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Abstract: The dynamics analysis of a planetary gear set transmissions requires the creation of
completely different models for different gears, which is very tedious. In this paper, a generalized
dynamics modeling process is proposed for a three planetary gear set transmissions, and a generalized
dynamic model for multiple gears is established by using the lumped mass method. The analysis of
meshing force characteristics is carried out for the second gear position, and the meshing frequency
coupling phenomenon between the meshing forces of the three planetary gear sets is investigated.
The results show that, for the current gear set of meshing force, the meshing frequency components
of other gear sets only appear in a part of the speed, and with the increase in speed, certain low-
frequency components of other sets that exist at low speed will decrease or even disappear, and the
coupling relationship between the meshing forces of different planetary gear sets is not symmetrical.

Keywords: planetary gear set transmissions; generalized dynamic model; dynamics analysis;
meshing force

1. Introduction

The planetary gear drive system is a key component in the process of vehicle transmis-
sion. It mainly consists of a gear meshing pair, a transmission connecting shaft, bearing
supporting parts and various control components. Compared with the traditional fixed-
shaft gear transmission system, the planetary gear transmission system is more compact
in structure, smooth in transmission, and higher power transmission and wider range of
transmission ratio can be achieved. The planetary row gear transmission system is the key
device in transmissions; its performance directly affects system performance. The device is
mostly a coupling mechanism. Aiming at the different connection forms of the structure
between different gears, the study on the generalization method suitable for different gears
and the rapid composition of the dynamic equation of the whole mechanism can provide
convenience for the subsequent dynamic characteristics analysis.

For many years, the research of multistage planetary gear transmission system is
mainly based on simple planetary gear system dynamics model. Kahraman [1] found
that as long as the lateral support stiffness of the mechanism is greater than 10 times
the ratio of meshing stiffness, the pure torsional model could be used to calculate the
inherent characteristics, and the results obtained by the translation–torsional coupling
model are highly consistent. Lin [2] proposed a translation–torsional coupling dynamic
model of planetary gears by taking translational degrees of freedom into account for
all components and studied their natural frequencies and vibration modes. Bang [3]
proposed a multi-speed transmission mechanism that uses a compound planetary gear
set and brakes. Ambarisha [4] proposed a lumped mass model and a two-dimensional
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finite element contact model for the spur planetary gear system to study the non-linear
dynamic behaviors of the system. Zhao [5] established a flexible model of planetary
gear system based on finite element theory, simulated the actual working conditions for
simulation analysis of the inherent properties of the system, and predicted the dangerous
parts of the meshing pair. Lai [6] proposed a flexible–rigid coupling dynamic (FRCD)
model by coupling the condensed substructure of finite element (FE) flexible bodies with
rigid dynamic model and investigated the effect of sun gear positions on the dynamic
response of the long planet and the mechanism for the vibration of the floating ring
gear. Benford [7], Kim [8], Kahraman [9], Lang [10] and Tian [11] carried out statics and
kinematics analysis on gear components of planetary automatic transmission. For statics
analysis of compound planetary gear sets, Kahraman [9] proposed a generalized formula
for speed and force analysis of gear parts of planetary automatic transmission, which
has certain applicability to compound planetary gear sets. In addition, researchers use
graph theory to assist in kinematic and statical analysis. Lang [10] used graph theory to
analyze the motion and torque of fixed gear train and epicyclic gear train. Tian [11] used
the establishment of the corresponding matrix to assist in completion of the planetary
transmission motion and torque analysis. For the dynamics modeling method, based on
the idea of generalized finite element method (fem) and the system discretization subunits
of lumped mass model, Chang [12] proposed the subunit assembly of the coupling system
dynamic model of the general modeling method. Based on this method, a general dynamic
modeling method considering gears shift is proposed in this thesis. Qian [13] established
translation–torsional coupling dynamics model of a Lavina-type composite planetary array
under multiple working conditions in the Matlab environment. Jing [14] presented a fully
coupled dynamic modeling strategy for a planetary gear system. Lv [15] established a
12-degree-of-freedom spur gear dynamic model, which is coupled by the mesh gear pair
and the gearbox. Xiao [16] studied the vibration characteristics and meshing force spectrum
components of the three-stage planetary gear system. Liu [17] derived the translational and
torsional coupling dynamics model of two-stage planetary gear, studied the connection
between inter-stage connecting shaft and frequency coupling of two-stage meshing force,
and analyzed the dynamic characteristics of different gear sets. Wei [18] established shaft
elements of different components in consideration of component flexibility and predicted
dynamic vibration behavior of multistage planetary gear system. Zhang [19] modified
the dynamic parameters of the inherent characteristics of the three-planet array based on
parameter sensitivity analysis, effectively avoiding torsional vibration. Dou [20] studied the
main frequency components of gear meshing force and spindle shear force of a composite
planetary transmission system at variable speed. Hao [19] took the two-stage planetary
gear system as a research object to analyze the influence of parallel and series relations
between multiple gear sets on the coupling components of meshing forces.

According to the different methods and factors considered in the establishment of a
system coupling dynamics model, the established dynamics model mainly includes the
following types: lumped mass model, finite element model and lumped mass-finite element
mixed model. However, the above modeling method can only establish the structure of
components in a specific combination form. Aiming at the relationship between dynamic
models established by different gears, the concept of gear matrix of dynamic parameter
is introduced and relevant rules are formulated. A general dynamic model building
method considering gears’ transformation is proposed. Thus, the dynamic model of the
whole mechanism can be formed quickly, which is convenient for the subsequent dynamic
characteristic analysis. In this paper, a translation–torsional dynamics model of a three
planetary gear set transmissions is established based on the lumped mass method. On
this basis, the concept of gear matrix of dynamic parameters is introduced, relevant rules
are formulated, and a generalized dynamic model construction method considering gear
status is proposed. A Fourier series method is used to calculate the dynamic meshing force,
and the spectrum characteristics of the external meshing force of three planetary gear set
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transmissions are analyzed under the condition of variable speed, and the existence forms
of meshing frequency coupling phenomena are studied.

2. Generalized Dynamic Model

The object of this paper is a three planetary gear set transmissions, which contains
six shift control components and three planetary gear sets of 2K-H straight planetary gear
sets, as shown in Figure 1. Among them, the shift control element consists of three clutches
(CL1, CL2, CL3) and three brakes (B1, B2, B3), a straight-gear planetary gear set of Pi (i = 1,
2, 3) which includes sun gear, ring gear, and carrier (Si, Ri, Ci) and Ni (N1 = N2 = 4, N3 = 6)
planetary gears in each gear set.

Figure 1. Three-planet gear drive system.

2.1. Establishment of Global Dynamics Model

The whole system is discretized by using the idea of finite element, and the whole
planetary gear system is discretized into sub-elements such as shaft element, external
meshing element, internal meshing element, planetary carrier element and bearing element.
To be specific, for avoiding unnecessary complexity, only a simplified matrix form of all
elements’ motion differential equations is shown.

2.1.1. Shaft Element

The shaft element is simulated and connected by the lumped mass method, and the
force of the shaft element is analyzed, and the dynamic model of the shaft element is
established, as shown in Figure 2.
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Figure 2. Shaft element.

Two mass nodes are connected by one shaft element. A shaft element with two nodes
and six degrees of freedom is established between two mass nodes. The generalized
coordinate system of the shaft element is assumed as Equation (1).

xs = {x1, y1, θ1, x2, y2, θ2}T (1)

where x1, y1, x2 and y2 represent the transverse displacements of each node along each
coordinate axis, respectively; θ1 and θ2, represent the torsional displacements of two mass
nodes along their respective torsional directions.

The matrix form of the motion differential equation is shown in Equation (2).

Ms
..
xs + Cs

.
xs + Ksxs = 0 (2)

where Ms, Cs, and Ks represent the element fixed mass matrix, damping matrix and stiffness
matrix, respectively.

2.1.2. External Meshing Element

Taking the spring compression direction of the active and passive gears along the
meshing line as positive, the vibration displacement and torsional displacement of the three
degrees of freedom of the external meshing gear are projected to the meshing line direction,
as shown in Figure 3. The relative total deformation of the projection of the gear pair along
the meshing line direction δ0 can be obtained as shown in Equation (3).

δ0 = V0q0 − e0 (3)

where q0 = {xs, ys, θs, xpi, ypi, θpi} represents the displacement column vectors of the driving
gear node and the slave gear node in the external meshing element, respectively, in the
global coordinate system. e0 represents the composite meshing error of external meshing
gear pair along the normal direction. V0 is the projection vector of the transformation from
the displacement of the degree of freedom in each direction of the external meshing gear
pair to the direction of the meshing line, and its expression is shown in Equation (4).

Vo =
[
sin ψsp, cos ψsp, rbs,− sin αspi,− cos αspi,−rbp

]
(4)

where rbs, rbp represent the base circle radius of the sun gear and the planetary gear,
respectively; αspi represents the meshing angle between the i-th planetary gear and the sun
gear; ψ spi represents the angle between the meshing line between the driving gear and the
i-th planetary gear and the Y-axis, the change in the driving gear’s steering will affect ψspi,
when the driving gear’s rotation is counter clockwise, the sign is positive, and vice versa.
The specific expression can be expressed in Equation (5).

ψspi = αspi ± ϕpi (5)
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where ψspi represents the engagement angle between the i-th planet gear and the driving
gear, and ϕpi represents the positive included angle between the central line vector of the
i-th planetary gear and the driving gear and the X-axis of the global coordinate system;
that is, the installation phase angle.

Figure 3. External meshing element.

According to Newton’s second law, the motion differential equation of the external
meshing element can be obtained in the matrix form as Equation (6).

Mo
..
qo + Co(

.
qo −

.
eo) + Ko(qo − eo) = Fo (6)

where Mo is the mass matrix of the external meshing element, Co is the damping matrix of
the external meshing element, Ko is the stiffness matrix of the external meshing element, eo
and its differential coefficient are the equivalent displacement column vector and equivalent
velocity vector of the external meshing element after the integrated meshing error is
decomposed in the degrees of freedom in each direction, and Fo is the column vector
formed by the components of the excitation force on each degree of freedom.

2.1.3. Internal Meshing Element

Taking the spring compression direction of the driving gear along the meshing line as
positive, the vibration and torsional displacements of the three degrees of freedom of each
gear are projected to the meshing line, and the dynamic model diagram of the freedom
of the inner gear ring and the planetary gear in the translation and torsion direction is
obtained, as shown in Figure 4.

Figure 4. Internal meshing element.

The vibration displacement of the internal meshing element in Figure 4 is projected
to the meshing line along the degrees of freedom in each direction; that is, the overall
deformation between the driven gear and the driving gear along the meshing line direction
can be obtained as Equation (7).

δrpi = Viqrpi − erpi (7)
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where qrpi = {xpi, ypi, θpi, xr, yr, θr}T is the displacement column vectors of the driving gear
node and the driven gear node in the internal meshing element in the global coordinate
system, respectively, erpi is the composite meshing error of the internal meshing gear pair
along the normal direction, and Vi is the projection vector of the transformation from the
displacement of the freedom of the i-th planetary gear and ring gear in each direction to
the meshing line direction, which can be expressed as Equation (8).

Vi =
[
sin αrpi,− cos αrpi,−rbpi,− sin ψrpi, cos ψrpi, rbri

]
(8)

where rbpi and rbri are the radius of the base circle of the planetary gear and inner ring
gear, respectively, ψrpi is the positive angle between the end meshing line between the i-th
planetary gear and the inner ring gear and the Y-axis of the global coordinate system as
Equation (9).

ψrpi = αrpi ± ϕpi (9)

where αrpi is the meshing angle between the i-th planetary gear and the inner ring gear,
ϕpi is the positive included angle between the line vector of the i-th planetary gear and
the center of the inner gear ring and the X-axis of the global coordinate system. The value
of ψrpi is affected by the installation phase angle ϕpi. When the rotation direction of the
driving gear is counterclockwise, the sign is positive, and vice versa.

The motion differential equation of the internal meshing element can be obtained in
the matrix form as Equation (10).

MI
..
qrpi + CI(

.
qrpi −

.
erpi) + KI(qrpi − erpi) = Fs (10)

where MI is the mass matrix of the external meshing element, CI is the damping matrix of
the external meshing element, KI is the stiffness matrix of the external meshing element,
erpi, and its differential coefficient are the equivalent displacement column vector and
equivalent velocity vector of the integrated meshing error decomposed in the degrees of
freedom in each direction for the external meshing element, Fs is the column vector formed
by the components of the excitation force on each degree of freedom.

2.1.4. Planetary Carrier Element

As a very important component, the planetary carrier not only plays the role of
supporting the planetary gear, but also serves as the output component of the system in
the third gear set and is the input component of the system in the second and fourth gears.
In addition, the planetary carrier in the second gear set serves as a coupling component
in the middle of the first gear set and the third set. Figure 5 shows the general planetary
carrier element.

Figure 5. Planetary carrier element.

The deformation of planet carrier δc is expressed as Equation (11).

δc = Vcqc (11)
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where qc = {xc, yc, θc, xpi, yp, θpi} represents the displacement column vectors of each node
of the planetary carrier element, Vc is the projection vector of the displacements in all
directions in the global coordinate system of the planetary carrier, which can be expressed
by Equations (12) and (13):

Vx
c = [cos φi, sin φi, 0,−1, 0, 0] (12)

Vy
c = [− sin φi, cos φi, rc, 0,−1, 0] (13)

where rc is the radius of the planetary carrier, φi is the mounting position angle of the
i-th planetary gaer. For the planetary transmission system with uniform distribution of
planetary gears, φi = 2π(i − 1)/n, where, i = 1, 2, . . . , n, n is the number of planetary gears.

The motion differential equation of the planetary carrier element can be obtained in
the matrix form as Equation (14).

Mc
..
qc + Kcqc + Cc

.
qc = Fc (14)

where Mc, Cc and Kc, represent mass matrix, damping matrix and stiffness matrix, respec-
tively, Fc is the column vector of the force applied to the planetary carrier.

The system dynamic model diagram by discrete element matrix is shown in Figure 6,
in which B1–B3 are three brakers. Ksjp and Krjp (j = 1, 2, 3) represent the external and
internal meshing stiffness of the three planetary gear sets, respectively. The 25 3-dof mass
nodes include the input shaft node in, the coupling disc node LP, the sun gear node Si
in i-th set (i = 1, 2, 3), the inner ring gear node Ri, the planetary carrier node Ci, and the
planetary gear node pij in the i-th set.

Figure 6. Dynamics model of three planetary gear set transmissions.

The meanings of each connection stiffness in Figure 6 are shown in Table 1. The matrix
form of the connection stiffness is diag(kx, ky, kθ), kx, ky are the bending stiffnesses, and kθ
is the torsional stiffness.

The dynamics models of the first and second planetary gear set and the third planetary
gear set in the dynamics model of the three planetary gear set transmissions are established
in two coordinate systems, respectively, as shown in Figure 7a,b. XY in the two figures is
the fixed coordinate system of the center gear, and its coordinate origin is located at the
theoretical center of the center gear. Horizontally to the right is the positive direction of X,
and the positive direction of X rotated 90◦ counterclockwise is the positive direction of Y.
xiyi (i = 1, 2, . . . , N, N is the number of planetary gears) in two figures for each gear set of
planetary gear in the local coordinate system. With the speed of the planet carrier uniform
rotation for the moving coordinate system, the origin of the theory of center in the case
of a planet gear, center gear’s theory and the theory of the planet gear center outside the
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connection point to the direction of the positive direction for xi, the positive direction of xi
rotated by 90 degrees counterclockwise is the positive direction of yi.

Table 1. The meanings of each connection stiffness in Figure 6.

Stiffness
Symbol The Meaning of Stiffness Symbol

kc1 Connection stiffness between input shaft and S1 when clutch CL1 engages
kc2 Connection stiffness between input shaft and C1 when clutch CL2 engages
k12 Connection stiffness between sun gear S1 and sun gear S1
kj2z Connection stiffness between ring gear R1 and planetary carrier C2
kj2y Connection stiffness between planetary carrier C2 and connecting gear
k23 Connection stiffness between connecting gear and sun gear S3
kc3 Connection stiffness between connecting disc and ring gear R3

Figure 7. Dynamics model of planetary gear sets. (a) Dynamics model of the planetary gear set 1 or 2;
(b) dynamics model of the planetary gear set 3.

The spring supporting elements kjx, kjy (j = s, r, c) represent the supporting stiffness of
the parts (sun gear, inner gear ring, and planetary carrier, respectively) in planetary gear
set along the local coordinate system xiyi. The spring supporting element kcp represents
the supporting stiffness of the three planetary gear sets of respective planetary frames to
N planet gears. Spring element kspi, krpi (I = 1, 2, . . . , N, N is the number of planet gears),
respectively, represent the meshing relationship between the three gear sets of respective
sun gears and the i-th planetary gear, and the meshing relationship between the three gear
sets of respective inner ring gears of the sun gears and the planetary gear. cspi, crpi are the
corresponding meshing damping values of kspi, krpi in their respective meshing relations.

The dynamic model of the whole three planetary gear set transmissions is discretized
into sub-elements, including a shaft element, a bearing element, an external meshing
element, an internal meshing element, a planetary carrier element, a bearing element, and
so on, by using the idea of finite element. The motion differential equations of each sub-
element are listed by lumped mass method and converted into the mass matrix, damping
matrix, and stiffness matrix, respectively. The motion equation of the planetary gear set
transmissions as a whole is shown in Equation (15).

M
..
x(t) + C[

.
x(t)− .

e(t)] + K(t)[x(t)− e(t)] = P0 (15)

where M is the overall mass matrix of the system; C is the damping matrix of the system;
K(t) is the stiffness matrix of the system; x(t) is the displacement column vectors of all mass
nodes in the system, P0 is the external load column vector of the system.
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2.2. A Generalized Dynamic Model for Planetary Gear Set Transmissions

The planetary gear set transmissions has seven gears movement relationship, including
five forwards gears and two backwards gears. The state table of control components for all
gears is shown in Table 2.

Table 2. The state table of control components for all gears *.

Gear CL1 CL2 CL3 B1 B2 B3

First gear # × × × # #
Second gear × # × × # #
Third gear # # × × × #

Fourth gear × # # × # ×
Fifth gear # # # × × ×

First reverse gear # × × # × #
Second reverse gear # × # # × ×

* The symbol of ‘#’means engaging state and the symbol of ‘×’means separation state in the table.

Considering the different states of control components in different gears, the cor-
responding dynamic models are different in braking relations and connection relations.
In order to improve the modeling efficiency when shifting between different gears, on
the basis of the whole dynamic model, the general dynamic model construction method
considering gear shift is studied.

The establishment of the generalized dynamic model considering gear shift actually
deals with the dynamic parameter matrices (including the mass matrix, damping matrix,
and stiffness matrix) involved in the whole dynamic model of the system. The specific
generalized dynamics model processing procedure is shown in Figure 8. In view of
the different joint states of two control components, there are two ways to deal with
the whole dynamic parameter matrix of the system. When the clutch is engaged, the
connection relation between nodes should be considered. The node number of the two
nodes connected by the clutch can be preset in advance through the shaft element. By using
the connection row vector, the connection relation of different nodes caused by different
gears is established and reflected in the dynamic parameter matrices. When the brake is
engaged, first of all, it is necessary to judge the preset node number of the node being
braked and obtain the transformation matrix and dynamic parameter gear matrix. Then,
the original dynamic parameter matrix of the system is processed by using the dynamic
parameter gear matrix, and the dynamic model of different gear position can be obtained
by integrating the clutch connection relation processing. If the gear needs to be replaced
again, the above dynamic parameter matrix processing procedure can be repeated.

When processing the coupling relation of clutch, shaft element is mainly used to
deal with. A connection row vector A is defined to describe the join relation between
two members joined by the clutch when the clutch engages. If one of the two connected
components is denoted as 1, the other as −1, and the others as 0, each two connected
components will form a row vector containing only 1, −1, 0, and one row vector represents
a connection relation. When the clutch CL1 engages, the input shaft is connected to the sun
gear in the first gear set. When the clutch CL2 engages, the input shaft is connected with
the inner ring gear of the first gear set. When the clutch CL3 engages, the connection disc is
connected with the third gear set of inner ring gear. There are 25 nodes according to the
input shaft, the sun gear, the planet gears, the planetary carrier, the inner ring gear of the
three planetary gear sets, the connection disc, and so on.

According to different connection relations, the corresponding connection row vector
A of the three connection modes is as Equation (16).
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Figure 8. Flow chart of generalized dynamics model.

A(1) = [1 − 1 0 · · · 0 ]1×25

A(2) =

1 0 · · · 0︸ ︷︷ ︸
f ive 0

−1 0 · · · 0


1×25

A(3) =

0 · · · 0︸ ︷︷ ︸
f i f teen 0

1 0 · · · 0 − 1


1×25

(16)

When the clutch engages, the matrix (ATA) is the direct product of the connection
stiffness Kci at the clutch connection, and the obtained matrix is added to the original
stiffness matrix to generate the new stiffness matrix considering the clutch connection.

Taking the second gear of the system as an example, the clutch CL2 engages under
this gear, and the connection row vector is used to process the stiffness matrix of the system
as a whole. The specific matrix processing procedure is as Equation (17).

A = A(2),
Knew = K +

(
AT A

)
⊗ Kc2

(17)

The damping matrix and mass matrix can also be treated using a connection row
vector to obtain a new matrix considering the connection relation.

In the process of brake engagement, a transformation matrix is defined, in which the
non-braked member is set to one, and each row vector in the matrix represents only one
non-braked relation in the whole system.

The 25 mass nodes are sorted according to the previous ordering rules when defining
the connection matrix, and seven gear transformation matrices Xi (i = 1, 2, . . . , 5,−1,−2) as
Equations (18)–(23). Each row vector in the matrix only represents a non-braking relation in



Appl. Sci. 2022, 12, 6279 11 of 17

the whole system, and each row vector represents each mass point according to the above
ordering rules from left to right.

X1 = X2 =



1
. . .

1


14×14

...
0
...

1
. . .

1


9×9

...
0


23×25

(18)

X3 =


1

. . .
1


24×24

...
0


24×25

(19)

X4 =



1
. . .

1


15×15

...
0
...

1
. . .

1


9×9


24×25

(20)

X5 =


1

. . .
. . .

1


25×25

(21)

X−1 =



1
. . .

1


6×6

...
0
...

1
. . .

1


17×17

...
0


23×25

(22)

X−2 =



1
. . .

1


6×6

...
0
...

1
. . .

1


18×18


24×25

(23)

After the establishment of the shift matrix, since the degree of freedom of each mass
point of the system is three, and the direct product of the transition matrix and the unit
matrix I3×3 can be successively taken to obtain the dynamic parameter gear matrix Cdyn_i
of different gears, as shown in Equation (24).

Cdyn_i = Xi ⊗ I3×3(i = 1, 2, · · · , 5,− 1,−2) (24)

Similarly, taking the second gear of the system as an example, the processing procedure
of dynamic parameter matrix is introduced. The inner ring gear node of No. 15 in the
second gear set and the inner gear ring node of No. 25 in the third gear set are braked. There
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are 23 non-braking nodes, so there are 23 non-braking relations. The dynamic parameter
gear matrix Cdyn_2 under this gear is shown in Equation (25).

(
Cdyn_2

)
69×75

= (X2)23×25 ⊗ I3×3 =



I
. . .

I


(14×3)×(14×3)

...
O3×3

...
I

. . .
I


(9×3)×(9×3)

...
O3×3


(25)

The new stiffness matrix (K2new)69×69, excluding the inner ring node of No. 15 in the
second gear set and the inner ring node of No. 25 in the third gear set can be obtained by
using the dynamic parameter gear matrix Cdyn_2 for gear set transformation and column
transformation. The specific calculation process is shown in Equation (26).

(K2new)69×69 = (Cdyn_2)69×75(Knew)75×75(Cdyn_2)
T
75×69 (26)

The damping matrix and mass matrix can also be transformed by using the dynamic
parameter gear matrix to generate a new matrix considering the braking relationship.

3. Meshing Force Analysis

To analyze the external meshing dynamic force of the first planetary gear in each gear
set under the second gear, a Fourier series method is adopted to solve the motion equations
of the planetary gear set transmissions. The spectrum analysis under variable speed is
carried out to analyze the influence of the meshing force coupling components of each gear
set on it and the relationship between them and the input speed. When the input torque
Tin is 5000 N · m, the dynamic meshing force spectrums of the planetary gear drive system
are shown in Figures 9–11 for different speeds.

Figure 9. External meshing force of the first gear set.
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Figure 10. External meshing force of the second gear set.

Figure 11. External meshing force of the third gear set.

It can be seen from Figures 9–11 that when the rotational speed goes from 1000 r/min
to 8000 r/min, the main components of meshing force spectrum in planetary gear set
S1–S3 are the meshing frequency f mi (i = 1, 2, 3) and its frequency doubling of the current
set, and the amplitude of frequency doubling component of the current set is the highest.
Figure 9 shows that the spectrum of S1 set meshing force mainly consists of the meshing
frequency of the first row and its frequency doubling, and the amplitude of the single
frequency component is the largest, meshing frequency components f m3 and 2f m3 of the S3
set exist in the meshing force spectrum of S1 set at low rotational speed, and these frequency
components disappear with the increase in rotational speed. As shown in Figure 10, the
spectrum of the S2 set meshing force mainly consists of the meshing frequency of the first
row and its frequency doubling, and the amplitude of the single frequency component is
the largest. The meshing frequency component f m3 of the gear set S3 exists in the meshing
force spectrum of the gear set S2 at low rotational speed, and this frequency component
disappears with the increase in rotational speed. In addition, meshing frequency component
f m1 of the gear set S1 and its frequency doubling exist, and do not seem to disappear with
the increase in rotational speed. As shown in Figure 11, the spectrum of the S3 set meshing
force mainly consists of the meshing frequency of the first row and its frequency doubling,
and the amplitude of the single frequency component is the largest. Meshing frequency
component f m1 of the gear set S1 exists in the meshing force spectrum of the gear set S3 and
will not disappear with the increase in rotational speed. As for the meshing forces of the
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current gear set, the meshing frequency components of other gear sets only appear in part
of the rotational speed, and the rotational speed of each gear set is different, indicating that
the coupling relationship between the meshing forces of different gear sets is not equal.

To show the waterfall in more detail, meshing force spectrums of partial rotational
speeds (1000 r/min, 2000 r/min, 4500 r/min, 7000 r/min) are shown in Figures 12–14.
Figure 12 shows the meshing force spectrums of the first gear set. At the speeds of
1000 r/min and 2000 r/min, in addition to meshing frequency f m1 and frequency dou-
bling component of the first gear set, there is also meshing frequency f m3 and frequency
doubling component of the third gear set, which is caused by the connection between the
sun gear of the third gear set and the inner ring gear of the first gear set. In addition, at
1000 r/min, there is the meshing frequency f m2 component of the second gear set, which
is caused by the parallel relationship between the first gear set and the second gear set.
When the rotational speed rises to 4500 r/min and 7000 r/min, the meshing frequency
components of other gear sets disappear, and only the meshing frequency and frequency
doubling components of the first gear set exist.

Figure 12. Spectrums diagram of meshing force of the first gear set at each input speed. (a) 1000 r/min;
(b) 2000 r/min; (c) 4500 r/min; (d) 7000 r/min.
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Figure 13. Spectrums diagram of meshing force of the second gear set at each input speed.
(a) 1000 r/min; (b) 2000 r/min; (c) 4500 r/min; (d) 7000 r/min.

Figure 14. Spectrums diagram of meshing force of the third gear set at each input speed.
(a) 1000 r/min; (b) 2000 r/min; (c) 4500 r/min; (d) 7000 r/min.
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The meshing force spectrums of S2 in the second gear set is shown in Figure 13. As it
has a parallel relationship with the first gear set and a series relationship with the third gear
set in the overall structure, its composition is complicated. Moreover, the first and third
gear set of single-fold meshing frequency components f m1 and f m3 and their corresponding
frequency doubling components appeared, and even the first gear set of meshing frequency
components f m1 occupied the highest amplitude at 1000 r/min, indicating that the coupling
effect of the parallel relation of the structure on the meshing force is more obvious at low
rotational speed. When the speed increases to 4500 r/min and 7000 r/min, the meshing
frequency component f m3 of the third gear set S3 disappears, but the meshing frequency
f m1 and its frequency doubling component do not disappear with the increase in the speed.

Figure 14 shows the meshing force spectrums of S3 in the third gear set. Due to
the connection between S3 in the third gear set and S1 in the first gear set, except the
meshing frequency f m3 and frequency doubling component of S3 in the third gear set,
the meshing frequency f m1 and frequency doubling component of S1 in the first gear set
will not disappear with the increase in the speed at different input speeds. However, the
amplitude of this component will continue to decrease with the increase in rotational speed.
By observing the spectrum, it can be found that due to the characteristics of the overall
structure, the coupling relationship between the meshing forces of different planetary rows
is not symmetric, and the coupling phenomenon is more sensitive to low speeds.

4. Conclusions

Taking the three planetary gear sets transmission system as the research object, consid-
ering the characteristics of various parts, as well as the complex structure and changeable
gear position of the planetary gear transmission system, a generalized dynamic model of the
planetary gear set transmissions is established using the lump mass method, which can pro-
vide a reference for the subsequent automatic model establishment. This work contributes
to the efficiency of dynamic modeling of multi-gear planets when they switch gears.

Through analysis of the variable speed of each frequency components of meshing
force, the correctness of the above dynamic model is further verified. Analyzing the
current gear set of meshing force, another gear set of meshing frequency components only
appeared in the part of low rotational speed, and with the increase in rotational speed,
some other low-frequency component in low speed could reduce or even disappear, but
because of the characteristic of the structure, some other meshing frequency components
will continue to exist, and will be unaffected by the speed change. In addition, the influence
of different planetary gear sets on each other is strong or weak, indicating that the coupling
relationship between meshing forces of different planetary gear sets is not equal; that is,
the coupling relationship between meshing forces of different planetary gear sets is not
symmetrical, and the coupling phenomenon of parallel row is more obvious. The results
are similar to those of other literature. Resonance rotating speeds excited by meshing
frequencies and their coupling frequencies are mainly concentrated in the range of middle–
low rotating speed [20]. The frequency coupling of parallel row is more serious than that of
series row [21].

In addition, in the establishment of a general dynamics modeling method, relevant
matrix parameters still need to be manually input in the establishment process of a dy-
namic parameter gear matrix and shaft element connection, which can be combined with
the development of related software in the subsequent correlation matrix of motion and
torque analysis to complete the fully automated calculation and dynamics building process.
Furthermore, based on linear time-varying models (LTVM), this paper focuses on the rapid
dynamic model shifting method of a planetary gear sets system. Therefore, non-linear influ-
encing factors such as gear backlash, impact and friction between gear pairs were ignored
in the process of building the dynamic model in this paper, and the lack of persuasive
analysis of dynamic characteristics gave this paper certain limitations in the subsequent
analytical process. For spur gears, the impact of contact, disengagement, and re-contact
between teeth caused by gear backlash mainly occurs in high-speed operation under light
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load, and the analysis of the LTVM model is not sufficient. It is necessary to further analyze
the dynamic characteristics of the system by adding non-linear factors and combining with
the LTVM model.

Author Contributions: Conceptualization, H.W.; methodology, C.J.; software, C.J.; validation, C.J.
and C.W.; formal analysis, H.W.; investigation, F.L.; resources, C.W. and F.L.; data curation X.S.;
writing—original draft preparation, C.J.; writing—review and editing, H.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Laboratory of Science and Technology on
Helicopter Transmission (Grant No. HTL-O-21G01).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kahraman, A. Natural modes of planetary gear trains. J. Sound Vib. 1994, 173, 125–130. [CrossRef]
2. Lin, J.; Parker, R.G. Analytical characterization of the unique properties of planetary gear free vibration. J. Vib. Acoust. 1999, 121,

316–321. [CrossRef]
3. Bang, Y. Multi-speed transmission mechanism using a compound planetary gear set and brakes. Int. J. Automot. Technol. 2019, 20,

739–748. [CrossRef]
4. Ambarisha, V.K.; Parker, R.G. Nonlinear dynamics of planetary gears using analytical and finite element models. J. Sound Vib.

2007, 302, 577–595. [CrossRef]
5. Zhao, L.; Xiong, X. Research on dynamic characteristics based on flexible body model of planetary gear system. Coal Mine Mach.

2012, 33, 117–119.
6. Lai, J.; Liu, Y.; Xu, X.; Li, H.; Xu, J.; Wang, S.; Guo, W. Dynamic modeling and analysis of Ravigneaux planetary gear set with

unloaded floating ring gear. Mech. Mach. Theory 2022, 170, 104696. [CrossRef]
7. Benford, H.L.; Leising, M.B. The lever analogy: A new tool in transmission analysis. SAE Trans. 1981, 90, 429–437.
8. Kim, H.; Kum, D. Comprehensive design methodology of input-and output-split hybrid electric vehicles: In search of optimal

configuration. IEEE/ASME Trans. Mechatron. 2016, 21, 2912–2923. [CrossRef]
9. Kahraman, A.; Ligata, H.; Kienzle, K.; Zini, D.M. A kinematics and power flow analysis methodology for automatic transmission

planetary gear trains. J. Mech. Des. 2004, 126, 1071–1081. [CrossRef]
10. Lang, S.Y.T. Graph-theoretic modelling of epicyclic gear systems. Mech. Mach. Theory 2005, 40, 511–529. [CrossRef]
11. Tian, L.; Li, Q. Matrix system for the analysis of planetary transmissions. J. Mech. Des. 1997, 119, 333–337. [CrossRef]
12. Chang, L.; He, Z.; Liu, G. Dynamic modeling of parallel shaft gear transmissions using finite element method. J. Vib. Shock 2016,

35, 47–53.
13. Qian, B.; Wu, S.; Zhou, G. Research on dynamic characteristics of planetary gear sets. J. Syst. Simul. 2009, 20, 6608–6612.
14. Wei, J.; Zhang, A.; Qin, D.; Lim, T.C.; Shu, R.; Lin, X.; Meng, F. A coupling dynamics analysis method for a multistage planetary

gear system. Mech. Mach. Theory 2017, 110, 27–49. [CrossRef]
15. Lv, H.; Li, Z.; Zhu, W.; Tang, X.; Gao, J.; Zhu, R. Construction of 12 DOFs spur gear coupling dynamic model. Vibroengineering

PROCEDIA 2019, 28, 241–245.
16. Xiao, Z.; Qin, D.; Wang, J.; Wu, W.; Chen, L. Study on torsional dynamics of 3-stage planetary gears of main reducer used in

driving cutterhead of shield tunnelling machine. China Mech. Eng. 2010, 21, 2176.
17. Liu, H.; Cai, Z.; Xiang, C. Frequency coupling and dynamic characteristics of nonlinear meshing force for two-stage planetary

Gears. J. Vib. Shock 2015, 34, 13–23.
18. Wei, J.; Zhang, A.; Qin, D.; Shu, R.Z. Coupling vibration analysis for planetary gear system considering flexible structure. J. Mech.

Eng. 2017, 53, 1–12.
19. Zhang, Q.; Li, H. Torsional vibration analysis and optimization of vehicle multi-stage planetary transmission system. Mech. Sci.

Technol. Aerosp. Eng. 2019, 38, 339–343.
20. Dou, Z.; Li, Y.; Zeng, Z.; Du, M.; Yang, Y. Frequency coupling and coupling resonance of a composite planetary transmission

system under complex excitations. J. Vib. Shock 2019, 38, 16–23.
21. Hao, X.; Yuan, X.; Bai, J.; Li, F.; Qin, J. Analysis of factor affecting frequency coupling of double planetary gear system. J. Mech.

Transm. 2020, 44, 110–117, 165. [CrossRef]

http://doi.org/10.1006/jsvi.1994.1222
http://doi.org/10.1115/1.2893982
http://doi.org/10.1007/s12239-019-0069-9
http://doi.org/10.1016/j.jsv.2006.11.028
http://doi.org/10.1016/j.mechmachtheory.2021.104696
http://doi.org/10.1109/TMECH.2016.2579646
http://doi.org/10.1115/1.1814388
http://doi.org/10.1016/j.mechmachtheory.2004.12.001
http://doi.org/10.1115/1.2826352
http://doi.org/10.1016/j.mechmachtheory.2016.12.007
http://doi.org/10.16578/j.issn.1004.2539.2020.03.018

	Introduction 
	Generalized Dynamic Model 
	Establishment of Global Dynamics Model 
	Shaft Element 
	External Meshing Element 
	Internal Meshing Element 
	Planetary Carrier Element 

	A Generalized Dynamic Model for Planetary Gear Set Transmissions 

	Meshing Force Analysis 
	Conclusions 
	References

