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Abstract: Leukemia is a form of blood cancer that develops when the human body’s bone marrow
contains too many white blood cells. This medical condition affects adults and is considered a
prevalent form of cancer in children. Treatment for leukaemia is determined by the type and the
extent to which cancer has developed across the body. It is crucial to diagnose leukaemia early in
order to provide adequate care and to cure patients. Researchers have been working on advanced
diagnostics systems based on Machine Learning (ML) approaches to diagnose leukaemia early. In this
research, we employ deep learning (DL) based convolutional neural network (CNN) and hybridized
two individual blocks of CNN named CNN-1 and CNN-2 to detect acute lymphoblastic leukaemia
(ALL), acute myeloid leukaemia (AML), and multiple myeloma (MM). The proposed model detects
malignant leukaemia cells using microscopic blood smear images. We construct a dataset of about
4150 images from a public directory. The main challenges were background removal, ripping out
un-essential blood components of blood supplies, reduce the noise and blurriness and minimal
method for image segmentation. To accomplish the pre-processing and segmentation, we transform
RGB color-space into the greyscale 8-bit mode, enhancing the contrast of images using the image
intensity adjustment method and adaptive histogram equalisation (AHE) method. We increase the
structure and sharpness of images by multiplication of binary image with the output of enhanced
images. In the next step, complement is done to get the background in black colour and nucleus
of blood in white colour. Thereafter, we applied area operation and closing operation to remove
background noise. Finally, we multiply the final output to source image to regenerate the images
dataset in RGB colour space, and we resize dataset images to [400,400]. After applying all methods
and techniques, we have managed to get noiseless, non-blurred, sharped and segmented images of
the lesion. In next step, enhanced segmented images are given as input to CNNs. Two parallel CCN
models are trained, which extract deep features. The extracted features are further combined using
the Canonical Correlation Analysis (CCA) fusion method to get more prominent features. We used
five classification algorithms, namely, SVM, Bagging ensemble, total boosts, RUSBoost, and fine KNN,
to evaluate the performance of feature extraction algorithms. Among the classification algorithms,
Bagging ensemble outperformed the other algorithms by achieving the highest accuracy of 97.04%.
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1. Introduction

Biomedical image processing has played a significant role in the detection of various
diseases, enabling computers to replace human experts [1]. Blood supplies oxygen and
nutrients to body cells to keep them alive [2]. Blood is a mixture of white cells, red cells,
plasma, and platelets [3]. Cancer is the rapid formation of aberrant cells that expand
beyond their normal bounds, allowing them to infect neighboring body parts and spread
to other organs [4]. Blood cancer is also called leukaemia. The entomology of leukaemia is
from the Greek word “leukos”, which means “white”, and “aim” means “blood” [5]. This
type of cancer starts formation in the bone marrow and causes uncontrollable excess or
morphological disturbance of leucocytes in the blood [6]. In 2018, cancer was the world’s
second-largest cause of death, which killed 9.6 million people and reported 18.1 million new
cases worldwide [7]. One out of six deaths around the world is due to cancer. It becomes
even severe in underdeveloped countries where the death rate due to cancer increases
to 70 percent of the total number of deaths [8]. According to World Health Organization
(WHO), the mortality statistics of Pakistan in 2018 reported 173,937 deaths caused by cancer.
Among other blood diseases, leukaemia is considered the most harmful. In Pakistan,
Leukaemia is ranked fifth among the other cancers, which caused around 5000 deaths
and 7139 new cases of leukemia in the year 2019 [9] (World Health Organization, 2019).
According to the American cancer society, leukaemia caused an estimated 595,690 deaths
only in United States in 2016 [1], around 60,300 (3.5%) new leukaemia patients were
registered in 2018, and 399,967 people diagnosed with leukaemia since 2019 [6]. Table 1
shows number of registered cases and estimated deaths in 2019 due to leukemia. Leukaemia
is a life-threatening disease, and if not treated at an early stage, it may lead to death.
Therefore, there is a dire need for fast detection and cure of Leukaemia [10,11].

Table 1. Estimated deaths from all types of leukaemia, 2019 (USA) [12].

Types Cases Deaths

Acute lymphoblastic leukaemia 5930 1500

Acute myeloid leukaemia 21,450 10,920

Chronic myeloid leukaemia 8990 1140

Chronic lymphocytic leukaemia 20,720 3930

Microscopic images of blood are used to detect leukemia. Hematologists or lab experts
analyze these images. Hematologists or lab experts use different techniques to detect
cancer, including fluorescence saturation, hybridization, immunophenotyping, cytogenic
analysis, and cytochemistry. The earlier methods are expensive to test cancer and have
certain limitations; these procedures are not widely available at laboratories. Moreover,
these methods require manual observation, and also, they are not much time-efficient as
it is a manual methods. The obtained findings of the disease report rely on conditions
such as the hematologist’s expertise, skills, and fatigue. So, keen observation is required
by the pathologists [10]. As a result, a cost-effective, automated, and reliable method
for detecting leukaemia is needed. Pathologists can speed up and improve the precision
of their evaluations by using automatic microscopic examination of blood samples [13].
The automation process overcomes the possible difficulties of manual diagnosis; it is
essential to simplify the diagnosis by creating an automatic classifier. Several computer-
aided diagnostic methods for distinguishing the characteristics of healthy and blast cells
have been established in recent decades [14]. Furthermore, testing microscopic images is
less costly, and lab equipment is not needed for research [1].

Machine Learning-based networks [15,16] have been used extensively to extract valu-
able patterns for prediction tasks in several fields [17], including medical diagnostics
systems. Death rates can be lessened if the disease is diagnosed earlier and treated in
the meantime. It creates a desperate situation, and it consumes much time to detect the
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disease manually by the hematologist. The detection of leukaemia through computer-aided
techniques is very effective, time-efficient, and accurate in overcoming these problems [18].
Still, there are multiple problems, barriers, and research gaps in the computer-aided system,
such as the accuracy of leukaemia cancer and its types (Acute Myelogenous Leukaemia,
Acute Lymphoblastic Leukaemia, and Multiple Myeloma), and further their segmentation,
and classification. In this research, we focus on detecting leukemia and further identifying
its subtype [19].

Moreover, there are a few more problems like the size of malignant tumor and re-
semblance between types of leukemia. Noise in high resolution images is a challenging
task for machine learning and deep learning techniques to handle. Extraction of relevant
feature play a vital role in determining classification accuracy. There is a need to detect
and remove redundant and irrelevant feature to reduce computational complexity and to
enhance accuracy. The contribution of this paper are as under:

• Efficient detection of leukaemia cancer, types of leukaemia, and sub-types.
• Background elimination, removing non-essential blood supplies, image enhancement,

and noise removal mechanism to get dense features.
• Handcrafted based feature extraction and fusion from CNN layers and concatenation

of features using CCA, Serial, and PCA.
• Segregation into malignant and non-malignant classes with their sub types.

The remaining sections of the paper enclose the content as: The review of similar work
on leukaemia is expressed in Section 2. Section 3 demonstrates the proposed methodology,
including image acquisitions, pre-processing, data augmentation, and image classification.
Section 4 exemplifies the statistical results gathered after training models by two custom
build CNNs. The study is concluded in Section 5.

2. Related Work

Pre-processing is an essential step in improving the aesthetics of medical imaging.
Many methods exist for pre-processing to render the image noiseless and clean and improve
image quality.

A multiple image pre-processing technique was used to identify the WBC. They
started by converting the RGB color scheme to CMYK. Then, they used contrast stretching
to eliminate background noise before adding the Gaussian filter. They then used a color-
based clustering strategy for segmentation. Finally, binary Support Vector Machines (SVM)
were deployed to categorize the images. In this classifier, the input data is translated into a
higher dimensional feature space, and the maximum margin hyperplane was divided into
relevant classes [11].

One researcher [20] enhanced image quality by changing rotation (rotated images
from the center between 0 and 360 degrees; for data augmentation, adjusting degrees to
12 degrees), illumination, contrast, shearing, horizontal and vertical flip, and translation.
Following that, they conditioned a ten-layer convolution neural network CNN architecture.
This architecture accomplished two critical tasks. The first task was to extract features from
an input image, and the second task was to identify the extracted features using studied
CNN features.

Several arithmetic operations and methods were established in their work to remove
noise and improve image quality. Then, gamma correction and contrast-enhancing tech-
niques are used. Account accuracy relies heavily on segmentation. They used a two-step
protocol for image segmentation, one of which is leukocyte localization and the other is f re-
gion extraction. They both had three sub-steps. Sub-steps include localization, thresholding
three-phase filtration, neighboring cell identification, and cell extraction. At the same time,
the nucleus area was extracted by nucleus localization, nucleus isolation, and cytoplasm
extraction [21].

To improve image consistency and quality, the researcher converted the original
RGB image to Hue-Saturated-Value (HSV) color space. After that, an HSV threshold was
multiplied by a Boolean mask of images determined using pixel values. Then, in the
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blob detection phase, they collected relevant information from leukocytes. Following the
pre-processing method, the watershed algorithm was used to segment leukocytes. Later,
scientists used the CCN model to remove features. Following that, they classified their
dataset using three linear support vector machine models [22].

The procedures of a researcher were examined in two stages. In the first step, they
differentiated between red, blue, and green colors in images. In the second step, they
transformed images to grayscale. Grayscale images are then filtered for histogram equal-
ization and linear contrast stretching separately. They suggested a three-step segmentation
technique, the first of which was WBC extraction, followed by nucleus extraction. The re-
searcher extracted white blood cells using a color segmentation methodology in the first
step. Then, in the second stage, they extracted a nucleus using histogram equalization and
linear contrast stretching [23].

Another study found that blood cells and their backgrounds differ greatly depending
on color and intensity. The primary causes of this inconsistency are lighting variations,
camera settings, and staining. As a result, cell segmentation can be made more resilient
against such variables by converting the image from RGB to YCbCr. Contrast stretching
was performed on the luminance intensity plane (Y channel) to improve details. After ap-
plying contrast stretching, the resulting image was found in greyscale, later converted
back to YCbCr mode. Finally, the YCbCr color scheme was changed back to the sam-
ples’ original color scheme (RGB). Diffused-expectations-maximisation (DEM) approach
to achieving segmentation requires two thresholds. The Gaussian mixture component
determines the area class, and their parameters are approximated using the maximal feasi-
bility approach. In addition, they used a sparse representation classifier to characterize the
extracted features [24].

Initially, the researchers [18] improved the visual information quality of each in-
put image using various pre-processing and augmentation techniques. They suggested
a hybrid architecture built on pre-trained CNN models (MobileNet and VGG16) for
disease classification.

The research has also converted RGB images into a CMYK color system. After that,
images with updated color spaces are supplied to histogram equalization and thresholding.
The method of segmentation was Zak’s algorithm. Before proceeding with Zak’s algorithm,
intensity values are generated by histogram on the image dataset. After that, values of
thresholding were produced by Zak’s algorithm. To classify microscopic images, They used
K-NN, SVM-RBF, SVM-L, SVM-P, NB-G, NBK, and TREE in different scenarios, but K-NN
achieved the best classification accuracy [25].

Some researchers have changed the color space from RGB to Greyscale, and further,
they implemented median filtration to remove noise [26,27]. Global thresholding is applied
to the blood samples to extract different objects at different pixel intensities. For classifi-
cation, they tested multiple classifiers on microscopic images. They used support vector
machines (SVM), smooth support vector machines (SSV), k-nearest neighbor, probabilistic
neural network (PNN), and adaptive neuro-fuzzy inference (ANFI) system [26].

Researchers have changed the color space of resized RGB images to CMYK and applied
the L*a*b color system. In segmentation, writers used two color space systems for the
segmentation: CMYK and L*a*b of white blood [28].

After acquiring the sample images, the author transforms color space from RGB to CIE
L*a*b, which helps reduce the color dimensions. Segmentation Sequential Neural Network
was applied to increase the system’s performance. The authors proposed a Sequential
Neural Network Architecture (SNN) because this technique is based on accuracy and time
efficiency. Their proposed methodology [29] was based on two stages; however, the authors
could not perform both stages due to a lack of input images.

Feature selection and an extreme learning machine were used to classify WBCs (ELM).
To expand the number of images, data augmentation is conducted initially, followed by
using a unique contrast stretching technique known as pixel stretch (PS). Color and grey
level size zone matrix (GLSZM) features are generated from PS images and fused into
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a single vector based on a high similarity level in the next phase. However, there are a
few redundant features that impact classification performance. A maximum relevance
probability (MRP) based feature selection strategy is used to solve this challenge. All
features with the greatest importance are added to ELM, and the process is repeated until
the error rate is zero. Cubic SVM is used to classify the final selected features and attained
the highest accuracy of 96.60 percent [30].

An automated method for detecting nuclei and extracting leukocytes from peripheral
blood smear images with colour and illumination variations is described in the proposed
study. Nuclei are detected using arithmetic and morphological processes, while leukocytes
are detected using the active contours method. The findings show that the suggested
approach successfully detects nuclei and leukocytes with Dice scores of 0.97 and 0.96,
respectively. The method’s overall sensitivity is around 96 percent [6].

Scientists developed a strategy for classifying ALL into subtypes and reactive bone
marrow in stained bone marrow pictures in this study. To get reliable classification results,
the model is trained on bone marrow images using robust segmentation and deep learning
approaches with the convolutional neural network. The findings of this experiment were
compared to the results of different classifiers such as Nave Bayesian, KNN, and SVM.
The proposed technique demonstrated 97.78 percent accuracy in diagnosing Acute Lym-
phoblastic Leukemia and its subtypes [31]. The numerical analysis of existing approaches
is presented in Table 2.

Table 2. Systematic comparison of existing approaches in terms of different morphological operators.

Year Author Method Results (%)

2015 [32]

Segmentation:Morphological operators 96.67

Classification:
KNN
SVM
ANN

K-means

KNN: 95.23
SVM: 90.47
ANN: 95.23

KM 85.71

2015 [5]

RGB to Grey Scale
Median filtering

F-Measure 93.44SegmentationK-Mean Clustering

Classification SVM

2015 [33]
Segmentation Zack Algorithm

93.57
Classification SVM

2015 [29]
Segmentation K-Means Clustering SNN classification 97.7

93.5Classification SNN

2015 [27] Classification SVM 89.8

2016 [34] Segmentation: K-Means Clustering

Classification SVM 94.56

2016 [35] Classification SVM 94.56

2017 [36]

Segmentation bounding box technique
NB 81.66 (avg)

KNN 83.46 (avg)
BPNN 58.7 (avg)
SVM 89.76 (avg)

Classification:
NB

KNN
BPNN
SVM
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Table 2. Cont.

Year Author Method Results (%)

2017 [26] Classification SVM, SSV, K-NN, PNN and ANFI 97.6

2017 [26]

Segmentation Global Thresholding

Classification
PCA-k-NN
PCA-PNN
PCA-SSVM
PCA- SVM

80.0
92.3
83.8
94.6

2017 [37]

Classification SVM Monocyte: 85.3

Feature Extraction CNN Neutrophil 97.1

Recognition of other WBCs RFM Lymphocyte 74.7

2018 [38]

Classification:
few texture features,

three normalisation techniques (3NT)
KNN 95.78% (Grey-Scaling)

all texture features with 3NT KNN 95.99% (Z-Score)

colour features with 3NT KNN 88.95% (Grey-Scaling)

all colour features with 3NT SVM-P 92.52% (Min-Max)

colours and texture features with 3NT KNN 96.42% (Grey-Scaling)

colours, shape texture features with 3NT KNN 96.01% (Grey-Scaling)

2018 [31]
Segmentation: STM

97.78 overall
Classification: Alex-net

2019 [24] Classification Sparse Method 94

2019 [11] Classification Alex-net model 90.30

2019 [18] Classification: CNN 95.17

2019 [6]
Segmentation: Arithmetic morphological operations.

96.5 overall
Classification Active Contours

2020 [22]
Segmentation watershed

94.1
Classification CNN SVM

2020 [21] ClassificationANN SVM Specificity: 95.31%

2020 [20] Classification: CNN 99.5

3. Proposed Methodology

In this paper, we propose a deep learning-based computer-aided method for detecting
blood cancer using microscopic images. As seen in Figure 1, our proposed framework con-
sists of the following stages: Pre-processing is done to increase the clarity and enhancement
of the lesion region. Image segmentation is used to extract the area of interest. Later, hybrid
CNN models are used on training images for feature extraction and selection. Finally,
cancer classification is performed using conventional machine learning techniques. The
overview of proposed framework is given in Figure 2.



Appl. Sci. 2022, 12, 6317 7 of 26

Input Classification using Neural Network for training Classification using ML 

models for testing

MM

ALL

AML

Figure 1. Proposed Methodology.
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Figure 2. Microscopic images of blood were gathered. Pre-processing is done to enhance the quality of
images and increase visualization. Pre-processing took place in the following steps: RGB to Greyscale,
image adjustment method and adaptive histogram equalization (AHE), multiplying binary image
results with the output of image adjustment method and adaptive histogram equalization, and inverse
operation to get a black background. The white-colored nucleus of blood, area operation, and closing
operation to remove background noise. Finally, the output achieved by the last operation is multiplied
by the source image to regenerate the colored images. Hybrid Deep Learning architecture is trained
to classify lesions. We have proposed two individual blocks of Convolutional Neural Networks
named CNN-1 and CNN-2. We applied CCA fusion to concatenate vectors features gained by CCN-1
and CNN-2 to get the most discriminative vectors. After that, discriminative vectors produced by
CCA fusion are passed to traditional machine learning classifiers for classification.

3.1. Image Acquisitions

Microscopic images of blood gathered from Leukaemia Diagnostics at Munich Uni-
versity Hospital smear are acquired from blood samples of 118 patients identified by
different sub-types of AML. Resolution of each image is 400 × 400 pixels. The file format
is “TIFF” [10,39]. Moreover, we also use images from a public database of all challenge
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datasets of ISBI 2019 [40,41]. SN-AM Dataset: White Blood cancer dataset of B-ALL and
MM for stain normalization. We use images of B-ALL and MM of around 55 and 5 subjects
in this dataset, respectively. The image size is 2560 × 1920 pixels, and they all are in BMP
format [42–44]. We also use third dataset from MiMM_SBILab Dataset: Microscopic Images
of Multiple Myeloma of 5 subjects; these images are 2560 × 1920 pixels [42–44].

3.2. Pre-Processing

Pre-processing is a procedure adopted to enhance the quality of images and increase
visualization. In medical imaging, image processing is a crucial phase that helps to improve
the images quality. This can be one of the most critical factors in achieving good results and
accuracy in next phases of proposed methodology. Medical images may contain a different
issue that may lead to poor and low visualization of the image. If the images are poor or of
low quality, it may lead to unsatisfactory results.

During preprocessing phase, we performed background elimination, elimination
of non-essential blood supplies, image enhancement, and noise removal. The results of
preprocessing on our sample images is shown in Figure 3a.

3.2.1. RGB to Greyscale

The datasets uses consist of an RGB color model. The RGB color space was then
transformed into the greyscale 8-bit format using MATLAB (see Figure 3b).

3.2.2. Image Adjustment Method and Adaptive Histogram Equalisation

After converting the images to binary, the images are enhanced using image adjust-
ment and adaptive histogram equalization (AHE) methods. The contrast of the greyscale
images is improved by using image intensity adjustment and adaptive histogram equal-
ization (AHE). The lesion borders have become more contrasted and dominant, whereas
context, noise, and non-essential components have faded, as seen in Figure 3c.

3.2.3. Product of Binary Image with Image Adjustment Method and AHE

After observing the outputs of the previous preprocessing phase, images are still
slightly blurry, and the noise persists in the image. To improve the structure and sharpness
of images, we multiplied binary images by the output of the last preprocessing phase,
as shown in Figure 3d.

3.2.4. Inverse Operation

Output images produced by the previous step have a white background, and the color
of a nucleus is black. Inverse operation is performed to restore original color of nuclei.
The inverse operation alters the black color into white and vice versa, as shown in Figure 3e.

3.2.5. Area Operation and Closing Operation

Background noise is present in some image datasets. We use area and closing opera-
tions to eliminate background noise, which improves the lesion’s boundaries as shown in
Figure 3f.

3.2.6. Regenerate Dataset into RGB Color Scheme and Resizing

Finally, we multiplied the output obtained by applying the area and closing operation
with the source image to reconstruct the images dataset in RGB color space, and we also
resize the dataset images to 400 × 400 pixels as seen in Figure 3g.

After applying the aforementioned preprocessing steps, we obtain less noisy, non-
blurred, sharpened, and segmented lesion images.
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Figure 3. Pre-processing: (a) RGB to Greyscale. (b) Image Adjustment Method and Adaptive.
(c) Image Adjustment Method and Adaptive Histogram Equalisation. (d) Product of Binary image
with Image Adjustment Method and AHE. (e) Inverse Operation. (f) Area Operation and Closing
Operation. (g) Regenerate dataset into RGB colour scheme and Resizing.

3.3. Data Augmentation

In several tasks, CNNs proved to be the best classifier. However, the training data
has a significant impact on CNN’s performance. Collecting adequate clinical images is
difficult due to data privacy concerns in the medical field. We use different data aug-
mentation approaches to enhance the CNN performance, as recommended in previous
research [18,45], such as contrast and brightness correction, horizontal and vertical flips,
intensity modifications, and rotation, to solve the issue of availability of lesser amounts
of data causing over-fitting of the model. The class distributions before and after data
augmentation is shown in Table 3 given below.

Table 3. Data Augmentation.

Types Before After

Acute lymphoblastic leukemia 31 293

Multiple Myeloma 114 301

3.4. Classification

Classification is a key step which distinguishes between cancerous and non-cancerous
images. According to recent studies, various schemes for using CNN models have been
proposed; the first is to train the model using a vast number of datasets, and the second is
to use a pre-trained model that is achieved by transfer learning. A hybrid CNN model is
used in our proposed approach. CNN-1 and CNN-2 are the two key blocks of CNN in a
Hybrid Convolutional Neural Networks model. These CNN blocks train a huge dataset of
images before transferring the knowledge to the proceeding blocks to diagnose the disease.
The architecture is shown in Figure 4.
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Figure 4. CNN-1 & CNN-2 Architecture.

Both CNN-1 and CNN-2 convolution neural network models have 19 and 15 layers,
respectively, which have an input layer, 2-Dimensional convolutional layers, batch normal-
ization layers, and ReLU layers. Two-dimensional max-pooling layers, a fully connected
layer, a soft-max layer, and a classification layer are all present. Table 4 shows the details of
the layers for both CNN models.

Table 4. Layers of CNN-1.

19 Layers of CNN-1 15 Layers of CNN-2
Input Layer Input Layer

Convolution Layer 1 Convolution Layer 1
Batch Normalization Layer 1 Batch Normalization Layer 1

Relu Layer 1 Relu Layer 1
Max-Pooling Layer 1 Max-Pooling Layer 1
Convolution Layer 2 Convolution Layer 2

Batch Normalization Layer 2 Batch Normalization Layer 2
Relu Layer 2 Relu Layer 2

Max-Pooling Layer 2 Max-Pooling Layer 2
Convolution Layer 3 Convolution Layer 3

Batch Normalization Layer 3 Batch Normalization Layer 3
Relu Layer 3 Relu Layer 3

Convolution Layer 4 Fully-Connected Layer
Batch Normalization Layer 4 Softmax Layer

Relu Layer 4 Classification Layer
Fully-Connected Layer -

Softmax Layer -
Classification Layer -
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3.4.1. Feature Extraction

The extraction of features is a critical component of the model. We train a specific
hybrid model for feature extraction. The applied models (CNN-1 and CNN-2) are de-
veloped on a convolutional layer sequence that includes 2-Dimensional convolutional
layers, batch normalisation layers, ReLU layers, and 2-Dimensional max-pooling layers.
Through adding filters, the dataset is transferred to each layer of convolution. Before the
last max-pooling, each convolution layer extracts relevant information. Finally, feature
extraction is performed on both networks via a fully connected layer.

3.4.2. Transfer Learning

Convolutional neural networks will take many days, even weeks, to train on a large
dataset. We use transfer learning to reduce the time complexity of the above problem.
Transfer Learning is the mechanism by which a trained model on one problem is used to
assist to find the solution of another co-related problem [46] (Brownlee, 2019). As seen
in Figure 4, we use softmax layer for activation function to achieve the goal of transfer
learning for each CNN model in our architecture.

3.4.3. Feature Selection Using CCA Fusion

Feature fusion is the process of combining two feature vectors to create a single feature
vector that is more discriminative than one of the input feature vectors [47]. There are
some methods for integrating CCA. One method is to combine two sets of feature vectors
into a single union-vector, and then extract features in a higher-dimensional real vector
space. Another approach is to combine two feature vectors with a complex vector and
then extract features from the complex vector space. Both feature fusion methods aim to
improve prediction performance; the union vector approach is referred to as serial feature
fusion. Parallel feature fusion is the name given to the approach based on the complex
vector [48]. In this research, we use second method to combine the complex feature vectors
CCN-1 and CNN-2.

3.4.4. Classification Using Traditional Machine Learning Models

The final stage is classification of testing images of cancer, which aims to predict
the type of tumour (Ali et al., 2019; Bagasjvara et al., 2016). In our proposed solution,
the multi-class classification method was used to define the input image based on the
selected features.

We used machine learning algorithms to compute the classification; the reason to
do this was to reduce computation time. Bagging Ensemble, Linear Programming Boost
(LPBoost), Total Boost Ensemble, K-Nearest Neighbour (K-NN), Fine K-Nearest Neighbour
(FK-NN), RUSBoost, Coarse K-Nearest Neighbour (CoarseK-NN), and Support Vector
Machine (SVM) are some of the classifiers; we have used in our proposed methodology.

4. Results

The experimental findings of the proposed hybrid model classification methodology
are presented in both qualitative and quantitative aspects. We placed the proposed method
to the test using the data we gathered.

4.1. Dataset

We collected a dataset from a public directory of around 4150 images. Our dataset con-
sists of 3 classes, namely acute lymphoblastic leukaemia (ALL), acute myeloid leukaemia
(AML), and multiple myeloma (MM). Initially, the dataset contains 31 images of ALL,
4013 images of AML, and 114 images of MM. After performing data augmentation on ALL
and MM to resolve the issue of data overfitting, we got 293 images of ALL and 301 images of
MM for classification. Furthermore, the total number of images in AML class was too much
compared to other classes, making class unbalancing problematic and possibly leading to
biases in the results. To address the class unbalancing issue, we chose 307 random images
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of AML class. For classification, we divided datasets into 70 ratios 30, training and testing
sets, which means we used 70% of the random images for training purposes and 30% of
random images for testing purposes as shown in Table 5.

Table 5. Samples used for classification.

Types Training Testing No. of Samples

Acute lymphoblastic leukemia 205 88 293

Acute myeloid leukemia 215 92 307

Multiple Myeloma 211 90 301

The proposed classification algorithms are compared to state-of-the-art classification
algorithms like ANN & SVM, CNN & SVM, Active Contours and Alexnet. Well-known
performance parameters such as sensitivity, precision, accuracy, F1 score, false-negative
rates (FNR), and false-positive rates (FPR) are used to evaluate these classifiers.

4.2. Experimental Setup

For this research, experiments were carried out on a Microsoft Azure Server running
on a 64-bit version of Windows 10 in MATLAB 2020b. The computer had an Intel Xeon
Processor, 16 GB of RAM, and 130 GB of storage.

4.3. Features Extraction Results Using CNN-1

This section will discuss the findings of feature extraction using the Convolutional
Neural Network (CNN-1). We found that the accuracy achieved by CNN-1 for individual
classes ALL, AML, and MM are 77.27%, 98.91% and 92.22%, respectively. The discrete
statistics of CNN-1 upon ALL, AML and MM, are cited below in Table 6.

Table 6. Statistics of CNN-1 Model of Individual Classes.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 77.273 77.273 96.154 90.667 3.8462 83.436

AML 98.913 98.913 98.315 96.809 1.6854 97.849

MM 92.222 92.222 90 82.178 10 86.911

Overall accuracy achieved by CNN-1 on ALL, AML and MM was 89.63%. The overall
statistics of CNN-1 are given below in Table 7.

Table 7. Overall Statistics of CNN-1 Model of All Classes

Statistics Results %

Accuracy 89.63

Sensitivity 89.47

Specificity 94.82

Precision 89.88

False Positive Rate 5.18

The confusion matrix of CNN-1 is shown in Figure 5.
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Figure 5. Confusion Matrix of CNN-1.

4.4. Features Extraction Results Using CNN-2

In this section, we will discuss the findings of feature extraction using the Convo-
lutional Neural Network (CNN-2). We discovered that CNN-2 achieves 77.27 percent,
98.91 percent, and 92.22 percent accuracy for individual classes ALL, AML, and MM, re-
spectively. The statistics of CNN-2 upon ALL, AML, and MM, are mentioned below in
Table 8.

Table 8. Statistics of CNN-2 Model of Individual Classes.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 70.455 70.455 95.604 88.571 4.3956 78.481

AML 98.913 98.913 100 100 0 99.454

MM 92.222 92.222 85.556 76.147 14.444 83.417

Overall accuracy achieved by CNN-2 on ALL, AML and MM was 87.41%. The overall
statistics of CNN-2 are given below in Table 9.

Table 9. Overall Statistics of CNN-2 Model of All Classes.

Statistics Results %

Accuracy 87.41

Sensitivity 87.20

Specificity 93.72

Precision 88.24

False Positive Rate 6.28

The confusion matrix of CNN-2 is presented in Figure 6.
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Figure 6. Confusion Matrix of CNN-2.

4.5. Classification Results Using CCA Fusion

In the past chapter, we discussed the proposed methodology that the features extracted
by CNN-1 and CNN-2 are concatenated into a single enhanced vector through Canonical
Correlation Analysis (CCA) Fusion. After that, the fused vectors of enhanced features were
passed out to the classifiers to classify the input images. Bagging Ensemble, Total Boost
Ensemble, Fine K-Nearest Neighbour (FK-NN), RUSBoost, Coarse K-Nearest Neighbour
(Coarse K-NN), and Support Vector Machine (SVM) are some of the classifiers; used in the
proposed methodology. We have implemented multiple classifiers of machine learning
in this step. The reason was to minimize the whole system’s execution time as much
as possible.

4.5.1. Statistical Analysis of Bagging Ensemble on CCA Fusion

We have used the Bagging Ensemble classifier to classify the lesion on the vector of
the fused feature. The statistics show that the AML class’s accuracy is 100 percent, ALL
reached 93.182 percent, and MM’s accuracy is around 97.78 percent. Sensitivity, precision,
F1-score, etc., are cited below in Table 10. The overall accuracy of this classifier was very
efficient and reached 97.4 percent. The combined results of the three classes are also shown
in Table 10, which is also given below; also, the confusion matrix is shown in Figure 7.

Table 10. Statistics of Bagging Model using CCA Fusion.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 93.182 93.182 98.901 97.619 1.0989 95.349

AML 100 100 100 100 0 100

MM 97.778 97.778 96.667 93.617 3.333 95.652

Overall accuracy achieved by Bagging Ensembler on ALL, AML and MM was 97.04%.
The overall statistics of Bagging Ensembler are given below in Table 11.
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Table 11. Overall Statistics of Bagging Ensembler Model of All Classes.

Statistics Results %

Accuracy 97.04

Sensitivity 96.99

Specificity 98.52

Precision 97.00

False Positive Rate 1.48

The confusion matrix of Bagging Ensemble is shown below.

Figure 7. Confusion Matrix of Bagging Ensemble.

4.5.2. Statistical Analysis of Total Boost Model on CCA Fusion

We have used the Total Boost classifier to classify the lesion on the vector of the fused
feature. The statistics show that the accuracy of AML class is 100 percent, ALL reached
92.045 percent, and the accuracy of MM is around 97.78 percent. Sensitivity, precision,
F1-score, etc., are cited below in Table 12 The overall accuracy of this classifier was very
efficient and reached 96.67 percent. The combined results of the three classes are also shown
in Table 12 which is also given below; also, confusion matrices are shown in Figure 8.

Table 12. Statistics of Total Boost Model using CCA Fusion.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 92.045 92.045 98.901 97.59 1.098 94.737

AML 100 100 100 100 0 100

MM 97.778 97.778 96.111 92.632 3.8889 95.135

Overall accuracy achieved by Total Boost Model on ALL, AML and MM was 96.67%.
The overall statistics of Total Boost Model are given below in Table 13.
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Table 13. Overall Statistics of Total Boost Model of All Classes.

Statistics Results %

Accuracy 96.67

Sensitivity 96.62

Specificity 98.34

Precision 96.74

False Positive Rate 1.66

The confusion matrix of Total Boost Model is shown below.

Figure 8. Confusion Matrix of Total Boost Model.

4.5.3. Statistical Analysis of Fine-KNN on CCA Fusion

In this section, we tested Fine KNN classifier to classify the lesion on the vector of
the fused feature. The statistics show that the accuracy of AML class is 100 percent, ALL
reached 92.045 percent, and the accuracy of MM is around 95.56 percent. Sensitivity,
precision, F1-score, etc., are cited below in Table 14 The overall accuracy of this classifier
was very efficient and reached 95.93 percent. The overall combined results of the three
classes are also shown in Table 14 which is also given below, as shown in Figure 9.

Table 14. Statistical Analysis of Fine-KNN on CCA Fusion.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 92.045 92.045 97.802 95.294 2.1978 93.642

AML 100 100 100 100 0 100

MM 95.556 95.556 96.111 92.473 3.8889 93.989

Overall accuracy achieved by Fine KNN on ALL, AML and MM was 95.93%. The over-
all statistics of Fine KNN are given below in Table 15.
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Table 15. Overall Statistics of Fine KNN Model of All Classes.

Statistics Results %

Accuracy 95.93

Sensitivity 95.93

Specificity 97.97

Precision 95.92

False Positive Rate 2.03

Error 4.07

The confusion matrix of Fine KNN model is shown in Figure 9.

Figure 9. Confusion Matrix of Fine KNN model

4.5.4. Statistical Analysis of Medium-KNN on CCA Fusion

We also have tested Medium KNN classifier to classify the lesion on the vector of the
fused feature. The statistics show that the AML class’s accuracy is 100 percent, ALL reached
the accuracy of 92.045 percent, and MM’s accuracy is around 96.67 percent. Sensitivity,
precision, F1-score, etc., are cited below in Table 16 The overall accuracy of this classifier
was very efficient and reached 96.30 percent. The three classes’ overall combined results
are also shown in Table 16, which is also given below; also, the confusion matrix is shown
in Figure 10.

Table 16. Statistics of Medium KNN using CCA Fusion

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 92.045 92.045 98.352 96.429 1.6484 94.186

AML 100 100 100 100 0 100

MM 96.667 96.667 96.111 92.553 3.8889 94.565

Overall accuracy achieved by Medium KNN on ALL, AML and MM was 96.30%.
The overall statistics of Medium KNN are given below in Table 17.
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Table 17. Overall Statistics of Medium KNN Model of All Classes.

Statistics Results %

Accuracy 96.30

Error 3.70

Sensitivity 96.24

Specificity 98.15

Precision 96.33

False Positive Rate 1.85

The confusion matrix of Medium KNN model is shown in Figure 10.

Figure 10. Confusion Matrix of Medium KNN model.

4.5.5. Statistical Analysis of Coarse-KNN on CCA Fusion

We also have tested the Coarse KNN classifier to classify the lesion on the vector of
the fused feature. The statistics show that the AML class’s accuracy is 96.739 percent, ALL
reached 90.909 percent, and MM’s accuracy is around 97.778 percent. Sensitivity, precision,
F1-score, etc., are cited below in Table 18. The overall accuracy of this classifier was very
efficient and reached 95.19 percent. The three classes’ overall combined results are also
shown in Table 19 which is also given below; the confusion matrix is shown in Figure 11.

Table 18. Statistical Analysis of Coarse-KNN on CCA Fusion.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 90.909 90.909 98.901 97.561 1.0989 92.486

AML 96.739 96.739 100 100 0 98.343

MM 97.778 97.778 93.889 88.889 6.1111 93.122

Overall accuracy achieved by Coarse KNN on ALL, AML and MM was 95.19%.
The overall statistics of Coarse KNN are given below in Table 19.
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Table 19. Overall Statistics of Coarse KNN Model of All Classes.

Statistics Results %

Accuracy 95.19

Error 4.81

Sensitivity 95.14

Specificity 97.60

Precision 95.48

False Positive Rate 2.40

The confusion matrix of Coarse KNN model is shown in Figure 11.

Figure 11. Confusion Matrix of Coarse KNN model.

4.5.6. Statistical Analysis of SVM on CCA Fusion

In this section, we have discussed the reported statistics of the most famous traditional
machine learning algorithm—support Vector Machine (SVM) classifier to classify the lesion
on the vector of the fused feature. The statistics show that the accuracy of the AML class
is 100 percent, ALL reached 90.909 percent, and MM’s accuracy is around 94.44 percent.
Sensitivity, precision, F1-score, etc., are cited below in Table 20 The overall accuracy of this
classifier was very efficient and reached 95.19 percent. The overall combined results of
the three classes are also shown in Table 20, which is also given below; also, the confusion
matrix is shown in Figure 12.

Table 20. Statistical Analysis of SVM on CCA Fusion.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 90.909 90.909 97.253 94.118 2.7473 92.486
AML 100 100 100 100 0 100
MM 94.444 94.444 95.556 91.398 4.4444 92.896

Overall accuracy achieved by SVM on ALL, AML and MM was 95.19%. The overall
statistics of SVM are given below in Table 21.
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Table 21. Overall Statistics of SVM Model of All Classes.

Statistics Results %

Accuracy 95.19

Error 4.81

Sensitivity 95.12

Specificity 97.60

Precision 95.17

False Positive Rate 2.40

The confusion matrix of SVM model is shown in Figure 12.

Figure 12. Confusion Matrix of SVM model.

4.5.7. Statistical Analysis of LPBoost Model on CCA Fusion

This section has discussed the reported statistics of the most famous traditional ma-
chine learning algorithm, LPBoost model classifier, to classify the lesion on the vector of
the fused feature. The statistics show that the accuracy of AML class is 100 percent, ALL
reached the accuracy of 93.182 percent, and accuracy of MM is around 95.556 percent.
Sensitivity, precision, F1-score, etc., are cited below in Table 22. This classifier’s overall
accuracy was very efficient and reached 96.30 percent, which is also shown in Table 23
given below; also, the confusion matrix on CCA fusion is shown in Figure 13.

Table 22. Statistical Analysis of LPBoost model on CCA Fusion.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 93.182 93.182 97.802 95.349 2.1978 94.253

AML 100 100 99.438 98.925 0.5618 99.459

MM 95.556 95.556 97.222 94.505 2.7778 95.028

Overall accuracy achieved by LPBoost on ALL, AML and MM was 96.30%. The overall
statistics of LPBoost are given below in Table 23.
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Table 23. Overall Statistics of LPBoost Model of All Classes.

Statistics Results %

Accuracy 96.30

Error 3.70

Sensitivity 96.25

Specificity 98.15

Precision 96.26

False Positive Rate 1.85

The confusion matrix of LPBoost model is shown in Figure 13.

Figure 13. Confusion Matrix of LPBoost model.

4.5.8. Statistical Analysis of RUSBoost on CCA Fusion

This section has discussed the reported statistics of the most famous traditional ma-
chine learning algorithm, RUSBoost classifier, to classify the lesion on the vector of the fused
feature. The statistics show that the accuracy of AML class is 100 percent, ALL reached
the accuracy of 90.909 percent, and accuracy of MM is around 94.45 percent. Sensitivity,
precision, F1-score, etc., are cited below in Table 24. Also, the confusion matrix on CCA
fusion is shown in Figure 14.

Table 24. Statistical Analysis of RUSBoost on CCA Fusion.

Class Accuracy% Sensitivity% Specificity% Precision% False Positive% F1-Score%

ALL 90.909 90.909 98.901 97.561 1.0989 94.118

AM L 100 100 100 100 0 100

MM 94.444 94.444 95.556 91.398 4.4444 92.896

Overall accuracy achieved by RUSBoost on ALL, AML and MM was 96.30 %. The over-
all statistics of RUSBoost are given below in Table 25.
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Table 25. Overall Statistics of RUSBoost of All Classes.

Statistics Results %

Accuracy 96.30

Error 3.70

Sensitivity 96.23

Specificity 98.15

Precision 96.41

False Positive Rate 1.85

The confusion matrix of RUSBoost model is shown in Figure 14.

Figure 14. Confusion Matrix of RUSBoost model.

4.6. Discussion and Comparison

In this section, we will be discussing the results of our proposed methodology with
the past work. After acquisition of images, we performed pre-processing, which was used
to enhance the image quality, removed noise and sharpen of image dataset. Moreover,
in pre-processing we have also achieved the segmentation. No special model was trained
to segment the image dataset. Segmentation itself has been performed in pre-processing.
This helps us by reducing computation required for image dataset segmentation, and also
involves reduced computation time. In the next step, we trained two models of CNN
that work in parallel to extract features from the dataset. After performing activation on
extracted vectors of feature, which was the output of each CNNs, we performed CCA
fusion to extract and concatenate the most promising featured vector, which is also our
contribution. We also have compared CCA fusion with Principal Component Analysis
(PCA) and Serial Based Approach (SBA). Lastly, we use traditional machine learning
models to train and test. The reason for using a traditional machine learning model was to
minimise the computation of our network. Traditional machine learning models take a few
minutes to train, but if we use a deep learning network in this step, it might take several
hours or even few days. By using traditional machine learning algorithms, we observed
that the best one on our proposed was Bagging ensemble model with CCA fusion. This
gives us an accuracy of 97.04 percent overall. However, SVM and Coarse KNN gives us the
worst result among used classifiers in our proposed methodology. The accuracy observed
by both SVM and Coarse KNN was around 95%, which is not particularly bad.
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Furthermore, comparison between CCA, PCA, and SBA was also performed to validate
the comparative analysis between them. According to the experimental results performed
on CCA, PCA, and SBA. LPBoost performed best by using SBA fusion technique with
the accuracy of 96.67%. While using PCA fusing technique, medium KNN and RUSBoost
maintained the accuracy of 96.67%. We concluded that CCA fusion produced the best
results compared to feature concatenation techniques. The Bagging Ensemble Model
computed an accuracy of 97.04% with CCA fusion. Moreover, the statistics of CCA, PCA,
and SBA on traditional machine learning models are listed below in Table 26.

Table 26. Comparison of CCA, SBA, and PCA on ML Models.

Accuracy of ML Models CCA Results % SBA Results % PCA Results %

Bagging Ensemble 97.04 96.30 96.25

Coarse KNN 95.19 93.95 93.99

Fine KNN 95.93 96.25 95.50

LPBoost 96.30 96.67 95.93

Medium KNN 96.30 95.93 96.67

RUSBoost 95.56 94.07 96.67

SVM 95.19 95.93 95.56

At the end, we discuss the statistics of our proposed methodology with the previous
work. Our proposed methodology has improved the results significantly. An author [21]
used ANN along with SVM to classify Acute Lymphoblastic Leukaemia (ALL). Their speci-
ficity was 95.31%. Another scientist used CNN and SVM to identify the leukaemia. Their
dataset consists of only two types of leukaemia. They achieved the accuracy of 94.1% [22].
The authors of [6] proposed an active contours algorithm to identify the Leukocytes with
accuracy of 96.5%. Lastly, we compared the adopted methods with the state of the art model
in [11], which is an eight-layered a pre-trained convolutional neural network from the
ImageNet database that has been trained on over a million photos. The network has been
pre-trained to categorise photos into 1000 different item categories. Their methodology
found an accuracy of 90.30%. The results are cited below in Table 27.

Table 27. Comparison of Proposed Methodology.

Author/Year Methodology Disease Statistics

(Bodzas 2020 [21]) ANN & SVM ALL Specificity: 95.31%

(Di Ruberto 2020 [22]) CNN & SVM leukaemia 94.1%

(Hegde 2019 [6]) Active Contours Leukocytes 96.5%

(Shree & Janani, 2019 [11]) Alexnet Leukocytes 90.30%

(Proposed methodology) Hybrid CNN & Bagging Ensemble ALL, AML &MM 97.04%

Abbreviations used in this study are give in Table 28.
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Table 28. Abbreviations used in study.

Sr# Item Abbreviations

1 Machine Learning ML

2 Convolutional neural network CNN

3 Deep learning DL

4 Acute lymphoblastic leukaemia ALL

5 Acute myeloid leukaemia AML

6 Multiple myeloma MM

7 Canonical 15 Correlation Analysis CCA

8 Support vector machine SVM

9 K nearest Neighbour KNN

10 World Health Organization WHO

11 Principal Component Analysis PCA

12 Serial Based Approach SBA

13 Hue-Saturated-Value HSV

14 White blood cell WBC

15 Diffused-expectations-maximisation DEM

17 Artificial neural network ANN

18 Spiking neural networks SNN

19 Naive bayes NB

20 Back-propagation neural network BPNN

21 probabilistic neural network PNN

22 Adaptive neuro fuzzy inference system ANFIS

23 Recency, Frequency, and Monetary RFM

24 Structural Topic Model STM

25 adaptive histogram equalization AHE

26 Fine K-Nearest Neighbour FK-NN

5. Conclusions

Leukaemia is a form of blood cancer that affects adults and is widespread in children.
Treatment for leukaemia is determined by the form of cancer and how far it has spread
across the body. It is essential to detect this disorder as soon as possible to get appropriate
treatment and recover. This research developed an automated diagnosis tool for ALL, AML,
and MM. The dataset was pre-processed using the proposed methodology to minimize
noise and blurriness and enhance image quality. During pre-processing, we found that
the output images had already been segmented. The approach is practical and does not
necessitate image segmentation. Following that, we trained two CCN models in parallel to
extract features. The CCA Fused approach is used to concatenate these derived features.
The classifier receives fused vectors (SVM, Bagging ensemble, total boost, RUSBoost, Fine
KNN, etc.). Using the Bagging ensemble design, we achieved a 97.04 percent accuracy. As a
result, pathologists may find that this procedure aids in effective diagnosis.
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