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Abstract: The goal of spatial co-location pattern mining is to find subsets of spatial features whose
instances are often neighbors in a geographical space. In many practical cases, instances of spatial
features contain not only spatial location information but also attribute information. Although there
have been several studies that use type-1 fuzzy membership functions to mine spatial fuzzy co-
location patterns, there is great uncertainty associated with such membership functions. To address
this problem, we propose a spatial fuzzy co-location pattern mining method based on interval type-2
fuzzy sets. First, we collect the interval evaluation values of the interval data of attribute information
from experts to form granular data. Next, the original type-1 fuzzy membership function is extended
to a granular type-2 fuzzy membership function based on elliptic curves. We use a gradual method to
adjust the parameters of the fuzzy membership function so that its footprint of uncertainty satisfies
both the connectivity and the given confidence. Based on this granular type-2 fuzzy membership
function, we fuzzify the attribute information of instances and define the concepts of fuzzy features
and fuzzy co-location patterns. A fuzzy co-location pattern mining algorithm based on spatial cliques
is then proposed, termed the FCPM-Clique algorithm. In order to improve the efficiency of the
algorithm, we propose two pruning strategies. In addition, we extend two classical spatial pattern
mining algorithms, the Join-based algorithm and the Joinless algorithm, to mine fuzzy co-location
patterns based on interval type-2 fuzzy sets. Many experiments on synthetic and real-world datasets
are conducted, the performance of the three algorithms is compared, and the effectiveness and
efficiency of our proposed FCPM-Clique algorithm is demonstrated.

Keywords: spatial data mining; fuzzy co-location pattern; interval type-2 fuzzy set; clique

1. Introduction

Spatial co-location pattern mining is an important branch of spatial data mining. A
spatial co-location pattern is a subset of spatial features whose instances are often neighbors
in space. For example, {hotel, restaurant} may be a prevalent co-location pattern because
hotels and restaurants often neighbor each other in a city center. Spatial co-location pattern
mining is widely used in the fields of botany [1], geographic information science [2–4],
geology [5], urban facilities distribution, etc. For example, geologists may be interested in
neighboring minerals in the same area [4].

In recent years, many algorithms for mining spatial co-location patterns have been
developed. These algorithms can be divided into two types. Apriori-like algorithms [1,5–8]
are one type. This algorithm first generates the candidate co-location patterns, then spends
a lot of time generating row-instances of the candidate co-location patterns and checking
their prevalence. Another algorithm is the algorithm based on prefix trees [2,3,9–14]. This
algorithm generates maximal cliques from spatial datasets to discover prevalent spatial
co-location patterns, which is generally more efficient than an Apriori-like algorithm. We
have noticed that spatial data are often accompanied by attribute information expressed by
specific values, such as the content of heavy metals in a certain geographical location [4].
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However, existing spatial co-location pattern mining algorithms mainly focus on the
location information of spatial data but ignore their attribute information.

In recent years, some researchers have used type-1 fuzzy sets to process the location
information of spatial data and mine fuzzy co-location patterns (FCPs). However, type-1
fuzzy sets have a large amount of uncertainty. Type-2 fuzzy sets can model both intra-
individual uncertainty and inter-individual uncertainty, while type-1 fuzzy sets can only
model intra-individual uncertainty. Every expert can model a type-1 fuzzy set (intra-
individual uncertainty), and the type-1 fuzzy sets of different experts are often different.
Type-2 fuzzy sets can be used to fuse these different type-1 fuzzy sets, so as to consider the
uncertainty between individuals.

In recent years, people have made great progress in the study of type-2 fuzzy
sets [15–20]. Many researchers have applied fuzzy set theory to association rule min-
ing. Anuradha et al. [21] used type-2 fuzzy sets to mine multi-level association rules. Lin
et al. [22] used type-2 fuzzy sets to discover fuzzy frequent item sets efficiently. Kalia
et al. [23] used type-2 fuzzy sets and genetic algorithms to mine fuzzy rules in high-
dimensional classification tasks. Wang et al. [24] and Yang et al. [25] introduced fuzzy set
theory into spatial co-location pattern mining and proposed a new metric method. Molina
et al. [26] used a hierarchy to represent fuzzy association rules. Lin et al. [27] quickly
discovered fuzzy frequent item sets from quantitative database based on type-2 fuzzy sets.
Zhang et al. [28] mined the relationship between different types of crime rate based on fuzzy
association rules. Wang et al. [29] and Anari et al. [30] combined a fuzzy set and rough set
and proposed a new method of mining fuzzy association rules. In addition, fuzzy set theory
is also widely used in attribute data mining. Gupta et al. [31] and Sun et al. [32] introduced
fuzzy weight into fuzzy multi-attribute mining. Meng et al. [33] used interval type-2 fuzzy
sets to solve multi-attribute decision-making in sponge city construction. Tao et al. [34]
and Farhadinia et al. [35] applied ordered fuzzy sets to multi-attribute decision-making
systems.

In recent years, many type-2 fuzzy membership functions have been proposed, such
as ladder type, triangular type, Gaussian type and S type [36,37], π type [38], etc. However,
these functions have a common feature: there are many parameters that determine the
confidence and the width of the FOU, and the coupling between these parameters is very
high, which makes it very difficult to select the appropriate parameters, for example, a
type-2 fuzzy membership function based on an extended π function [38]. However, this
is not the case for type-2 fuzzy membership functions based on elliptic curves [39,40] as
there is only one parameter. Therefore, we generate an interval type-2 fuzzy membership
function based on an elliptic curve.

We have noticed that spatial data are often accompanied by attribute information
expressed by specific values, such as the content of heavy metals in a certain geographical
location [4]. People are usually not sensitive to a specific value of the attribute information.
However, when the attribute value changes fundamentally—that is, when it changes from
a certain range to a new range—people will notice this and attach importance to the result.
In this paper, in order to solve the large deviation caused by the method of mining fuzzy
co-location patterns based on type-1 fuzzy sets [4], a method of mining fuzzy co-location
patterns based on interval type-2 fuzzy sets and cliques from spatial datasets with attribute
information is proposed.

The purpose of this paper is first to construct a special kind of interval type-2 fuzzy
membership function—a granular type-2 fuzzy membership function based on interval
type-2 fuzzy sets, which is used to improve the original type-1 fuzzy membership function.
This reduces the deviation caused by the subjective evaluation of experts as far as possible,
that is, to reduce the deviation caused by the uncertainty of a type-1 fuzzy membership
function. Furthermore, we would like to find the influence of the uncertainty of fuzzy
membership functions on the prevalence degree of fuzzy co-location patterns (FCPs) and
measure the prevalence degree.
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2. Innovation

Our paper makes the following contributions to the field of fuzzy co-location pattern
mining:

(1) In the fuzzy processing of corresponding attribute information based on the original
type-1 fuzzy membership function, a granular type-2 fuzzy membership function
based on an elliptic curve is generated from the evaluation data. We adopt a gradual
method to adjust the parameters of the function so that the type-2 membership
function not only meets the connectivity [11] but also makes its confidence reach the
given threshold (set to 85%).

(2) Based on the abovementioned granular type-2 fuzzy membership function, we define
the concepts of fuzzy membership interval, upper bound participation ratio, lower
bound participation ratio of fuzzy features, upper bound participation index, and
lower bound participation index for FCP mining. Further, to smooth the “sharp
boundary” of pattern prevalence and reduce the deviation caused by the subjective
understanding of the prevalence degree of FCPs, we propose the concepts of ab-
solutely prevalent FCPs, FCPs with a prevalence tendency degree, and absolutely
non-prevalent FCPs.

(3) Based on spatial cliques, a method of mining FCPs is proposed. First, an algorithm
for generating spatial cliques from spatial datasets is presented, and then an Apriori-
like algorithm and two pruning strategies are proposed to discover the absolutely
prevalent FCPs and FCPs with a prevalence tendency degree. In addition, we apply
interval type-2 fuzzy sets to traditional co-location pattern mining algorithms and
form an FCPs mining method based on interval type-2 fuzzy sets and the traditional
Join-based algorithm, as well as another FCPs mining algorithm based on interval
type-2 fuzzy sets and the traditional Joinless algorithm.

3. Related Definitions and Theorems
3.1. Definitions

Traditional co-location patterns can reflect the spatial association of instances but
ignore the influence of other information—besides location information—on the mining
results. In order to articulate our method, we give the following definitions:

Definition 1 (Data fuzzification). The most important step of attribute data fuzzification is
to determine the fuzzy membership function. According to the fuzzy membership function, the
attribute data is expressed as a fuzzy membership.

Supposing the fuzzy set over the domain is F, then the fuzzy membership function is
UF. We use membership function UF to describe the fuzzy set F, that is, UF: x→ [0, 1].

In this paper, we use the upper boundary and lower boundary of the footprint of
uncertainty (FOU) to describe the type-2 fuzzy membership function. That is, we introduce
the upper bound membership function UF(x) and the lower bound membership function
UF(x).

Definition 2 (Granular evaluation data). We use the expert evaluation method to evaluate the
interval membership degrees of the interval values under a fuzzy set to form granular evaluation
data, so as to reduce the error when the specific membership degree of a specific value under a fuzzy
set is evaluated.

Definition 3 (Fuzzy feature). Fuzzy features refer to different types of things with fuzzy attributes
in a space. A fuzzy feature set refers to the set of fuzzy features, expressed as Fuzz_Fea = {Fuzz_ f1,
Fuzz_ f2, . . . , Fuzz_ fn}. A fuzzy feature is represented as Fuzz_ fi (1 ≤ i ≤n).

The instances of a fuzzy feature are the sampling points of the fuzzy feature in the
space and the fuzzy membership degree for the fuzzy feature when it is greater than 0.
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Definition 4 (Neighborhood relationship). A spatial dataset refers to the set of instances with
type (feature), location information, and attribute information in a space. Suppose Fuzz_Fea is a
set of features and S is the set of their instances, for any two instances, s1 and s2, if the Euclidean
distance between the two instances is less than the threshold min_dist given by the user—that is,
distance(s1, s2) ≤ min_dist—then the two instances satisfy the neighborhood relationship, which is
represented as R(s1, s2).

Definition 5 (Fuzzy co-location pattern). A fuzzy co-location pattern (FCP) Fuzz_c is a subset
of the set of fuzzy features, that is, Fuzz_c ⊆ Fuzz_Fea. The size of an FCP is the number of fuzzy
features of the pattern, which is expressed as |Fuzz_c|.

Definition 6 (Row-instance and table-instance). Suppose there is a subset of spatial instances
S ={s1, s2, . . . , sk} where any two instances are neighbors. If S contains all the fuzzy features of
an FCP Fuzz_c and there is no subset of S that can contain all the fuzzy features of Fuzz_c, then
S is called a row-instance of Fuzz_c. All row-instances of Fuzz_c constitute the table-instance of
Fuzz_c.

Definition 7 (Absolute row-instance and absolute table-instance). Suppose there is a spatial
instancesi (i∈{1, 2, . . . k}). If si is an instance of the fuzzy feature Fuzz_ f1 and also an instance of
the fuzzy feature Fuzz_ f2, thensi is called an absolute row-instance of a fuzzy co-location pattern
{Fuzz_ f1, Fuzz_ f2}. For a fuzzy co-location pattern, all its absolute row-instances constitute its
absolute table-instance.

Definition 8 (Upper bound participation ratio and lower bound participation ratio). Sup-
pose there is an FCP Fuzz_c = {Fuzz_ f1, Fuzz_ f2, . . . , Fuzz_ fk}, the lower bound participation
ratio of the fuzzy feature Fuzz_ fi(i∈{1, 2, . . . k}) is expressed as PR(Fuzz_c, Fuzz_ fi), which is
defined as the ratio of the sum of the lower bound membership degrees of the instances that appear
non-repeatedly in the table-instance of the FCP Fuzz_c to the sum of the lower bound membership
degrees of all the instances of Fuzz_ fi. The upper participation ratio is expressed as PR (Fuzz_c,
Fuzz_ fi), which is defined as the ratio of the sum of the upper bound membership degrees of the
instances that appear non-repeatedly in the table-instance of the FCP Fuzz_c to the sum of the upper
bound membership degrees of all the instances of Fuzz_ fi, namely:

PR
(

Fuzz_c, Fuzz_ fi) = ∑ u
(

πFuzz fi
table_instance(Fuzz_c)

)
/ ∑ u(table_instance({Fuzz_ fi}));

PR(Fuzz_c, Fuzz_ fi ) = ∑ u
(

πFuzz fi
table_instance(Fuzz_c)

)
/ ∑ u(table_instance({Fuzz_ fi}))

where π is the relational projection operation, u(x)denotes the lower bound membership of x,
and u(x)denotes the upper bound membership of x.

Definition 9 (Upper bound participation index and lower bound participation index).
The upper bound participation index of FCP Fuzz_c is expressed as PI(Fuzz_c), which is defined as
the minimum of the upper bound participation ratio of all fuzzy features Fuzz_ fi in Fuzz_c, which
is:

PI(Fuzz_c) = mink
i=1
{

PR (Fuzz_c, Fuzz fi)}.

The lower bound participation index of FCP Fuzz_c is expressed as PI(Fuzz_c), which
is defined as the minimum of the lower bound participation ratio of all fuzzy features
Fuzz_ fi in Fuzz_c, which is:

PI(Fuzz_c) = mink
i=1{PR (Fuzz_c, Fuzz fi)}.



Appl. Sci. 2022, 12, 6259 5 of 30

Definition 10 (Prevalent fuzzy co-location pattern). According to Definition 9, an FCP
Fuzz_c has an upper bound participation index and a lower bound participation index. For an
FCP Fuzz_c when given a prevalence threshold min_prev, if PI(Fuzz_c) < min_prev, Fuzz_c
is called an absolutely non-prevalent pattern. If PI(Fuzz_c) ≥ min_prev, Fuzz_c is called an
absolutely prevalent pattern. If PI(Fuzz_c) <min_prev ≤PI (Fuzz_c), Fuzz_c is called an FCP
with prevalence tendency degree, and the prevalence tendency degree of the fuzzy pattern is:

θ =
(

PI (Fuz_c)−minprev)/
(

PI(Fuz_c)− PI(Fuz_c)
)

We call the absolutely prevalent FCPs and FCPs with a prevalence tendency degree
prevalent FCPs.

Example 1. We take the content of heavy metals, copper and zinc, in the topsoil of an area
as an example. We divide the areas into the agricultural area (functional area A), residential
area (functional area B), industrial area (functional area C), and commercial area (functional
area D). Then, we sample the surface soil of each functional area and then measure the
heavy metal content at each sampling point. The number of sampling points of functional
areas, spatial location of sampling point, copper content, and zinc content are shown in
Table 1. The spatial position of the sampling points are shown in Figure 1.

Table 1. Attribute information of sampling points.

Functional Area The Number of
Sampling Points The Content of Copper The Content of Zinc

A 1 62 226

A 2 31 105

A 3 46 136

B 1 86 183

B 2 29 112

B 3 45 150

B 4 57 124

C 1 63 210

D 1 51 155
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Suppose there is an FCP Fuzz_c = {A.Cu(M), B.Cu(H), C.Cu(M)}. Here, the fuzzy
feature B.Cu(H) represents the B functional area with a high copper content. The size of
the FCP is 3. According to the granular type-2 fuzzy membership function constructed in
Section 4.1, we obtain the interval membership of the attributes of the instances in Table 1,
as shown in Table 2. As can be seen from Table 2, the instances of fuzzy feature A.Cu(M)
are A.1, A.2, and A.3; the instance of fuzzy feature B.Cu(H) is B.1; and the instance of fuzzy
feature C.Cu(M) is C.1. If A.2, B.1, and C.1 are neighbors, {A.2, B.1, C.1} is a row-instance of
the FCP Fuzz_c. According to Definition 8, the lower boundary participation ratio of these
three fuzzy features is PR(Fuzz_c, A.Cu(M)) = 0.2256, PR(Fuzz_c, B.Cu(H)) = 1, PR(Fuzz_c,
C.Cu(M)) = 1 and the upper bound participation ratio of these three fuzzy features are
PR(Fuzz_c, A.Cu(M)) = 0.2866, PR(Fuzz_c, B.Cu(H)) = 1, PR(Fuzz_c, C.Cu(M)) = 1, so the
lower participation index is PI(Fuzz_c) = 0.2256 and the upper bound participation index is
PI(Fuzz_c) = 0.2866. If the prevalence threshold min_prev = 0.2, then PI(Fuzz_c) > min_prev,
that is, Fuzz_c is absolutely prevalent. If the prevalence threshold min_prev = 0.3, then
PI(Fuzz_c) < minprev and Fuzz_c is absolutely non-prevalent. If the prevalence threshold
min_prev = 0.25, then PI(Fuzz_c) > minprev > PI(Fuzz_c) and the prevalence tendency degree
θ of Fuzz_c is θ = 0.6.

Table 2. The interval membership of the fuzzy attribute of the sampling point.

Functional
Area

Number of
Sampling

Points
Cu(L) Cu(M) Cu(H) Zn(L) Zn(M) Zn(H)

A 1 0 [0.4403, 0.7456] [0.0104, 0.0831] 0 0 1

A 2 0 [0.3614, 0.6848] 0 0 [0.5414, 0.8298] 0

A 3 0 [0.8, 0.9591] 0 0 [0.5191, 0.8146] 0

B 1 0 0 [0.283, 0.5931] 0 0 [0.3905, 0.7023]

B 2 0 [0.3152, 0.6386] 0 0 [0.7138, 0.9252] 0

B 3 0 [0.7633, 0.9455] 0 0 [0.2495, 0.5656] 0

B 4 0 [0.5786, 0.8991] 0 0 [0.8315, 0.9695] 0

C 1 0 [0.4069, 0.717] [0.0174, 0.1141] 0 0 1

D 1 0 [0.9169, 0.9896] 0 0 [0.1702, 0.4586] [0.0335, 0.1698]

3.2. Lemma and Theorem

Lemma 1. The upper bound participation index (or lower bound participation index) of an FCP
and the upper bound participation ratio (or lower bound participation ratio) of fuzzy features in a
pattern decrease monotonically with the increase of the size of the pattern.

Proof. If instance s1 of fuzzy feature Fuzz_ f1s is included in the row-instances of fuzzy
pattern Fuzz_c, then when fuzzy pattern Fuzz_c’ ⊆ Fuzz_c, instance s1Fuzz_c’ must also be
included in the row-instances of Fuzz_c’. According to Definitions 8 and 9, the denominator
of the upper bound participation ratio (or lower bound participation ratio) of the same fuzzy
feature in the pattern and pattern Fuzz_c is the same, and the numerator decreases with
the increase of the size of the pattern. Therefore, the upper bound participation ratio (or
lower bound participation ratio) of the fuzzy features decreases monotonically. According
to the definition of the upper bound participation index and lower bound participation
index, the upper bound participation index (or lower bound participation index) is the
minimum of the upper bound participation ratio (or lower bound participation ratio) of all
fuzzy features in an FCP. Therefore, the upper bound participation index (or lower bound
participation index) decreases monotonically with the increase of the size of the pattern. �
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Theorem 1. If a k-1 size pattern is absolutely non-prevalent, then any k size patterns that it
contains are also absolutely non-prevalent.

Proof. For a k-1 size pattern Fuzz_c, if a k size pattern Fuzz_c’ ⊇ Fuzz_c, according to
Lemma 1, PI(Fuzz_c’) ≤ PI(Fuzz_c). If this k-1 size pattern Fuzz_c is absolutely non-
prevalent, then PI(Fuz_c) < min_prev. Therefore, if PI(Fuz_c’) ≤ PI(Fuz_c) < min_prev,
then k size pattern Fuzz_c’ is also absolutely non-prevalent. �

4. Methods
4.1. A Mining Method Based on Spatial Cliques

We propose a method based on spatial cliques to mine all prevalent FCPs. Our method
first uses a method based on a prefix tree to generate spatial cliques from spatial datasets;
then an Apriori-like algorithm is used to generate candidate FCPs, find row-instances of
candidates from the generated cliques, and then filter prevalent FCPs.

In this section, we discuss this approach in six subsections: generating granular type-2
fuzzy membership functions from type-1 fuzzy membership functions based on granular
data (Section 4.1.1), materializing neighborhood relationships (Section 4.1.2), enumerating
cliques (Section 4.1.3), generating candidate FCPs (Section 4.1.4), finding table-instances of
candidates from cliques (Section 4.1.5), and filtering prevalent FCPs (Section 4.1.6).

4.1.1. Generating Granular Type-2 Fuzzy Membership Functions from Type-1 Fuzzy
Membership Functions Based on Granular Data

When the specific membership degree of a specific value under a fuzzy set is evaluated,
the deviation is often large. However, when the interval membership degree of an interval
value in a fuzzy set is evaluated, the deviation can be greatly reduced. Therefore, we use
the expert evaluation method to evaluate the interval membership degree of interval values
under a fuzzy set to form granular data. Furthermore, according to the original type-1
fuzzy membership function, we generate a granular type-2 fuzzy membership function
based on elliptic curves and gradually adjust the parameter of the granular type-2 fuzzy
membership function by means of equal expansion.

(1) Count the granular evaluation data.

In this process, we need to choose the appropriate length of the interval membership
degree and the appropriate length of the evaluation interval data so that experts can make
accurate judgments. We take the interval membership degree belonging to the fuzzy set
Cu(M) as an example when the copper content is between 10 and 50. The interval length of
the content we chose to evaluate is 5 and the length of interval membership is 0.1. If the
length of the evaluated data is small, we set the interval length to 2—for example, when the
copper content is between 6–20. We have counted the data of 1000 geologists who evaluated
the interval value of copper content under the fuzzy set Cu.(M). The number in the particle
indicates the number of evaluators who consider that an interval value corresponds to the
interval membership. The darker the color is, the more people are evaluated in this interval.
Figure 2a shows the number of evaluators of interval memberships.
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(2) The original type-1 fuzzy membership function is drawn based on the granular
evaluation data.

In this example, according to the construction method in [4], we obtain the type-1
fuzzy membership function of heavy metal copper. We draw the type-1 fuzzy membership
function, which is expressed as y = x−a

b−a = x−10
40 , as shown in Figure 2b. Here, a is the lowest

value that experts believe the heavy metal content tends to belong to the middle content,
and b is the value that experts believe the copper content must belong to the middle content.

(3) Constructing a type-2 membership function based on the original type-1 membership
function.

The granular type-2 fuzzy membership function we proposed is represented by the
upper bound fuzzy membership function and the lower bound fuzzy membership function.
When the original type-1 membership function is a decreasing function, the formula is
expressed as:

Upper bound function u(x) = g

√
1−

(
x−a
b−a

)g
.

Lower bound function u(x) = 1 − g

√
1−

(
b−x
b−a

)g
(a ≤ x ≤ b)

When the original type-1 membership function is an increasing function, the formula
is expressed as:

Upper bound function u(x) = g

√
1−

(
b−x
b−a

)g

Lower bound function u(x) = 1 − g

√
1−

(
x−a
b−a

)g
(a ≤ x ≤ b) where a is the lowest

value that experts start to believe has a tendency to belong to the fuzzy set and b is the
value that experts believe must belong to the fuzzy set.

The area covered by the upper bound function and the lower bound function is
expressed as the FOU. Here, g determines the degree of expansion and contraction of the
elliptic curve. The larger the value of g, the larger the FOU; the smaller the value of g, the
smaller the FOU. In this example, when g = 1.1, our granular type-2 fuzzy membership
function is shown in Figure 3a.
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g = 1.283.

A type-2 fuzzy membership function needs to satisfy two conditions: 1© The FOU
between the upper bound fuzzy membership function and the lower bound fuzzy member-
ship function must be connected; and 2© the proportion of data contained in the FOU to
all data must reach a given threshold, that is, the confidence must reach a given threshold,
which we set at 85% in this article. The granular data represents that, for any specific value
in interval data, the possibility of taking any specific membership value in the interval
membership is the same. Therefore, for interval data, the confidence of the type-2 member-
ship function is ∑n

i=1 Si ∗ x. Here, n is the number of granules in the interval data, Si is the
ratio of the area of the ith granule in the FOU to the area of the ith granule, and x are the
number of evaluators in this granule. Within a range, the average of the confidence of all
interval data is the confidence of the granular type-2 fuzzy membership function in this
range.

(4) Determine the parameters of the granular type-2 fuzzy membership function.

We use a gradual approach to determine the unique parameter g in the granular type-2
fuzzy membership function. First, we set an increment α = 0.1, when g = 1 + k1α (k1 = 1, 2,
. . . , n). Then, we observe whether the FOU is continuous. If there is ψ (ψ ∈ {1, 2, . . . , n})
when g = 1 + ψα, the FOU is continuous; when g = 1 + (ψ + 1)α, the FOU is not continuous.
Then, set the gradual value to one-tenth of the original (i.e., β = 0.1α), g = 1 + ψα + k2β (k2 ∈
{1, 2, . . . , 10}), and so on, until the accuracy reaches the user’s requirement and the FOU is
connected. This process is shown in Table 3.

Table 3. Connectivity of the membership function with different values of g.

g 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Is it connected? Yes Yes No No No No No No No No

g 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.3

Is it connected? Yes Yes Yes Yes Yes Yes Yes Yes No No

g 1.281 1.282 1.283 1.284 1.285 1.286 1.287 1.288 1.289 1.29

Is it connected? Yes Yes Yes No No No No No No No

When g = 1.283, the FOU of the granular type-2 fuzzy membership function is con-
nected. At this time, the data in the FOU accounts for 85.13% of the total evaluation data,
that is, the confidence of FOU is 0.8513, which reaches the default threshold. This is shown
in Figure 3b.

The type-2 membership function we finally obtain from the granular data is shown in
Figures 4 and 5.
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Figure 5. The granular type-2 fuzzy membership function for zinc.

The upper bound membership function and the lower bound membership function of
the granular type-2 fuzzy membership function are shown in Figures 4 and 5. The values
of g of the granular type-2 fuzzy membership function of copper are 1.296, 1.283, 1.272, and
1.272, respectively. The values of g of the granular type-2 fuzzy membership function of
zinc are 1.28, 1.284, 1.284, and 1.272, respectively. The confidences of the granular type-2
fuzzy membership function of Cu are 0.8502, 0.8513, 0.8172, and 0.8953, respectively. The
confidences of the granular type-2 fuzzy membership function of Zn are 0.8605, 0.8904,
0.8910, and 0.9022, respectively. The confidence of the granular type-2 fuzzy membership
function in Figure 5c is 0.8172. If the confidence needs to be above 0.85, we can continue to
select the appropriate step value and improve parameter g by the gradual method.

(5) Removing unconnected areas in the FOU.

After removing unconnected areas in the FOU, we can construct the segmented
granular type-2 fuzzy membership function. Note that if the step value is too small, it may
not reach the threshold, and if it is too large, it will lead to too many unconnected regions.

In this example, we set the step value as 0.1, then g = 1.372, and the constructed type-2
fuzzy membership function is shown in Figure 6a. After removing the disconnected area,
the piecewise function is shown in Figure 6b and the confidence is 0.8721, reaching the
given threshold. In this case, the fuzzy membership function is expressed as:

u(x)=



1.372
√

1−
( x−50

30
)1.372

0.8(60 < x < 61.3582) (50 ≤ x ≤ 80)
0.7(65 < x < 65.0204)
0.5(70 < x < 71.018)

0.3(75 < x < 75.6912)
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u(x)=


1− 1.372

√
1−

( 80−x
30
)1.372

0.7(54.3088 < x < 55) (50 ≤ x ≤ 80)
0.5(58.982 < x < 60)

0.3(64.9796 < x < 65)
0.2(68.6415 < x < 70)
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From the above process, it can be seen that, based on the elliptic curve, the interval
type-2 fuzzy membership function can be quickly constructed so that its FOU meets the
connectivity and the confidence reaches the given threshold.

4.1.2. Generating FCP Mining Cliques (FCPM-Cliques)

According to the spatial neighborhood relation R, a spatial dataset can be expressed as
a neighbor graph. We sort all of the features in the lexicographical order of their names.
Instances of different features are sorted by their features, and instances of the same feature
are sorted by their index values. We provide the following definitions:

Definition 11 (Small neighbor instance set). For instance, s∈ S, with Fi is the feature of
instance s. A set of instances SN(s) = {s’∈ S|Fj < Fi∩ R(s, s’)} is defined as a small neighbor
instance set of s, where Fj is the feature of s’. SNs(s) is a set of all the instances that are smaller than
s and have spatial neighbor relationships with s.

Definition 12 (Big neighbor instance set). For instance, s∈ S, with Fi is the feature of instance
s. A set of instances BN(s) = {s’∈ S| Fj > Fi ∩ R(s, s’)} is defined as a big neighbor instance set of s,
where Fj is the feature of s’. BNs(s) is a set of all the instances that are bigger than s and have spatial
neighbor relationships with s.

In order to quickly find the neighborhood relationship among all instances, we use a
method based on grids [6]. After finding the neighborhood relationship among all instances,
we get the neighborhood table of all instances, as shown in Table 4.
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Table 4. Neighborhood table of instances.

SNs Instance BNs

- A.1 {B.1}

- A.2 {B.2}

- A.3 {B.3, B.4, C.1, D.1}

{A.1} B.1 -

{A.2} B.2 -

{A.3} B.3 {C.1}

{A.3} B.4 {C.1, D.1}

{A.3, B.3, B.4} C.1 {D.1}

{A.3, B.3, B.4, C.1} D.1 -

Suppose there is a set of spatial instances S = {s1, s2, . . . , sk}, if there is {R(si, sj) |
1 ≤ i ≤ k, 1 ≤ j ≤ k}, then S is a spatial clique—where a spatial clique is a fully connected
subgraph in the instances distribution diagram. After obtaining the neighbor relationship
between all the instances, we build a tree structure and adopt an effective method, called
the Neighborhood Driven Method (NDM), to generate all spatial cliques.

For a spatial clique, the first instance of a clique is called the head of the clique and
is represented by Hclique.Bclique
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Neighborhood Driven Method (NDM), to generate all spatial cliques. 

For a spatial clique, the first instance of a clique is called the head of the clique and is 

represented by �������.�������￼. Last, all the cliques with instance �� as the head are rep-

resented by �������.�-clique. For example, for a clique ��������.�
 = {A.1, B.2, C.2, D.3}, 

￼��������.�
 = A.1, ￼�������.� = {B.2, C.2, D.3}, ��.� is a ��.�-clique. 

cliqueA.1 = {B.2, C.2, D.3}, HA.1 is a HA.1-clique.
After getting the neighborhood relation of all instances, the NDM aims to find these

cliques headed by si for each instance si (1≤ i≤ n, where n is the total number of instances).

Definition 13 (NDM-Based clique tree (N-tree for short)). An N-tree is a tree structure; its
root node is labeled as “root”. In an N-tree, each node except “root” represents only one instance.
Every branch of an N-tree is a spatial clique, which is called an N-clique. We use four strategies to
construct an N-tree in the order of instances in the neighborhood table. Figure 7 shows an example
of constructing an N-tree.
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In a clique cli = {s1, s2, . . . , sk}, for any instance for si of cli, {si+1, si+2, . . . , sk} is
contained in BNs(si) and {s1, s2, . . . , si−1} is contained in SNs(si). Therefore, we check
whether {s2, s3, . . . , sn} ⊆ SNs(s)∩BNs(s1) when we want to check whether an instance s
and cli can form a new clique, which means that s is a neighbor to every instance in the
clique and therefore a new clique can be formed. Four strategies are proposed according to
the different situations of SNs(s)∩BNs(s1).

Suppose there is a clique cli = {s1, s2, . . . , sk} and an instance s ∈ BNs(s1).
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Strategy 1: If the size of the clique |cli| = 1, SNs(s)∩BNs(s1) = ∅, s and cli can form a
new clique because s ∈ BNs(s1) and s1 ∈ SNs(s).

Strategy 2: If the size of the clique |cli| > 1, SNs(s)∩BNs(s1) ⊇ {s2, s3, . . . , sn}, s and
cli can form a new clique because ∀si ∈ cli and there is R(s, si).

Strategy 3: If the size of the clique |cli| > 1, cli’ = SNs(s)∩BNs(s1) ⊆ {s2, s3, . . . , sn}, s
and s1∪ cli’ can form a new clique.

Strategy 4: If the size of the clique |cli| > 1, SNs(s)∩BNs(s1)
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The NDM uses four strategies to construct an N-tree in the order of instances in the

neighborhood table. For instance s in the neighborhood table, we can get SNs(s). According
to the four different situations of SNs(s) ∩ BNs(s1), we adopt four strategies to build the
N-tree. After traversing each instance in the neighborhood table, an N-tree is completely
established. The pseudocode for the NDM is as follows (Algorithm 1):

Algorithm 1 : Neighborhood Driven Method.
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We use an example to illustrate the process of constructing an N-tree using the NDM.
Figure 7 shows an example of constructing an N-tree according to the order of the instances
in Table 4. In order to generate a clique with A.3 as its head (that is HA.3-clique), we start
from A.3—there is BNs(A.3) = {B.3, B.4, C.1, D.1}. If we start from B.3, there is SNs(A.3)
∩ BNs(B.3) = ∅, and, according to Strategy 1, A.3 and B.3 can form a clique. In the same
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way, there is SNs(A.3) ∩ BNs(B.4) =∅, where A.3 and B.4 can form a clique. Then, SNs(A.3)
∩ BNs(C.1) = {B.3, B.4} according to Strategy 2, C.1 and {A.3, B.3} can form a new clique
and C.1 and {A.3, B.4} can also form a new clique. Finally, SNs(A.3) ∩ BNs(D.1) = {B.4, C.1}
according to Strategy 3, D.1 and {A.3, B.4, C.1} can form a new clique.

Definition 14 (Complete clique set). Given a set of cliques scl of a spatial dataset materialized
by spatial neighborhood relationships and the set containing all cliques of the spatial dataset is
represented as ascl, if the following formula is satisfied, scl is a set of complete cliques:

∀ cl ∈ ascl, ∃ cl’ ∈ scl⇒ cl ∈ cl’.

Lemma 3. N-cliques are complete.

Proof. Given a clique cl = {s1, s2, . . . , sk} where si is an instance, if cl is a maximal clique, ∀s
/∈cl, s, and cl cannot form a new clique. It is not difficult to see that the NDM can generate
all the maximal cliques. According to Definition 14, the set containing all maximal cliques
is complete. Thus, N-cliques are complete. �

The four strategies (Strategy 1–Strategy 4) can make decisions concerning which node
can be added to a clique to form a new N-clique, and, according to Lemma 3, we know
that N-cliques are complete. Therefore, the cliques generated by the NDM are correct and
complete.

In the process of mining spatial co-location patterns, we calculate the participation
ratio of features according to the number of instances in a spatial clique. However, in the
process of mining fuzzy spatial co-location patterns, we calculate the participation ratio
of fuzzy features according to the membership degree of the attributes of instances in
a spatial clique. Therefore, we pay more attention to the association between attributes
of instances in the spatial clique, and we propose a kind of FCPM-clique and make the
following definition: In a spatial clique, if there is an association between fuzzy attributes
of instances, the fuzzy attributes of these instances can form FCPM-cliques.

We find that, in a clique, there is an association between fuzzy attributes of different
instances, so they can form FCPM-cliques. There is also an association between fuzzy
attributes with different attributes in an instance, so these can also form FCPM-cliques.

For example, for two neighbor instances A.1 and B.1, the fuzzy attribute Cu(M) of A.1
and the fuzzy attribute Cu(H) of B.1 can form an FCPM-clique {A.1.Cu (M),
B.1.Cu (H)}, which can be used as a row-instance of FCP {A.Cu(M), B.Cu (H)}—as shown in
Figure 8. For instance A.2, its fuzzy attributes Cu (H) and Zn (H) can form an FCPM-clique
{A.2.Cu (H), A.2.Zn (H)}, which can be used as a row-instance of FCP {A.Cu(H),
A.Zn (H)}—as shown in Figure 9.
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For a candidate FCP, first we find the co-location pattern consisting of all the non-
recurring features in the fuzzy candidate pattern. Then, we find the row-instances that
contain all the fuzzy features of the fuzzy candidate pattern from the table-instance of
the co-location pattern. These row-instances are the row-instances of the candidate fuzzy
pattern. Through the FCPM-clique, we can find these spatial cliques containing all fuzzy
features of the candidate FCPs.

4.1.3. Generating Candidate FCPs

In the process of generating candidate FCPs, we find that two fuzzy features with
different features can form a candidate FCP; two fuzzy features with the same feature and
different attributes can also form a candidate FCP. However, the FCP composed of fuzzy
features with the same features and the same attributes has no practical significance, such
as {A.Cu(L), A.Cu(M), A.Cu(H)}. In order to avoid producing such a meaningless candidate
FCP, we propose an Apriori-like algorithm and bucket to generate complete candidate
FCPs. The steps of the algorithm (Algorithm 2) are as follows:

Algorithm 2: The algorithm for generating candidate FCPs based on buckets.

Input: (1) Fuzzy feature set Fuzz_Fea = {Fuzz f1 , Fuzz f2, . . . , Fuzz fn}
(2) Feature set Fea_List = {Fea1 , Fea2, . . . , Fean}
(3) Instance set of fuzzy features S = {s1, s2, . . . , sn}
(4) Spatial proximity relation R
(5) Minimum distance threshold min_dist
(6) Minimum prevalence threshold min_prev
Output:Ck+1: k + 1 size candidate FCPs
Step:
1.if (k == 1)
2. for each Fuzz_f in Fuzz_Fea do
3. SetId(Fuzz_f )
4. Initialize_bucket(Fuzz_f )
5.else if (k == 2)
6. for each Fuzz_f_1 in one feature
7. for each Fuzz_f_2 in other feature
8. Generate a candidate pattern from Fuzz_f_1 and Fuzz_f_2
9. for each Fea in Fea_List
10. for each Fuzz_f_1 in the first attribute
11. for each Fuzz_f_2 in the second attribute
12. Generate a candidate pattern from Fuzz_f_1 and Fuzz_f_2
13. Put fuzzy patterns with the same features and the same attributes into the same bucket
14.else
15. for(i = 1; i < bucket_count; i++)
16. for each fuzzy pattern in bucket[i]
17. for(j = i + 1; j < bucket_count; j++)
18. for each fuzzy pattern in bucket[j]
19. if the first k – 1 fuzzy features of the two k-size fuzzy patterns are the same
20. Generate a fuzzy pattern ck+1
21. if (check(k − 1, ck+1, bucket))
22. ck+1 is a new candidate fuzzy pattern
23. Put fuzzy patterns with the same features and the same attributes into the same bucket
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Steps 2–4: we put all fuzzy features with the same feature and the same attribute into
the same bucket. Steps 6–8: size-2 candidate FCPs are generated by connecting the fuzzy
features contained in any two different features. Steps 9–12: since the number of attributes
is 2, all fuzzy features contained in a feature can be divided into two sets of fuzzy features
with the same features and different attributes by connecting any two fuzzy features in the
two sets of fuzzy features, and a size-2 candidate FCP is generated. Step 13: put the fuzzy
patterns with the same features and the same attributes into the same bucket. Steps 15–22:
generate k + 1 size candidates from k size prevalent fuzzy patterns; for any two prevalent
fuzzy patterns, check whether the first k− 1 fuzzy features of the two fuzzy patterns are the
same, and if they are same, connect them to generate a k + 1 size candidate fuzzy pattern.
Finally, we check whether each sub-pattern of the newly generated k + 1 size candidate
fuzzy pattern is prevalent. Step 23: put the fuzzy patterns with the same features and the
same attributes into the same bucket.

4.1.4. Find the Row-Instances of the Candidate FCPs by the Column-Filter Method

In order to improve the efficiency of finding row-instances of candidate FCPs, we
propose a column-filter method to find the row-instances of the candidate FCPs from the
row-instances of co-location patterns. First, we find the co-location pattern consisting of
all the non-recurring features in the candidate FCP. Suppose the number of fuzzy features
contained in the FCP is n, we obtain the row-instance of the FCP through filtering n times. In
the first filtering, for all row-instances of the co-location pattern, we filter all row-instances
with the first fuzzy feature. In the second filtering, for the row-instances obtained by the
first filtering, we filter the row-instances with the second fuzzy feature, and so on. In the
nth filtering, for the row-instances obtained by the nth filtering, we filter the row-instances
with the nth fuzzy feature. The row-instances obtained by the nth filtering have all the
fuzzy features of the FCP, so these are the row-instances of the FCP.

For the fuzzy features contained in each feature, we calculate the ratio of the number
of instances with the fuzzy feature to the number of instances with the feature, that is, α1 =
NFuzz_ f1 /N f1 , α2 = NFuzz_ f2 /N f2 , . . . , αn = NFuzz_ fn /N fn . Thus, for a fuzzy feature Fuzz_ fi,
it has a weight αi. Then, we sort the fuzzy features of the candidate FCP in order according
to the value of αi from smallest to largest. Through the method, in the table-instance of the
co-location pattern, the pruning rate of pruning the row-instances without the first fuzzy
feature is the highest in the first filter. This greatly reduces the number of row-instances
that need to be filtered in the second filter, and so on, until the row-instances that contain
all the fuzzy features of the candidate FCP are filtered. In this way, we can greatly reduce
the time cost to judge these row-instances and the efficiency is improved to a great extent.
The pseudocode of this algorithm (Algorithm 3) is as follows:

Algorithm 3: The column-filter method.

Input:
A candidate FCP Fuzz_c = {Fuzz f1 , Fuzz f2, . . . , Fuzz fn}
Table-instance Table_c of co-location pattern that contains the candidate FCP
Output:
Table-instances of candidate FCP Table[n]
Step:
1. Table = Table_c;
2. for each fuzzy feature Fuzz fi in the candidate FCP Fuzz_c
3. for each row-instance in Table
4. if (the row-instance doesn’t contain Fuzz_f _i)
5. Table.Delete(the row-instance);
6. end for
7. Table[i] = Table;
8. end for
9. if i == n
10. Table[i] is the table-instance of the candidate FCP
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Step 1: The filtering operation begins with Table_c, a table-instance of the co-location
pattern that consists of the features of the candidate FCP. Steps 2–8: For all row-instances
of the table-instance in Table_c, we judge whether they have the first fuzzy feature of the
candidate FCP. For any one of the row-instances, if it does not have the first fuzzy feature,
we delete it; in this way, we filter out all the row-instances with the first fuzzy feature.
Then, we judge whether these row-instances have the second fuzzy feature and filter out
the row-instances that have both the first fuzzy feature and the second fuzzy feature, and
so on. Steps 9–10: If the selected row-instance has all the fuzzy features of the candidate
FCP, then the row-instance is a row-instance of the candidate FCP and all row-instances of
the candidate FCP make up its table-instance.

We compare the number of judgment operations between the column-filter method
proposed in this section and the row-filter method proposed in Section 5.1 on average.
For a candidate FCP of size p, assume that the number of row-instances of the co-location
pattern composed of its features is q.

According to the row-filter method in Section 5.1, for each row-instance, we need
to judge whether each instance has corresponding fuzzy features in turn. When there is
at least one instance in a row-instance that does not have corresponding fuzzy features,
the row-instance cannot be used as a row-instance of the candidate fuzzy co-location
pattern. On average, each instance in a row-instance has the same probability of not having
corresponding fuzzy features, so the expected number of judgment operations of a row-

instance is 1+2+3+...+p
p =

p(p+1)
2
p = p+1

2 . We need to judge each row-instance in turn, so the

expectation of the total number of judgment operations is q(p+1)
2 .

According to the column-filter method in this section, we set the number of fuzzy sets
to three. In the average case, each fuzzy set contains the same number of instances, and
each filtering operation can filter 1/3 of the row-instances. Therefore, the expectation of
the number of judgment operations of the column-filter method is q + q

3 + q
32 + . . . + q

3p−1 =
3q
2

(
1− 1

3p

)
. When q is a constant value and p is large, 3q

2

(
1− 1

3p

)
< q(p+1)

2 . Therefore, the
column-filter method is more efficient than the row-filter method.

4.1.5. Filtering Prevalent FCPs

For a candidate FCP, after obtaining all its row-instances (these row-instances make
up its table-instance) according to Definitions 8 and 9, we can calculate the upper bound
participation index and lower bound participation index of the FCP. Then, according to the
upper bound participation index, the lower bound participation index, and the prevalence
threshold, we can filter prevalent FCPs. Therefore, we propose two pruning strategies to
filter complete and correct prevalent FCPs from candidate FCPs.

Pruning strategy 1 (Fuzzy feature pruning): In a candidate FCP, for any of its fuzzy features
Fuzz_ fi, if the upper bound participation ratio of the fuzzy feature is less than the given prevalence
threshold min_prev, the candidate fuzzy pattern is absolutely non-prevalent.

Proof. For a candidate fuzzy co-location pattern c, its upper bound participation index
PI(c) = mink

i=1{PR(c, Fuzz_ fi)} and PR(c, Fuzz_ fi) is the upper bound participation ratio
of the ith fuzzy feature in c. If the upper bound participation ratio of the fuzzy feature
Fuzz_ fi is less than the given prevalence threshold, that is, PI(c) = mink

i=1{PR(c, Fuzz_ fic)} <
min_prev, the upper bound participation index of is less than the given prevalence threshold
min_prev. In this case, according to Definition 10, is absolutely non-prevalent. �

Pruning strategy 2 (Absolute table-instance pruning): For a candidate FCP c, if the lower
bound participation index of its absolute table-instance API(c) is greater than or equal to the given
prevalent threshold min_prev, then the FCP is an absolutely prevalent FCP.

Proof. For a candidate FCP c, its absolute table-instance is included in its table instance,
so the lower bound participation index of pattern c is greater than that of its absolute
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table-instance API(c), that is, PI(c) ≥(c) API(c). If API(c) ≥ min_prev, then PI(c) ≥ API(c) ≥
min_prev, according to Definition 10, c is absolutely prevalent. �

4.1.6. Time Performance Analysis

The time cost of our proposed method is mainly divided into three parts: generating
candidate FCPs, generating FCPM-cliques, and finding table-instances of the candidates.
In the process of generating candidate FCPs, suppose the number of features is N f ea, the
number of attributes is Natt, the number of fuzzy sets is N f uzzy_set, and let N f _a = N f ea*Natt,
where N f _a is the number of buckets (we put all fuzzy features with the same feature and
the same attribute into the same bucket). The computational complexity of generating

candidate patterns is O(∑
N f _a
i=2 (Ci

N f _a
∗ Ni

f uzzy_set)), where Ci
N f _a

refers to selecting i buckets

from N f _a buckets arbitrarily; Ni
f uzzy_set is the i power of N f uzzy_set, which refers to selecting

a fuzzy feature from i buckets, respectively, and combines these fuzzy features into a
candidate fuzzy co-location pattern. Nins
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4.2. Extending Traditional Algorithms to Discover Prevalent FCPs

The traditional Join-based and Joinless algorithms cannot discover prevalent FCPs.
Therefore, we extend the two algorithms to enable them to mine prevalent FCPs.

4.2.1. An Extended Join-Based Algorithm for Mining Prevalent FCPs

We use the method in Section 4.1.3 to generate candidate FCPs and then use the
traditional Join-based algorithm to generate co-location patterns and their row-instances.
Finally, we use the row-filter method to generate table-instances of the candidate FCPs. For
each row-instance, we judge whether each instance has the corresponding fuzzy features in
turn. When there is at least one instance in a row-instance that does not have corresponding
fuzzy features, the row-instance cannot be used as a row-instance of a candidate fuzzy
co-location pattern. The specific steps for the row-filter method are as follows:

The pseudocode for the row-filter method (Algorithm 4) is as follows:
Steps 1–2: show that for any candidate FCP cpi we find the non-repeated feature set sf

contained in all fuzzy features of this candidate FCP. Steps 4–6: show that if the number
of all the features in sf is 1 (at this time, there is only one feature in sf, represented as f1),
the instances in f1 that have all the fuzzy features in the candidate FCP are selected as the
row-instances of cpi. Steps 7–9: show that if the number of all the features in sf is greater
than 1, the row-instance that has all the fuzzy features in the candidate FCP is selected as
the row-instances of cpi.

4.2.2. An Extended Joinless Algorithm for Mining Prevalent FCPs

For a circle with a distance threshold of the neighborhood relationship as its radius,
instances in the circle have a star neighborhood relationship. The traditional Joinless
algorithm uses the star partition model to materialize the neighborhood relationship of
spatial datasets; so, in the process of generating row-instances of co-location patterns, it
uses the instance lookup operations instead of a large number of Join operations.
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Algorithm 4: The row-filter method.

Input:
cps: the set of candidate FCPs
Tins: the table-instance of the co-location pattern consisting of non-recurring features in the
candidate FCP
Output:
all row-instances of candidate FCPs
Steps:
1. For each candidate FCP cpi In cps Do
2. suppose cpi= {Fuzz f1 , Fuzz f2, . . . , Fuzz f j}; here, Fuzz fm
(1 ≤ m ≤ j) is a fuzzy feature, the set of the non−
recurring features of all fuzzy features in cpi is sf = { f1 , f2, . . . , fk} (1 ≤ k ≤ j);
3. For each row− instance Rins In Tins Do
4. if |sf | == 1
5. f1_satis f y.instance = filter(instances of f1 that have all the fuzzy features in the
candidate fuzzy pattern simultaneously)
6. cpi_table_instance.Add( f1_satis f y .instance)
7. else
8. Rins_satis f y= filter(Rins that have all the fuzzy features in the candidate fuzzy
pattern simultaneously)
9. cpi_table_instance.Add(Rins_satis f y )
10. End For
11. End For

We improve the traditional Joinless algorithm and propose an extended Joinless
algorithm (Algorithm 5) to mine prevalent FCPs:

Step 1: spatial data sets are materialized into disjoint star neighbor sets. Step 4: k + 1
size candidate FCPs are generated from k size prevalent FCPs. Steps 5–9: star instances of
candidate FCPs are generated from star neighbor sets, which requires that the first feature
of candidate FCPs is the same as the feature type of the central object of the star neighbor
sets. For example, the star instances of FCP {A.Cu(M), B.Zn(M), C.Cu(H)} are found from
the neighbor set of feature A. Steps 10–12: show that if the number of features that do not
repeatedly appear in the candidate FCP is 1, the instances of the unique feature that have
all fuzzy features in the candidate FCP simultaneously are selected as the row-instances of
the candidate FCP. Steps 13–15: show that if the number of features that do not repeatedly
appear in the candidate FCP is 2, the star instances with size-2 that have all the fuzzy
features of the candidate FCP simultaneously are selected as the row-instances of the
candidate FCP. Since the spatial proximity relation is symmetrical, a star instance with
size-2 is a clique instance. Steps 16–20: show that if the number of features that do not
repeatedly appear when a candidate FCP is n (n ≥ 3), the star instances with size-n that
have all fuzzy features of the candidate FCP are temporarily selected as the row-instances
of the candidate fuzzy co-location patterns. Then, we check whether the upper bound
participation index of the candidate FCP is lower than the given prevalence threshold
min_prev; if so, the candidate FCP is non-prevalent. If the upper bound participation index
of the candidate FCP is greater than min_prev, we check whether the star instances of the
FCP are clique instances, that is, whether each instance of a star instance are neighbors
to each other; if so, the star instance is a clique instance, and if not, the star instance is
discarded. Step 21: we calculate the upper bound participation index and lower bound
participation index of candidate FCPs and compare this with the given prevalence threshold
min_prev. We then obtain the absolutely prevalent FCPs and the FCPs with prevalence
tendency degrees.
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Algorithm 5: The extended Joinless algorithm.

Input: (1) Fuzzy feature set Fuzz_Fea = {Fuzz_ f1 , Fuzz f2, . . . , Fuzz fn}
(2) Instance set of fuzzy features S = {s1,s2, . . . ,sn}

(3) A set of star neighbors of the feature Fuzz_ fi:
{

sn f1
, sn f2 , . . . , sn fn }

(4) Spatial proximity relation R
(5) Minimum distance threshold min_dist
(6) Minimum prevalence threshold min_prev
Output: Prevalent FCP set Fre_P
Variable:
k: The size of FCPs
Ck: candidate k size FCPs
SIk: Star instance set of k size candidate patterns
CIk: Group instance set of k size candidate patterns
PIk: The set of star instances have all fuzzy features in candidate patterns simultaneously
Pk: prevalent k-size FCPs
MemSum_up[k]: The sum of upper bound membership degrees of all instances of all fuzzy
features in k size FCP.
MemSum_down[k]: The sum of lower bound membership degrees of all instances of all fuzzy
features in k size FCP.
Step:
1. SN = gen_star_neighbor(Fea,S,R);
2. P1 = Fuzz_Fea; k = 1;
3. while(Pk 6= ∅){
4. Ck+1 = gen_candidate(Pk);
5. for i in 1 to n
6. for x where fi = c f1, c f1 is the first feature of Ck+1
7. SIk+1 = gen_star_instance(Ck+1, x);
8. end for
9. end for
10. if t = 1 (t is the number of non recurring features in a candidate fuzzy pattern)
11. PIk+1 = The instances of the only feature that have all fuzzy feature of the candidate fuzzy
co-location pattern;
12. CIk+1 = PIk+1;
13. if t = 2
14. PIk+1= The row− instances in SIk+1 which have all fuzzy features of the candidate fuzzy
co-location pattern;
15. CIk+1 = PIk+1;
16. else do
17. PIk+1= The star instances SIt that have all fuzzy features of the candidate fuzzy
co-location pattern;
18. Ck+1 = filter_coarse_prevalent_colocations(Ck+1 , PIk+1, minprev);
19. CIk+1 = gen_clique_instances(Ck+1 , PIk+1);
20. end do
21. Pk+1= filter_prevalent_colocations(Ck+1 , CIk+1, min_prev);
22. k = k + 1;
23. Fre_P = Fre_P ∪Pk+1;
24. }

Our expansion includes: For a candidate FCP, first, we find the pattern consisting of all
the non-recurring features in the candidate FCP; then, we find the star instances that have
all the fuzzy features of the candidate FCP from the star instances of the co-location pattern.
These star instances are the star instances of the FCP. Finally, we find the clique instances of
the FCP from the star instances (at this time, the clique instances are the row-instances of
the FCP) (Steps 17–19). When the number of features in a candidate FCP is 1, the instances
of the only feature that have all fuzzy features in the candidate FCP simultaneously are
selected as the row-instances of the candidate FCP (Steps 10–12). When the number of
features in a candidate FCP is 2, the size-2 star instances that have all the fuzzy features in
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the candidate are selected as the size-2 row-instances of the candidate (Steps 13–15). For
example, suppose there is a candidate FCP {A.Cu(M), B.Cu(M)}, feature A is the first feature
of the candidate FCP, according to Steps 13–16. From this, we obtain all the star-instances
of feature A (Phase 1). Then, we get all the row-instances of co-location pattern {A, B}
from the star-instances of feature A (Phase 2). Then, from these row-instances, we filter
the row-instances with fuzzy features A.Cu(M) and B.Cu(M), which are the row-instances
of the candidate FCP. According to Steps 10–12, we filter the instances that have fuzzy
features A.Cu(M) and A.Zn(M) from the instances of feature A; these instances are the
row-instances of the candidate {A.Cu(M), A.Zn(M)} (Phase 3), as can be seen in Table 5.

Table 5. An example of the extended Joinless algorithm.

Phase 1 Phase 2 Phase 3

Star Instances of
Feature A A {A, B} {A.Cu(M),

B.Cu(M)}
{A.Cu(M),
A.Zn(M)}

A.1, B.2, C.2
A.2, B.3, C.1
A.3, B.5, C.2

A.4, C.3

A.1
A.2
A.3
A.4

A.1, B.2
A.2, B.3
A.3, B.5

A.1, B.2
A.2, B.3 A.1

5. Results

In this section, we evaluate our methods using synthetic and real datasets, and a
wide range of experiments have been carried out. We used a method similar to Ref. [2]
to generate synthetic datasets and compared the performance of the three algorithms in
terms of the number of features, the number of instances, the prevalence thresholds, the
distance thresholds, and the size of the fuzzy sets. We used two real datasets to evaluate our
methods: one is the heavy metal content of the topsoil sampling points in Quanzhou City,
and the other is the heavy metal content of the topsoil sampling points near the industrial
area of Jiayuguan. All our experiments are carried out using C#. The Intel PC we use has
the Windows 10 operating system, Intel Core i5-4258@2.40 GHz, and 8 GB memory.

5.1. Results for Synthetic Datasets

A method similar to Ref. [6] is used to randomly generate synthetic data. First, the size
of the region of our instances distribution is set to D × D, and the whole region is divided
into several grids with the size min_dist × min_dist, where min_dist is the distance threshold
of the instance neighbors. After determining the number of features and the total number
of instances, we determine the number of instances owned by each feature according to the
Poisson distribution.

In a grid of the region, the data density (number of edges) of all neighbor grids is
controlled by a value called clump; we set the value of clump to 1, in accordance with the
general situation described in Ref. [6]. The number of edges in all instances is approximately
equal to E × clumpy. When clump = 1, the number of edges of all instances is E, where E is
generated randomly.

(1) The effect of distance thresholds on the results

We investigate the influence of different distance thresholds on the execution time by
changing the distance threshold of the neighborhood relationship between instances, as
shown in Figure 10a. We find that with the increase of distance threshold, the execution
time of the three methods increases because the number of instance neighbors will increase
(that is, the number of edges will increase) and the average number of row-instances of
each FCP will also increase. We also find that with the increase of distance threshold, the
growth rate of the execution time of our method is much slower than that of Join-based
and Joinless methods. This is mainly because our method searches cliques with all fuzzy
features in candidate FCPs and uses them as row-instances of candidate FCPs instead
of generating row-instances through connections. In the experiment, the Join-based FCP
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mining algorithm is represented by “Join-based”, the Joinless FCP mining algorithm is
represented by “Joinless”, and the FCP mining algorithm based on interval type-2 fuzzy
sets and cliques is represented by “NDM”.
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With the increase of distance threshold, the trend of the pruning degree of the two
pruning strategies is shown in Figure 10b. For a spatial dataset, the number of absolute table-
instances is certain and will not change with the change of distance threshold. However,
the average number of row-instances of FCPs will increase with the increase of distance
threshold, so the pruning degree of the absolute table-instances pruning will decrease. In
addition, with the increase of distance threshold, the average number of row-instances of
each FCP will also increase. Therefore, in a candidate FCP, the number of fuzzy features
whose upper bound participation ratio is below the prevalence threshold will decrease,
the number of prevalent FCPs also increases, and the pruning rate of fuzzy features will
also decrease. In the process of mining fuzzy co-location patterns, the combination of
features, attributes, and fuzzy sets will generate a lot of fuzzy features and a large amount
of candidate fuzzy co-location patterns. As the total number of row-instances of co-location
patterns is certain, many candidate fuzzy co-location patterns have few row-instances, so
the pruning degree of the fuzzy feature pruning strategy is very high. On average, for a
candidate fuzzy co-location pattern, the number of absolute row-instances it contains is
small, so the pruning degree of the absolute table-instance pruning strategy is low.

(2) The effect of prevalence threshold on the results

In this subsection, we study the influence of changing the prevalence threshold over a
certain range on the execution time. As shown in Figure 11a, we find that the execution
time of these three methods will decrease with the increase of the prevalence threshold.
With higher prevalence thresholds, the Join-based (or Joinless) FCP mining algorithm
can prune a lot of candidates, so when the prevalence threshold increases, the time cost
will be reduced rapidly. For our method based on interval type-2 fuzzy sets and cliques,
the prevalence threshold only participates in filtering the absolutely prevalent FCPs and
FCPs with prevalent tendency degrees, so the execution time will decrease slowly with the
increase of the prevalence threshold. When the prevalence threshold is higher, the time
cost of the Join-based (or Joinless) FCP mining algorithm is less than our method. This
is because the number of prevalent FCPs with higher PI and PI is far less than that with
lower PI and PI. In other words, when the prevalence threshold changes within a certain
range, the time cost of the method based on interval type-2 fuzzy sets and cliques is more
stable, which is more conducive to finding prevalent FCPs.



Appl. Sci. 2022, 12, 6259 23 of 30

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 30 
 

prevalence threshold only participates in filtering the absolutely prevalent FCPs and FCPs 

with prevalent tendency degrees, so the execution time will decrease slowly with the in-

crease of the prevalence threshold. When the prevalence threshold is higher, the time cost 

of the Join-based (or Joinless) FCP mining algorithm is less than our method. This is be-

cause the number of prevalent FCPs with higher ����� and PI is far less than that with lower 

����� and PI. In other words, when the prevalence threshold changes within a certain range, 

the time cost of the method based on interval type-2 fuzzy sets and cliques is more stable, 

which is more conducive to finding prevalent FCPs. 

 
 

(a) (b) 

Figure 11. (a)Effect of the prevalence threshold; (b) Pruning degree for the two strategies. 

The effect of increasing the prevalence threshold on the pruning degree of the two 

pruning strategies is shown in Figure 11b. With the increase of the prevalence threshold, 

the number of absolutely non-prevalent patterns also increases, so the pruning rate of the 

fuzzy feature pruning increases. When the prevalence threshold increases, the number of 

absolute table-instances is unchanged, but the number of absolutely prevalent patterns 

and patterns with a prevalent tendency degree will decrease, and the number of pruned 

candidates for the absolute table-instance pruning strategy will also decrease. When the 

speed of the number of pruned candidates for the absolute table-instance pruning strategy 

is less than the speed of the reduction of the number of prevalent patterns, the pruning 

degree of absolute table-instances will increase. 

(3) The effect of the number of fuzzy features on the results 

In this subsection, we examine the effect of increasing the number of fuzzy features 

on the execution time. The number of fuzzy features is the number of features multiplied 

by the number of fuzzy attributes multiplied by the number of fuzzy sets. In this experi-

ment, the number of fuzzy attributes is set to 2, the number of fuzzy sets is set to 3, and 

the number of features we select are 3, 6, 9, 12, and 15, respectively. As shown in Figure 

12a, we find that the execution time of the three methods first increases and then decreases 

because when the number of features increases from 3 to 6, the number of candidate FCPs 

also increases rapidly; the number of operations that generate or examine row-instances 

of candidate FCPs also increases. When the number of fuzzy features continues to in-

crease, the average number of row-instances of candidates will decrease because the three 

methods satisfy the downward closure property, so the pruning strategy in this paper can 

be used to effectively prune absolutely non-prevalent candidates in the process of gener-

ating prevalent FCPs. In addition, for the method based on interval type-2 fuzzy sets and 

cliques, the number of edges also affects its execution time. When the number of fuzzy 

features increases from 18 to 36, the number of edges increases. When the number of fuzzy 

features increases from 36 to 90, the number of edges decreases. When the number of 

fuzzy features is 72, the efficiency of the Joinless FCP mining method is higher than the 

other two methods; this is because our pruning strategies effectively prune many candi-

dates. In other words, when the number of fuzzy features is small, our method based on 

interval type-2 fuzzy sets and cliques is more efficient than the other two methods. 

Figure 11. (a)Effect of the prevalence threshold; (b) Pruning degree for the two strategies.

The effect of increasing the prevalence threshold on the pruning degree of the two
pruning strategies is shown in Figure 11b. With the increase of the prevalence threshold,
the number of absolutely non-prevalent patterns also increases, so the pruning rate of the
fuzzy feature pruning increases. When the prevalence threshold increases, the number of
absolute table-instances is unchanged, but the number of absolutely prevalent patterns
and patterns with a prevalent tendency degree will decrease, and the number of pruned
candidates for the absolute table-instance pruning strategy will also decrease. When the
speed of the number of pruned candidates for the absolute table-instance pruning strategy
is less than the speed of the reduction of the number of prevalent patterns, the pruning
degree of absolute table-instances will increase.

(3) The effect of the number of fuzzy features on the results

In this subsection, we examine the effect of increasing the number of fuzzy features on
the execution time. The number of fuzzy features is the number of features multiplied by
the number of fuzzy attributes multiplied by the number of fuzzy sets. In this experiment,
the number of fuzzy attributes is set to 2, the number of fuzzy sets is set to 3, and the number
of features we select are 3, 6, 9, 12, and 15, respectively. As shown in Figure 12a, we find that
the execution time of the three methods first increases and then decreases because when
the number of features increases from 3 to 6, the number of candidate FCPs also increases
rapidly; the number of operations that generate or examine row-instances of candidate
FCPs also increases. When the number of fuzzy features continues to increase, the average
number of row-instances of candidates will decrease because the three methods satisfy the
downward closure property, so the pruning strategy in this paper can be used to effectively
prune absolutely non-prevalent candidates in the process of generating prevalent FCPs. In
addition, for the method based on interval type-2 fuzzy sets and cliques, the number of
edges also affects its execution time. When the number of fuzzy features increases from 18
to 36, the number of edges increases. When the number of fuzzy features increases from
36 to 90, the number of edges decreases. When the number of fuzzy features is 72, the
efficiency of the Joinless FCP mining method is higher than the other two methods; this is
because our pruning strategies effectively prune many candidates. In other words, when
the number of fuzzy features is small, our method based on interval type-2 fuzzy sets and
cliques is more efficient than the other two methods.
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The effect of increasing the prevalence threshold on the trend of the pruning degree
of the two pruning strategies is shown in Figure 12b. With the increase in the number
of features in the candidate FCPs, the number of fuzzy features whose upper bound
participation degree PR is less than the prevalence threshold will also increase. Therefore,
the pruning rate of the fuzzy feature pruning strategy also increases. When the number of
features increases, the number of prevalent FCPs decreases, but the number of FCPs pruned
by the absolute table-instances pruning strategy decreases more slowly, so the pruning
degree of absolute table-instances continues to rise.

(4) The effect of the number of instances on the results

In this subsection, we examine the effect of increasing the number of instances on
execution time. As shown in Figure 13a, we find that with the increase of the number of
instances, the execution time of the three methods increases. When the number of instances
is 50,000, the efficiency of the FCP mining algorithm based on interval type-2 fuzzy sets and
cliques is much faster than the Join-based (or Joinless) approach. This is because when the
data in an area becomes denser, the average number of row-instances of FCPs will be more,
and the Join-based (or Joinless) method needs to spend a lot of time to connect and generate
(or filter) row-instances. The method based on interval type-2 fuzzy sets and cliques first
generates cliques and then searches the row-instances of candidates from cliques, which
saves a lot of time cost caused by connection or filtering operations. Therefore, when the
instances in the region are dense, the efficiency of the method based on interval type-2
fuzzy sets and cliques is obviously higher than that of the Join-based (or Joinless) approach.
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With the increase of the number of instances, the trend of the pruning degree of the two
proposed pruning strategies is shown in Figure 13b. As the number of instances increases,
the average number of row-instances of each FCP will also increase. Therefore, the pruning
rate of the fuzzy feature pruning strategy will decrease. The number of FCPs pruned
by the absolute table-instance pruning strategy increases, but the number of prevalent
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FCPs increase faster, so the pruning degree of the absolute table-instance pruning strategy
decreases.

(5) The effect of the number of attributes on the results

In this paper, we take the content of the heavy metals, copper and zinc, in topsoil as
an example and construct the granular type-2 fuzzy membership function for copper and
zinc, respectively, so there are two attributes. Here, we only keep the zinc attribute of the
instances and examine the influence of the number of attributes on the execution time, as
shown in Figure 14a. We find that when the number of attributes decreases, the number of
fuzzy features will also decrease, and then the generated candidate FCPs and prevalent
FCPs will also decrease a lot—and the execution time greatly reduces.
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The trend of the pruning degree for the two proposed pruning strategies is shown in
Figure 14b when there is one attribute. This is similar to the trend of the pruning rate when
there are two attributes. With one attribute, with the increase of the number of features,
the number of fuzzy features whose upper bound participation ratio PR is less than the
prevalence threshold will also increase, so the pruning rate of the fuzzy feature pruning
strategy will also increase. When the number of features increases, the number of prevalent
FCPs decrease, but the number of FCPs pruned by the absolute table-instance strategy
decrease more slowly, so the pruning degree of the absolute table-instance pruning strategy
continues to rise.

5.2. Results for Real Datasets

In this section, we examine the validity of our proposed approach through the use of
two real datasets. The first real dataset is the spatial distribution data for heavy metals in the
topsoil of Jiayuguan City, and is shown in Figure 15a. It is divided into four functional areas:
industrial area, agricultural area, living area, and Gobi area. According to the proportion of
the region, these data are projected on to a space of 850 ∗ 670. The second real dataset is the
spatial distribution data for heavy metals in the urban topsoil of Quanzhou City, and is
shown in Figure 15b. It is divided into five functional areas: traffic area, commercial area,
urban green area, residential area, and industrial area, and we project these data on to a
space of 700 ∗ 500 according to the proportion of the region.
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For dataset 1, we set the distance threshold min_dist of the neighborhood relationship
to 50, prevalence threshold to 0.3, and mined 112 prevalent FCPs. For dataset 2, we set the
distance threshold min_dist of the neighborhood relationship to 50, prevalence threshold to
0.3, and mined 46 prevalent FCPs.

Table 6 shows part of the mining results for dataset 1 and Table 7 shows a part of the
mining results for dataset 2. In Table 6, A, B, C, and D, respectively, represent the industrial
area, agricultural area, residential area, and Gobi area. For example, an FCP {A.Cu(L),
C.Cu(L)} indicates that an industrial area with a low copper content and a residential area
with a low copper content often tend to be located together, and the degree of this trend
is 0.6125. An FCP {B.Cu(M), B.Zn(L), C.Cu(M), C.Zn(L)} indicates that agricultural areas
with a low zinc content and middle copper content, and residential areas with a low zinc
content and middle copper content often tend to be located together—and the degree of
this tendency is 1. In Table 7, A, B, C, D, and E, respectively, represent the traffic area,
commercial area, urban green area, residential area, and industrial area. For example, an
FCP {A.Zn(H), D.Zn(H)} indicates that traffic areas with a high zinc content and residential
areas with a high zinc content often tend to be located together, and the degree of this
tendency is 1. An FCP {A.Cu(M), A.Zn(H), D.Cu(M)} indicates that traffic areas with a
middle copper content and high zinc content, and residential areas with a middle copper
content often tend to be located together, and the degree of this tendency is 0.9047.

Table 6. Part of the mining results for real dataset 1.

Prevalent Fuzzy Co-Location Pattern Prevalence Tendency
Degree

Lower Participation
Index and Upper

Participation Index

Participation Index for the
Traditional Method

{A.Cu(L), C.Cu(L)} 0.6125 0.0709, 0.6621 0.2312

{A.Cu(L), D.Cu(L)} 0.2328 0.036, 0.3801 0.1169

{A.Cu(M), C.Cu(M)} 0.2636 0.1567, 0.3513 0.2384

{D.Cu(M), D.Zn(H)} 1 0.4781, 0.9135 0.6599

{D.Cu(L), D.Zn(M)} 0.9096 0.2414, 0.8896 0.6681

{A.Zn(L), A.Cu(M), C.Zn(L)} 0.2636 0.1567, 0.3513 0.2384

{A.Zn(L), C.Zn(L), D.Cu(M)} 0.2167 0.1749, 0.3346 0.2492

{B.Cu(L), B.Zn(L), C.Zn(L)} 0.8586 0.2597, 0.5448 0.4342

{B.Cu(M), B.Zn(L), C.Cu(M), C.Zn(M)} 0.7039 0.1804, 0.5844 0.3358

{B.Cu(M), B.Zn(L), C.Cu(M), C.Zn(L)} 1 0.3933, 0.738 0.5726
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Table 7. Part of the mining results for real dataset 2.

Prevalent Fuzzy Co-Location Pattern Prevalence Tendency
Degree

Lower Participation
Index and Upper

Participation Index

Participation Index for the
Traditional Method

{A.Cu(M), A.Zn(M)} 0.7965 0.2438, 0.5199 0.3661

{A.Zn(H), D.Zn(H)} 1 0.4114, 0.966 0.8528

{A.Cu(M), D.Zn(H)} 0.8208 0.2438, 0.5575 0.3661

{E.Cu(L), E.Zn(L)} 1 0.3657, 0.4952 0.4425

{A.Cu(M), A.Zn(M), D.Cu(M)} 0.7965 0.2438, 0.5199 0.3661

{A.Cu(M), A.Zn(H), D.Zn(M)} 0.9047 0.2828, 0.4633 0.3853

{A.Cu(M), A.Zn(M), D.Cu(M), D.Zn(H)} 0.7965 0.2438, 0.5199 0.3661

{A.Cu(M), A.Zn(H), D.Cu(M), D.Zn(H)} 0.9047 0.2828, 0.4633 0.3853

For the real dataset 1, 112 prevalent FCPs (26 absolutely prevalent FCPs and 86 FCPs
with a prevalence tendency degree) were mined according to our measurement method,
and 63 prevalent FCPs were mined according to the traditional measurement method.
For the real dataset 2, 46 prevalent FCPs (11 absolutely prevalent FCPs and 35 FCPs with
a prevalence tendency degree) were mined according to our measurement method, and
37 prevalent FCPs were mined according to the traditional measurement method. We find
that our method finds more prevalent FCPs (including absolutely prevalent FCP and FCPs
with a prevalence tendency degree) than the method of mining spatial FCPs based on
type-1 fuzzy sets.

In the method of mining FCPs based on type-1 fuzzy sets, the membership degree
of the attribute of the spatial instance is a specific value because of the type-1 fuzzy
membership function. Therefore, the participation index of the mined FCPs is also a
specific value. We compare the participation index of FCPs with the prevalence threshold
and we can divide these FCPs into prevalent FCPs and non-prevalent FCPs. For example,
we apply the method of mining FCPs based on type-1 fuzzy sets to dataset 1. The prevalence
threshold is set to 0.3 and the participation index of FCP {A.Cu(L), C.Cu(L)} is 0.2312, which
is non-prevalent. The participation index of {B.Cu(L), B.Zn(L), C.Zn(L)} is 0.4342, which is
prevalent.

6. Discussion

The membership of attributes of spatial instances is determined by the fuzzy member-
ship function. However, the disadvantage of using type-1 fuzzy membership functions is
that the type-1 fuzzy membership function itself has a large amount of uncertainty. The
application of type-1 fuzzy sets in mining FCPs will result in large deviations. Therefore,
we apply interval type-2 fuzzy sets to the process of mining FCPs in order to reduce the
deviation caused by the uncertainty of type-1 fuzzy membership functions and find the
influence of the uncertainty of the fuzzy membership function on the prevalence degree of
FCPs. Moreover, our method is more efficient than the traditional FCPs mining method
based on type-1 fuzzy sets [4].

Compared with the method of mining FCPs based on type-1 fuzzy sets, our method
has the following advantages:

(1) By constructing granular type-2 fuzzy membership functions, we reduce the deviation
caused by the uncertainty of type-1 fuzzy membership functions. In this paper, the
membership degrees of the attributes of spatial instances are expressed by interval
values, and then the mined FCPs have an upper bound participation index and a
lower bound participation index. We propose a method to measure the prevalence
degree of FCPs when there is uncertainty in the fuzzy membership function, which



Appl. Sci. 2022, 12, 6259 28 of 30

provides a basis for judging the influence of the uncertainty of the fuzzy membership
function on the results of mining FCPs.

(2) Due to the uncertainty of fuzzy membership functions, we find FCPs whose lower
bound participation index is less than the prevalence threshold but the upper bound
participation index is higher than the threshold. This shows that in all the possible
values of the participation index of these FCPs, some values are higher than the
prevalence threshold and some values are lower. That is to say, such an FCP has a
certain tendency to be prevalent, but also has a certain tendency to be non-prevalent;
we regard this as a kind of potential prevalent FCP. For example, in the real dataset
1, the FCP {A.Cu(M), C.Cu(M)} has a lower bound membership of 0.1567, an upper
bound membership of 0.3513, and a prevalence tendency degree of 0.2636. We can find
that when there is uncertainty in the fuzzy membership function, {A.Cu(M), C.Cu(M)}
has a 26.36% tendency degree to be prevalent. However, in the traditional method
based on type-1 fuzzy sets, the participation index of the FCP is 0.2384 when the
prevalence threshold is 0.3; we can only find that it is non-prevalent and cannot find
the influence of the uncertainty of the fuzzy membership function on its participation
index and prevalence degree. When using type-1 fuzzy sets, we cannot find the
potential association between the middle concentration of copper in the industrial
area and the middle concentration of copper in the living area, even if the association
is very significant.

(3) We use the prevalence tendency degree to measure the prevalence degree of FCPs.
This allows us to find the FCPs whose lowest possible value of participation index
is higher than the prevalence threshold. These FCPs are still prevalent when there
is uncertainty in the fuzzy membership function, so we define them as absolutely
prevalent FCPs and we regard them as a kind of stable and prevalent FCP. However, in
the traditional method based on type-1 fuzzy sets, it is difficult to find this kind of FCP
according to the participation index and the prevalence threshold. For example, in
the real dataset 1, an absolutely prevalent FCP {B.Cu(M), B.Zn(L), C.Cu(M), C.Zn(L)}
has a lower bound membership of 0.3933 and an upper bound membership of 0.738.
We can easily find that the pattern is stably prevalent and we can find the influence of
the uncertainty of the fuzzy membership function on the prevalence degree of FCPs.
However, in the traditional method based on type-1 fuzzy sets, the participation index
of the FCP is 0.5726 and it is difficult to judge whether this pattern is prevalent when
there is uncertainty in the fuzzy membership function.

7. Conclusions

In the work of traditional FCPs mining, the generation of table-instances of an FCP
takes up most of the execution time. In this paper, we propose a method based on interval
type-2 fuzzy sets and cliques. Firstly, cliques are generated from spatial datasets, and then
we look for row-instances of the candidate FCP from the cliques, thus saving the time of
generating row-instances of candidates through a large number of connection operations.

Compared with type-1 fuzzy membership function, a type-2 fuzzy membership func-
tion more truly reflects the situation when there is uncertainty in the membership degree of
fuzzy attributes. In this case, our method effectively measures the prevalence degree of
fuzzy co-location patterns, and finds stable and prevalent fuzzy co-location patterns and
fuzzy co-location patterns with a prevalence degree. It provides a reference for people to
find the influence of the uncertainty of membership functions on the prevalence degree
of fuzzy co-location patterns. At the same time, our method has some limitations, such as
the time cost of the gradual method of adjusting the parameter of interval type-2 fuzzy
membership function, which is high, and the efficiency is low when the number of instances
or features is very large.

For future work, we will consider using distributed and parallel mining to mine fuzzy
co-location patterns. The combination of features, attributes, and fuzzy sets will generate
a lot of fuzzy features and a large amount of candidate fuzzy co-location patterns, which
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will lead to a tremendous time cost. Distributed and parallel mining can greatly improve
the efficiency of mining fuzzy co-location patterns. In addition, we consider using interval
type-3 fuzzy sets to deal with higher-level uncertainty.
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