led to increased interest in data-
driven and learning-based control strategies [38]. The vast generation of data by complex
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systems carry important information about the structure and operation of these systems,
for example, data collected from brain, autonomous cars, unmanned aerial vehicles, and
satellite navigation, to name a few. When a first-principle model is difficult to obtain and
is complex, these data recordings can help scientists to understand, predict, classify, and
ultimately control the behaviour of the system [39].

For feedback control, one of the approaches utilizing sensor measurement data is to
classify it into one of the finite sets of classes (situation), and each class corresponds to a
known control action [40]. In one of such research projects, image data were used to design
a controller, using this technique to control a quadrotor to navigate a forest trail [41]. Images
were captured from three sides (left, centre, and right) of real-world hiking trails, and a
multiclass (three) deep neural network classifier was trained and tested on these images.
Real-time feedback controller was designed according to the three classes, for example,
when an image is classified as right side of trail, the quadrotor will turn left, and so on.
Based on this work, we have implemented our system using time series data acquired from
an impedance sensing unit for EA optimized steering during cochlear implantation. A
plastic ST perception technique based on machine learning algorithms was developed that
bypasses the problem of determining the underlying characteristics of ST.

Let us consider a dynamical system shown in Figure 6, where the dynamics of the
system can be expressed as

x′ = f (x, u) (1)

In Equation (1), state is represented as x ∈ X and control input is u ∈ U. x′ represents
change in the state x. f is the function that defines the drift. From Figure 6, the sensor
generates the feature s ∈ S and is dependent on the state x, and their relationship is
unknown. The classifier maps the feature s to a unique label b ∈ B. The aim of the classifier
is to learn the weights w ∈ Rn to minimize the error between the predicted label and the
actual label associated with a certain feature vector. The set of labels B = {bL, bM, bR}
corresponds to the position of electrode array on the left, middle, or right of the ST model’s
horizontal plane. The three labels are associated with three different control actions that
the carrier has to implement for electrode array to stay in the middle of the ST (away from
walls). These are the following:

1. Move Left, if the array is touching the right (lateral) wall.
2. Move Right, if the array is touching the left (modiolar) wall.
3. Go Straight, if the array is in the middle.

Sensor

ControllerClassifier System

s

b u x

Figure 6. A classifier in a loop feedback control system.

The dataset consists of the features and the labels (xj, sj, bj), where j represents index of
an example in the dataset. The classifier tries to find the relationship between the features
and the labels. The feature vector s depends on the state x, so we can say that the classifier
indirectly learns the mapping from state to the control. This way, the classifier generates
the control input u to the system and it results in a closed-loop feedback system, as shown
in Figure 6.
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2.5. Problem Formulation

The insertion of the electrode array is configured such that it is presented as (x, y, θ)
in the plane where (x, y) points are considered as the location of array tip, and θ angle
represents heading of the array with respect to centre line of the ST model towards either
of the modular/lateral walls (as depicted in Figure 7A). Let ~d be the centre line trajectory of
the electrode array and ~v be defined as direction of array insertion away from the centre
line direction. The goal of the insertion is to keep the electrode array in the centre of the
straight path of the ST model until it touches the curved path, where it slides along the
curved path. The motivation of keeping the electrode array on the centre line trajectory
is twofold: (1) it would not damage the delicate structure of the ST walls; (2) the centre
line insertion imposes less overall force when the array touches the curved path and slides
along it.

x,y

θ
x

y Straight 
Path

Curved path

dd
vv

A B

Figure 7. (A) Electrode array insertion configuration. (B) Division of insertion path into straight and
curved sections.

For this problem, we are considering the ST model as two paths; one is the straight
path and the other is the curved path, as shown in Figure 7B. One of the classification
models would predict whether the position of the electrode array is located in the straight
path or the curved path at a certain time. In this work, we will be generating the control
signals for only the straight path, as we were unable to find any mechanism to control array
in the curved path.

For real-time prediction, we have used two classifiers: (1) classifier A for trajectory
prediction, and (2) classifier B for path/position prediction. Both classifiers would be
trained on 4 mm subsequence data of the most apical electrode pairs because this is where
most of the information about insertion is.

Although a reasonable accuracy has been achieved by our individual model, the
ensemble approach has been used to increase the classification accuracy for both our
classifiers. According to [42], ensemble learning is the method in which multiple classifiers
are combined to take their weighted vote to make predictions on new data. Each classifier
makes its prediction and then votes for the final prediction, as shown in Figure 5. This figure
explains one of the ensemble learning processes that is called majority voting ensemble. In
this kind of scheme, the final predictor would be the predictor that receives the majority
vote from the multiple classifiers. In our setup, we have three classifiers (RF, SNN, and
KNN) that achieved the maximum accuracy. Although it is possible to give uneven weights
to the individual classifier vote, equal weight is given to each classifier in our system.

All the offline classification is carried out using Python 3.6, but in order to keep a
homogeneous system along with actuation and sensing, a machine learning system is
developed again in MATLAB. All the hyperparameters of learning models remain the
same, and individual models are trained and tested again to make sure performance is kept
the same as Python models. The ensemble majority voting algorithm is also developed
in MATLAB.
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Once we have ensemble-based trained models for both classifier A and B, we set up
the system for real-time prediction and correction. Figure 8 shows the control flow graph
for real-time prediction and correction of the insertion trajectory. As mentioned above, this
control strategy is for the straight path only to keep the electrode array at the centre line of
the ST model. For this, there is a need to first predict whether the electrode array is in the
straight path or the curved path.

Start

Trained Classifier A

Label?

Trained Classifier B

Label?

Impedance Measurement

Correction

Iterations?

Stop

bi**

ai*

medial, lateral

middle

>n

<=n

*after impact

** before impact

Figure 8. Flow graph for online prediction and correction.

3. Results
3.1. Offline Classification Results

The electrode array is inserted from three different angles and takes three different
trajectories during the insertion process. In this analysis, generalization of four classification
algorithms (SNN, KNN, SVM, RF) are looked into, using the partial insertion data of
four electrical features (|Z|, θ, R, and X) of the most apical electrode pair. Additionally,
this analysis is carried out on standardized raw data. After the data are organized for each
segmentation scenario, machine learning models are trained and tested using a fivefold
cross-validation procedure. For SNN, we used a multilevel perceptron (MLP) with two
hidden layers of size 100 and 10, respectively, and finally a classification layer with three
neurons. The hidden layers had an associated nonlinearity of rectified linear units (ReLU). A
softmax layer was used to convert the output of the MLP into probabilities of the respective
classes. The network was trained for 1000 epochs using an Adam optimizer at a learning
rate of 0.001. For SVM, radial basis function (RBF) kernel function was used to train the
data, dynamic time warping (DTW) was used as a distance metric, and five number of
neighbours were used for the kNN classifier model. We did not use any weight class metric
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as our dataset is balanced. For the online prediction of trajectory, data from the most apical
electrode pair (EP1) are used to train and test the algorithms first, and then we use the
trained model for online prediction with the new collected data during the insertion process.
Different length subsequences of EP1 data are used, that is, subsequence data collected
during 4 mm, 3 mm, 2 mm, and 1 mm insertion. For these subsequences, a different set
of data is assembled for analysis and only the straight path is considered for prediction
and further correction. For example, for 4 mm insertion depth, two subsequences of four
time samples each are extracted from each insertion example. These two subsequences will
make two separate examples in the new dataset. That means now there would be 137 × 2
(274) examples in this dataset with respective targets (medial, middle, lateral). In the same
way, for 3 mm subsequence, there will be three subsequences of three time samples each
and each subsequence will make an example in the new dataset (137 × 3 = 411 examples)
with respective target label. Moreover, new datasets for 2 mm and 1 mm subsequences
have 137 × 4 = 548 and 137 × 8 = 1096 examples, according to the split of the straight path
data. It is important to mention that we are using all four features (|Z|, θ, R, and X) in
this analysis.

Table 1 shows the machine learning algorithms’ performances in terms of their cross-
validated accuracies. As can be seen in the table, highest accuracy is achieved when 4 mm
subsequences are used, and 2 mm subsequences came in second in terms of accuracy. The
1 mm subsequences achieved the lowest accuracy. This behaviour is attributed to SNN and
kNN algorithms, whereas the accuracy decreases as the subsequence length is decreased
from 4 mm–1 mm. In terms of the best-performing algorithms, SNN gave the best accuracy
among the four algorithms cross-validated, while the SVM algorithm performed the worst.

Table 1. Cross-validated multiclass accuracies for trajectory prediction using the most apical EP
specific subsequences during straight path insertion.

Sub-Seq
Accuracy (%)

SNN SVM KNN RF

EP
1

4 mm-2 86.8 69 79.1 82.5
3 mm-3 78.8 64.2 72.0 73.5
2 mm-4 80.3 65.3 77.0 72.8
1 mm-8 75.2 66.7 76.3 71.2

For trajectory prediction, two methods of subsequencing were used and tested. Further
analysis is carried out to predict whether the electrode array is in the straight path or the
curved path during the insertion. For this, we use the full insertion data and split them
into straight path and curved path data, labelling them accordingly. Since now we only
have two classes (straight or curved), we term such problem as a binary classification.
Different datasets are formed according to the subsequence length, labelled accordingly,
and cross-validated on four machine learning models. For example, for 4 mm subsequence
there will be two subsequence examples of straight path and three subsequence examples
of curved path. That is, there will be five examples in the new dataset out of one example
from the original dataset. The examples in the new dataset will be given target labels
according to the path (straight or curved). The 4 mm-2C/3S dataset will have 137 × 5 = 685
examples to train and test using the algorithms. In the same way, new datasets, namely,
3 mm-3S/3C, 2 mm-4S/5C, and 1 mm-8S/10C, have 137 × 6 = 822, 137 × 9 = 1233, and
137 × 18 = 2466 examples, respectively.

Table 2 presents the accuracy results for the path prediction during the insertion
process using different subsequence length datasets. These results show that as the subse-
quence length is decreasing, the accuracy of all algorithms also decreases. This is obvious
because of the shorted length vector; we have less information available for prediction.
However, the decrease is not linear due to increased number of examples on which the
model is trained and tested, which makes generalization easier. As shown in Table 2,
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again, the highest accuracy of 87.4% is achieved by SNN on 4 mm subsequences. Overall,
SNN also outperformed other machine learning models in terms of accuracy. The lowest
performer was the random forest model, with accuracy of 65.9% when 1 mm subsequences
were used.

Table 2. Cross-validated binary class accuracies for straight/curved path prediction using EP specific
subsequences. S—straight path, C—curved path.

Sub-Seq
Accuracy (%)

SNN SVM KNN RF

EP
1

4 mm-2S/3C 87.4 81.3 83.7 83.2
3 mm-3S/3C 82.4 76.4 76.9 78.3
2 mm-4S/5C 78.7 73.2 76.6 74.4
1 mm-8S/10C 64.2 67.1 68.2 65.9

3.2. Real-Time Classifier-in-a-Loop System

Now there is enough evidence from our offline predictive analysis for machine learning
algorithms to be used as an online/real-time classifier for electrode array steering during
insertion. By this, we can achieve low force profiles during EA array insertion that could
lead to less traumatic intraoperative behaviour. This online method is used for correction of
the trajectory of the electrode array during the insertion based on the prediction of machine
learning models.

Figure 9 presents the pictorial representation of one of the real-time experiments. In
Figure 9A, the experimental setup is shown as the EA is inserted for 4 mm and data are
collected, EA trajectory is towards the medial wall as EA can be seen inside the saline-filled
ST model. A close-up of this trajectory is shown in (C). Once the recorded data vector is
passed on to classifier A and classifier B, the controller makes the correction by moving the
rotational stage of the actuator towards the right by 0.5◦, as shown in Figure 9B and in the
close-up in (D). The trajectory could be towards the lateral wall, as shown in (E), and is
corrected, as shown in (F).

Table 3 shows the ensemble learning classification results for both offline and real-
time predictions. Ensemble learning models (classifier A and classifier B) are trained and
tested first using three machine learning algorithms. The classifier A ensemble model
achieved accuracy of 89.05%, which is an increase from 87.4%, when the highest performing
individual model was used for path prediction. For classifier B, cross-validated accuracy of
86.86% was achieved using ensemble learning, which is slightly higher than the highest
performing individual SNN model. For online prediction, 30 iterations were performed
to test both classifier ensemble models. Classifier A achieved 83.33% accuracy, whereas
classifier B achieved slightly lower accuracy of 80%, when tested for online prediction
and correction.

Table 3. Offline and real-time classification accuracy using ensemble of classifiers.

Ensemble Classification Model Offline Accuracy (%) Real-Time Accuracy (%)

Classifier A 89.05 83.33
Classifier B 86.86 80.00



Appl. Sci. 2022, 12, 6343 11 of 14

.

.

.... ..
..

.... ..
..

A B

C D

E F

.

.

.... ..
..

.... ..
..

A B

C D

E F

Figure 9. Real-time correction of insertion trajectory. (A) Experimental setup with medial trajectory
insertion, (B) experimental setup with correction to middle trajectory, (C) close-up of medial trajectory
insertion, (D) correction of medial trajectory, (E) lateral trajectory, (F) correction of lateral trajectory.

4. Discussion

This study presents an important aspect and procedure for a robotic system aimed
for use in electrode array insertion in cochlear implantation to avoid trauma. A novel
system is developed for online prediction and correction of trajectory of the electrode array
during electrode array insertion. This presents an application of an ensemble of machine
learning algorithms for real-time closed-loop feedback control of an in vitro insertion
process of an electrode array in cochlear implantation. It is the first step in this domain
to develop a feedback controller for a robotic surgical procedure that can learn from its
past experience and acquire the relationship between operating conditions and optimum
actions. Data-driven machine learning models are trained and tested for trajectory (medial,
lateral, and middle) and path (straight or curved) predictions during the insertion process.
Overall, the shallow neural network achieved the highest performance in terms of accuracy.
However, in order to improve performance, an ensemble learning approach was adopted
with majority voting scheme. The ensemble learning model was developed with three
machine learning algorithms, namely, shallow neural network, k-nearest neighbours, and
random forest. Finally, our ensemble method achieved >80% accuracy for both offline and
online trajectory and position/path classification.

It has been demonstrated successfully in this work that complex impedance has merit
as a sensing modality for atraumatic steering of an electrode array. However, other sensing
mechanisms introduced in this domain, such as force sensing [43,44], electrocochleography
(EcochG) [45], or facial nerve stimulation measurement unit [46], can be integrated into a
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single unit along with complex impedance. Data generated by these sensing systems would
carry more information about the EA insertion in real time than a single sensing system.
This is termed data fusion, where data from different sources (sensors) are combined to
reduce uncertainties, improve reliability, and increase the performance of the machine
learning models [47]. It would also be interesting to correlate complex impedance with the
insertion forces and train the ML models to stop the insertion when a certain threshold is
exceeded to avoid intraoperative damage.

As we have used classical machine learning algorithms for our trajectory prediction,
there is a need to collect more data and test deep learning models that are believed to have
more generalization ability and high performance. However, these deep learning models
are data-hungry and they tend to overfit with few data examples. To record large datasets,
we have to look at the reliability of the electrode array as well, since it is not made for the
purpose of inserting hundred and thousands of times to collect large amounts of data. We
may overcome this problem either with the availability of a decent amount of electrode
arrays or we can apply data augmentation techniques to generate synthetic data [48].

We have proposed a solution for the trajectory and path/position prediction and cor-
rection of an electrode array using bipolar complex impedance measurements. This system
may be helpful in predicting insertion failures such as tip foldover (this problem is more
pronounced in perimodiolar EAs), EA bucking, and EA translocation. Further experiments
need to be performed to demonstrate its applicability to overcome such failures that not
only degrade CI postoperative performance but could also lead to internal infections.

This system is open to further development and can be beneficial for automatic steering
of an EA during insertion. The system is tested using the most apical EP and in the straight
path only. It can be extended to other EPs and to the curved path as well, given that a novel
actuation scheme is developed alongside to steer the EA in the curved path. The system
presented can also find application in other electrode insertion applications and also in
needle steering.

5. Conclusions

The motivation for this work is to reduce the trauma induced during electrode array
insertion process by carefully designing a sensing method, an actuation system, and
control strategy to guide electrode array in scala tympani. Due to limited intra-operative
feedback during the insertion process, complex bipolar electrical impedance is used as
a sensing element. A three-DoF actuation system is used for automated insertion and
machine learning algorithms are employed for intelligent control to steer the electrode
array atraumatically. Complex impedance data recorded during insertions from different
directions have the potential to discriminate among different trajectories. A supervised
machine learning approach (an ensemble of three classifiers) is used to train and test the
models for the prediction and correction of different insertion trajectories. This work has
demonstrated that prediction based on shorter data windows can be utilized in a feedback
control loop for a real-time control strategy. It has been found that our complex impedance
data are consistent and reliable and are sensitive to the contact of the electrode array with
scala tympani walls during insertion.
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