
Citation: Wang, X.; Wang, W.; Liu, H.

Product Model Derivation from

Feature Model and Formal

Specification. Appl. Sci. 2022, 12, 6241.

https://doi.org/10.3390/app12126241

Academic Editors: Alberto Rodrigues

Da Silva and Luis Olsina

Received: 15 May 2022

Accepted: 15 June 2022

Published: 19 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Product Model Derivation from Feature Model
and Formal Specification
Xi Wang 1,2, Weiwei Wang 1,2,* and Hongbo Liu 1,2

1 School of Computer Technology and Science, Shanghai University, Shanghai 200444, China;
wangxi@t.shu.edu.cn (X.W.); liuhongbo@shu.edu.cn (H.L.)

2 Shanghai Key Laboratory of Computer Software Testing and Evaluating, Shanghai 201114, China
* Correspondence: wweiwei@shu.edu.cn

Abstract: Product derivation is the process of building a specific product from a software product
line. Effective product derivation can improve software reuse productivity. Existing methods can
only obtain abstract feature models, lacking detailed specifications of individual features. They are
more about deriving code assets or class diagram templates without precise model descriptions for
specific products. This article proposes a product derivation approach to obtain a formal specification
of a specific product based on the feature model and formal specification. We use the integration
ordering and behavior preserving integration techniques to integrate the formal specification for each
feature pair. The method is divided into two steps. First, it determines the feature formal specification
integration ordering based on the feature model. Then, the behavior-preserving integration will
be conducted for pairs, including declaration integration, functional scenario path generation, and
function integration based on path matching. Behavior preserving integration guarantees consistent
behavior to ensure the quality of the formal specification after integration. Finally, we developed
a support tool to conduct a case study. The tool first guides the user to perform feature functional
scenario path matching, then performs functional integration based on the matching results and
repeats the above steps to generate a product model. The result indicates that our method facilitates
the derivation process and improves the quality of the generated models.

Keywords: product derivation; formal specification; product family modeling; behavior preserving
integration

1. Introduction

Software product line development is an important way to realize software reuse, which
can improve software quality and shorten the development cycles, time, and cost [1,2]. A prod-
uct family is a set of software products sharing common features but containing variation
points. Deriving a specific product from a product family is called product derivation,
which is a crucial activity in software product line development. In a product line organiza-
tion, using the appropriate product derivation process helps to ensure the required return
on investment for developing platform assets [3].

At present, in the study of product derivation, many studies focus on the realization of
the variability of product family members at the implementation level [4,5]. The techniques
are code-based export methods that assign features to code [6]. They are usually feature-
to-artifact mappings [7], e.g., AspectJ for Java or preprocessor annotations [8,9] for text
files. The build result of the final product depends on the choice of configuration options
provided by the variability model [10]. These studies focus on the ability of a specific type to
track changes. However, this approach leads to two problems: (i) The built product has no
formal description of features. It is abstract in most cases, and only contains configuration
information of variable product features and dependencies between features, emphasizes
the feature architecture and relationship analysis, and cannot fully identify and understand

Appl. Sci. 2022, 12, 6241. https://doi.org/10.3390/app12126241 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12126241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9239-1990
https://doi.org/10.3390/app12126241
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12126241?type=check_update&version=2

Appl. Sci. 2022, 12, 6241 2 of 22

individual features. (ii) There is no systematic modeling method for the product families,
resulting in the lack of organically unified variability and feature descriptions.

Compared to the implementation level, some work and tools have been conducted on
the requirement level. Most of the existing methods on the requirement level are copy-based
and trans f ormation-based. In the former, an existing product variant is copied and modified,
adding and/or removing some functionalities to derive a new product [11,12]. The latter
involves transforming feature elements into different forms of the element [13]. Most of
them either lack formalization of the model or have a coarse and abstract granularity of
formalization, resulting in poor quality products. The major reason is that the source
of product derivation is the product family model, which insufficiently expresses the
user requirement.

This paper builds on our prior work. Our prior work provided an evolution method for
high-quality product family modeling that considers the feature model and the relationship
between features, and a consistent and accurate product family model can be obtained [14,15].
It solved the problem that the source model was not formal and provided the basis for the
self-service product model generation. This paper significantly extends our prior work to
solve the problem that the specific product derived is not formalized or the formalization is
imprecise and obtains the formal specification of the product.

Based on the above work, this paper proposes a method for product derivation at
the requirements level that integrates the feature specification, which focuses on feature
specification rather than code implementation. Our approach has two steps. It starts with
determining the feature specification integration ordering based on the feature model.
This ordering is the sequence of features to be integrated. The two features to be integrated
in order in the sequence are called a feature pair (an atomic integration). Then, for each
feature pair, behavior-preserving integration will be conducted according to the ordering,
including declaration integration, functional scenario path generation, and function inte-
gration based on path matching. Behavior preserving integration combines structural and
semantic information present in the feature specification, and the functional scenario path
covers all functional scenarios in the individual feature specification. For example, features
A and B form a feature pair. The matching of the functional scenario path of pairs will be
carried out by analyzing their behaviors. A set of feature integration rules are given for
guiding the construction of integrated features. The final product can be obtained when the
behavior of the feature pairs to be integrated is preserved in the combined feature. At the
same time, since the introduction of the formal specification makes the generated product
formal, and the integration process can be supported automatically, we developed a tool
based on the method and conducted a case study to illustrate the validity of the approach
(the tool can be downloaded and run at https://github.com/Jennywww/PD-SOFL-tool,
accessed on 14 May 2022). In summary, we make the following contributions:

• A product model derivation method is proposed, which enables the computer-aided
construction of formal product models from a feature model and feature specification;

• A supporting tool is provided to guide through the process of product model con-
struction and ease the burden of product derivation;

• A functional-scenario-based behavior-preserving mechanism is given to guarantee
the completeness of the resultant product model.

The underlying proposal is language-independent, so it can be supported by formal
specification languages, such as the Z and B-Method. However, we use the Structured
Object-Oriented Formal Language (SOFL) because it is a formal engineering method that
combines graphics, formal expression [16], and a three-step approach [17], solving the gap
between the formal method and the real development of software [18–20]. It is easier to
use and more easily accepted by the industry [21].

The remainder of the paper is organized as follows. Section 2 reviews related work.
Section 3 introduces the method of product derivation with feature model and formal
specification. Section 4 illustrates the validity of the proposed approach through the

https://github.com/Jennywww/PD-SOFL-tool

Appl. Sci. 2022, 12, 6241 3 of 22

supporting tool. Section 5 discusses the advantages and limitations. Finally, in Section 6 we
conclude the paper and point out future research directions.

2. Related Work

Product derivation is more concerned with the realization of the variability at the
implementation level [4]. Souza et al. [22] use a preprocessing-based code export method
(GenArch) for product derivation. In [23], the authors use Java to implement the selection
of basic components and features from the software product family and derived products.
Feichtinger et al. [24] summarize complex relationships between features by computing
a feature dependency matrix and use a static code analysis and change control systems
to promote complex code-level dependencies to feature models to guide model evolution.
Tërnava et al. [25] propose a framework for managing the imperfect modularity of variable
implementations. Capturing variability based on feature change points, then modeling
the variability with variants while maintaining consistency with implementations in code
assets and establishing tracking links between specified variables and implemented vari-
ables, completes the management of implemented variability. Marah et al. [26] propose
a model-driven round-trip engineering (RTE) approach where different configurations
can be obtained. Both the applications and synchronization between instance models and
corresponding codes are provided using a toolchain.

These methods discussed above are limited to the code unit of single features and
code of feature interactions. The fine-grained product stays on the feature, and they do not
involve the expression of the internal behavior of the feature. In addition, these approaches
focus on feature modeling with little consideration for dependencies and interactions
between implementation artifacts. In contrast, our method systematically considers feature
architecture and combines features into a whole while being able to express the internal
behavior of features. At the same time, the specific product features derived from the
derivation have dependencies, and the behavior of the product can be retained after the
derivation through the behavior preserved integration.

There are also some works on the requirement level for product derivation.
Sepúlveda et al. [27] take the captured variability information, such as features, and build
a trace between the features and the use case model to the model variability in use cases.
Hajri et al. [28] propose a way to support evolving configuration decisions in product line
use case models, using use case models to minimize manual tracking efforts, and recon-
figure use case diagrams and specifications to accommodate evolving decisions. Some
approaches [29,30] use propositional logic for a product derivation to produce Unified
Modeling Language (UML) class diagrams or sequence diagrams. Some express the SPL
source model in UML and derive the UML model of a specific product by mapping the
features in the feature model and their implementation in the design model [13]. Domain-
specific modeling languages are defined to automate product derivation [31]. For example,
Vještica et al. [32] propose a multi-level production process modeling language (Multi-
ProLan) that allows process engineers, quality engineers, and plant managers to collaborate
on specifying a production process by using a common language. Nieke et al. [33] pro-
posed augmenting the metamodel with a seamless support for planning, tracking, and
slicing model evolution timelines, enabling the arbitrary modeling notations for integrated
storage, tracking, planning, and access and control of the model evolution.

The above methods stay at the feature level and are described with the granularity
of features. Although some methods have been given for the detailed specification of
individual features based on the feature model, most of them are informal and fail to
manage the accurate description of feature requirements, making them unable to automate
support, which brings difficulties to the later coding, testing, and maintenance of the
product. By contrast, our approach performs feature integration by matching functional
scenario paths and formal specifications to ensure a diverse interaction between feature
behaviors.

Appl. Sci. 2022, 12, 6241 4 of 22

Our approach uses matching and integration to fuse feature specifications. Match-
ing and integration have had much prior work in the formalization field. Shiva Nejati [34]
proposed a method of matching and merging state diagram models. It uses natural lan-
guage processing methods to judge the similarity between the semantics of the input
models and calculates the matching state pairs with accuracy. Engineers use scenario-
based modeling methods to explain behavioral interactions in the early design process.
In Ref. [35], the authors discussed the use of Live Sequence Charts (LSCs) [36] to define a
scenario specification language and describe possible scenarios through detailed behavior
models. In Ref. [37], the authors propose a Scenario-Based Product Line Specification
(SBPLS) framework, which combines a feature model with Modal Sequence Diagrams
(MSDs) [38], and allows engineers to formally specify interactions in product lines of open
reactive systems. Michal Smialek and his team considered extracting code from scenarios
and facilitated the transition from the requirements to code [39]. The above methods focus
on the possible interactions between features, including real-time sequence diagrams, state
diagrams, etc. Most of these methods are mainly based on state transition models, and it is
challenging to complete the matching and integration for data-intensive systems. Moreover,
these methods do not provide rich data types for defining data structures with our use
appropriate data types by Structured Object-Oriented Formal Language (SOFL) to describe
feature behaviors.

3. Product Derivation Based on Feature Model and Specification Approach

Feature models and formal specifications are the foundation of our article. We use
feature models to capture the commonality and variability of features and use SOFL to
describe formal specifications of the features. Then, we illustrate the detailed process of the
product derivation from the feature model to obtain specific products.

3.1. Feature Model

The feature model uses a tree-like hierarchical structure to describe the relationship be-
tween features, reflecting the commonalities and variability of features. In order to illustrate
the feature model, the Tourism Management System (TMS) is given as an example, which
is used in the following sections. The main function of TMS is to customize personalized
travel plans according to user needs and complete necessary transactions. The feature
model is shown in Figure 1.

Figure 1. The feature model of Tourism Management.

The root node, in this case, is called Tourism Management, which can be decomposed
into multiple sub-features. A mandatory relationship dictates that children are neces-
sary. For example, each product must have login and registration functions. An optional
relationship means that a child node can be selected or unselected. For example, the
Reserve_ f or_Tour and Tour_In f o can be included in any product. An alternative relation-
ship represents that one of the sub-features must be selected. For example, UpdatePro f ile
and Query_User cannot appear in the same product. The Or relationship representation
can contain one or more sub-features. For example, Reserve f orFlight, Reserve f orBus,
Reserve f orHotel, can be included in one or more products simultaneously. The three
Boolean logic expressions at the bottom of the figure indicate the constraints between fea-
tures. For example, the logic expression UpdateFlight⇒ ¬ Reserve f orBus ∩ ¬Reserve f or

Appl. Sci. 2022, 12, 6241 5 of 22

Flight ∩ ¬Reserve f orHotel means that if UpdateFlight is selected, then Reserve f orFlight,
Reserve f orBus and Reserve f orHotel cannot be selected.

3.2. SOFL

SOFL, standing for Structured Object-Oriented Formal Language, is a formal engineer-
ing method. A SOFL specification is usually composed of modules that are associated with
CDFDs (Condition Data Flow Diagrams). CDFDs are designed in a hierarchy to describe
the architecture of the system under design, while the components are used in each CDFD,
such as data flows, data stores, and processes. Each process is described in preconditions
and postconditions, where the preconditions can be used to describe constraints on input,
and postconditions can be used to describe functions on output data. Different processes
are linked to each other by data [40]. Figure 2 shows the basic structure of the formal
specification to reflect the relationship between module, CDFD, and process. For example,
module A1 consists of A11 and A12, CDFD A1 represents the behavior of module A1, and
module A1 encapsulates the data in CDFD A1 (const; type; class; var; inv;) and process
(A11, A12), which together form the specification of SOFL.

Figure 2. The framework of a SOFL specification.

A process in SOFL is the most basic unit that constitutes a module, and a module is
formed by integrating a group of processes. Each process is responsible for performing an
action, task, or operation, it accepts input and produces output, and different processes are
connected through data. Figure 3 is the basic structure diagram of a Check_Pass process
and the corresponding formal specification. To explain the basic concepts involved in our
discussion, we have simplified the original version of the process specification to the extent
that we believe ensures a good understandability. A process consists of five parts: name,
input ports, output ports, preconditions, and postconditions. In the middle of the box is
the name of the process. The input port on the left side of the graphical representation
receives three input data flow sel (customer selection), pass_no (the password provided by
the customer to access his account), id (the account number provided by the customer),
while the three on the right output ports are used to connect different output data flow,
allowing users to enter the next stage to perform different operations. For example, the
Check_Pass process is intended to verify the customer’s account and password through the
database for further operations, and the output data flows of different ports cannot be valid
at the same time. Different outputs are obtained according to different conditions. Details
of the conditions are given in the formal specification of the process.

The reader who wishes to understand more details of SOFL can refer to [40] for
extensive reading. The formal definitions of the key elements in SOFL are given.

Appl. Sci. 2022, 12, 6241 6 of 22

Figure 3. A process for checking password.

Definition 1. A SOFL process p is a 4-tuple (IPort, OPort, preP, postP), where IPort =
{iPort1, ...iPortm} is the set of input ports of p, where each iPorti = {ivi1, ..., ivil} is a set of
input variables, OPort = {oPort1...oPortn}is the set of output ports of p where each oPortj =
{ovj1, ..., ovjk}is a set of output variables. The preP is a constraint on the input, and postP is
the relationship between input and output. Each preP and postP exists as a union of multiple
predicate expressions.

A process P = (IPort, OPort, preP, postP) as P = {Pij|1 ≤ i ≤ m, 1 ≤ j ≤ n},
Pij = (iPorti, oPortj, prePij, postPij), where prePij = preP, postPij = postP. The execution of
the process consumes all the input data flows ivi1, ..., ivil connected to the available input
port iPorti for activating the execution, and makes exactly one of the output ports postPij
available. Therefore, all the output data flows ovj1, ..., ovjk connected to oPortj become
available. This part will become clearer as the discussion on the functional scenario path of
a feature and its specification progresses.

Definition 2. A module m is a tuple (P, L, D, C, T, F, Φ, λ) where P is a set of processes, L is a set
of labels. D is a set of datastores, T denotes the objects outside the system, C is the set of lower-level
CDFDs for decomposing processes in m, F : ((OPort(p) ∪ T)× L) → (IPort(p) ∪ T) is a set
of dataflows among processes and objects, Φ ⊆ (P ∪ D)× (P ∪ D) is a set of dataflows between
processes and datastores, and λ : P 9 C denotes the decomposition relations between processes in
m and lower-level modules.

3.3. Product Model Derivation Approach

Figure 4 shows the outline of our approach to deriving a specific product model
through the integration of feature specifications. The derivation process can be divided into
feature ordering and feature integration. During feature ordering, the features are selected
from the feature model according to user needs. The order of features in a sequence may
matter since feature composition is not generally commutative, and feature composition is
not in every case associative [41]. We propose an integration ordering to achieve the ordering
sequence. The integration ordering sorts each pair to be fused in order, and each pair is
the integration of two features. During feature integration, behavior preserving integration
is conducted for each feature pair in the order, which includes declaration integration,
functional scenario path generation, and function integration based on path matching.
We describe behavior in the form of a functional scenario path here, and the definition is
given later. The declaration integration integrates variables and types in features according
to integration rules. The functional scenario path connects the scenarios of each feature
behavior. The function integration based on path matching matches related scenarios paths
of feature pairs and integrates the feature specification. The key technologies integration
ordering and behavior preserving integration in the above two steps will be described in
detail below.

Appl. Sci. 2022, 12, 6241 7 of 22

Figure 4. The outline of the product derivation approach.

3.3.1. Integration Ordering

The main goal of integration ordering is obtaining the sequence of pairs to be inte-
grated. It includes the configuration of the feature model and the ordering of the selected
features. Features are selected according to the user’s needs, and the integration ordering
is generated based on the product configuration.

In the feature model, basic features are composed by the superimposition of their tree
structures. The main idea of ordering is that the more closely related features are integrated
first. The bottom-level features of the model are treated as dispersed independent leaf
nodes, and the closeness of the leaf node relationships is determined by the hierarchical
structure of the model after product configuration. The feature model is deeply traversed
to find all non-leaf nodes, and the leaf nodes are merged under the same parent node in
pairs. The result is a merged leaf node. Then, the nearest neighbor search algorithm is used
to find the nearest related leaf nodes, and the nearest related leaf nodes are merged until
there is only one merged leaf node at the end.

Algorithm 1 shows the pseudo-code of the above process. In the algorithm, the input
variable configuration is the user’s operation for product configuration, which is unknown.
The user selects features through configuration. The juniorNodeSets is a collection of all
features in the feature model. For example, the leaf nodes A1, A2, B1, C1, and D in Figure 4
have a common root node, all the non-leaf nodes A, B, C, and P are found, and, when
judging whether their children are leaf nodes or not, if they are, then merging all the leaf
nodes under the same node, such as A1 and A2, the leaf nodes under B, C remain unchanged
because there is only one leaf node. Then, the nearest nearby leaf nodes are found by the
nearest neighbor search algorithm, merging them in turn, recursively, to obtain the final
result as [A1, A2, D, B1, C1]. An arbitrary ordering sequence indicates the operation of
integrating the result of every two features with the next feature. Each feature corresponds
to a module in SOFL, so in this example, modules A1 and A2 are first integrated as a feature
pair, denoted as m fA1

·m fA2
, then, we merge D with the results of A1 and A2 integration,

and obtain m fA1
·m fA2

·m fD ; finally, the ordering is m fA1
·m fA2

·m fD ·m fB1 ·m fC1
.

3.3.2. Behavior Preserving Integration

Serving as the most basic integration operation for each feature pair, behavior pre-
serving integration will be repeatedly applied for the selected features to be integrated in
order. Regarding functional scenario path as the representation of the feature behavior, we
perform the behavior preserving integration on this basis. Behavior preserving integrates
every declaration and process that occurs in the module to cover all possible functional
scenario paths, where a start conditional process is a conditional process whose input data
stream is not the output of any other conditional process in the same module. It can also be
a source (a conditional process without any input data stream). A termination conditional
process is a conditional process, whose output data stream is not input to any other con-
ditional process in the same module. It includes declaration integration, functional scenario
path generation, and function integration based on path matching. The steps of the method are
shown in Figure 5. The first step integrates all types of variable declarations according

Appl. Sci. 2022, 12, 6241 8 of 22

to the integration rules. The second step derives all possible functional scenarios from
the formal specification of the pair and then connects functional scenarios into scenario
paths. Finally, the last step performs path matching according to the scenario paths, and
the matching result guides the generation of integrated modules.

Algorithm 1 Integration Ordering
Input: feature module f m, configuration c
Output: pair sequence ps

1 selected f eature← c;
2 juniorNodeSets← f m;
3 // find all non-leaf nodes
4 juniorTreeNode← f m− selected f eature;
5 for juniorTreeNode ∈ juniorNodeSets do
6 while ∃Lea f Node ∈ juniorTreeNode do
7 // merge leaf nodes under the same parent node
8 juniorTreeNode← juniorTreeNode ∪ lea f Node;
9 end

10 end
11 nearestNeighbor ← ∅;
12 while lea f NodeSets.count ≥ 2 do
13 // nearest neighbor search
14 for ∃lea f TreeNode ∈ lea f NodeSets do
15 // find the leaf node with the closest relationship
16 nearestNeighbor ← lea f TreeNode. f indJuniorNodes. f indLea f Nodes;

// merge leaf nodes of nearest relatives
17 lea f TreeNode← lea f TreeNode ∪ nearestNeighbor;
18 ps← lea f NodeSets;
19 end
20 return ps
21 end

Figure 5. Integration of feature pairs.

Declaration integration. Declarations contain mainly types and variables. Variables
can represent values of basic or compound types (e.g., sets, sequences, maps, or composite
types). Two type declarations with the same name and base type are overwritten, and only
one is left. Composite types have many data items. We focus on composite types with
intersecting data items.

First, the declaration of the data items is analyzed in any two modules and then integrated
according to the rules we give. Table 1 describes our proposed declaration integration rules to
generate the same compound type variables as the original semantic from the relevant condi-
tions involving the operation as mentioned above. Let s, s1, and s2 be any type, respectively.
If the conditions in the table are satisfied, the actions will be executed. For example, the first
and second rows of Table 1 indicate that if the domain/range of map s1 is satisfied by s2, then
dom(s1) = s2 or rng(s1) = s2; the third row indicates if there is an intersection between map s1
and map s2, a new s will be generated, which is the union of s1 and s2; the fourth row indicates
if there is an intersection between set s1 and set/com s2, the set s is the union (s1, s2); the fifth
row indicates if sequence s1 and s2 partially overlap, the sequence s is conc(s1, s2); if set s1 and
s2 partially overlap, then the composite s is the union(s1, s2).

Appl. Sci. 2022, 12, 6241 9 of 22

Table 1. Rules for declaration integration based on composite type expressions.

No. Types Conditions Actions

1 Map s1 = {a1→b1, a2→b2,. . . , an→bn} s2 = {b1, b2, . . . , bn} rng(s1) = s2
2 Map s1 = {a1→b1, a2→b2,. . . , an→bn} s2 = {a1, a2, . . . , an} dom(s1) = s2
3 Map s1 inter s2 not empty comp(s) = union(s1, s2)
4 Set s1 inter s2 not empty set s = s1 union s2

5 Sequence s1 concatenated s2 sequence s = conc(s1, s2),
len(s) = len(s1) + len(s2)

6 Composite s1 inter s2 not empty comp(s) = s1 union s2

For type variables where two modules overlap exactly, we choose to retain one of
them. If a type variable T has overlapping parts with two other type variables, T1 and T2,
we integrate them in the order of the traversal, in turn. It is worth mentioning that most of
the commonly used variable types are covered in our rules, and many other possibilities
will be explored in the future.

Functional scenario path generation. The goal of the functional scenario path gen-
eration is to obtain a collection of functional scenario paths for each feature based on the
functional scenario. The functional scenario path represents module behavior. A path indi-
cates a set of functional scenarios, which describes how the final output data is produced by
a sequence of processes based on the input data. A process may include several functional
scenarios. The definition of a functional scenario is as follows:

Definition 3. A functional scenario of a process p is a conjunction prePp ∧ Ci ∧ Di, where each
Ci(i ∈ 1, ..., n) is a predicate called a “guard condition” that contains no output variable and
∀i, j ∈ 1, ..., n · i 6= j⇒ Ci ∧ Cj = f alse; Di is called “defining condition" that contains at least
one output variable but no guard condition in the post condition (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ ... ∨
(Cn ∧ Dn).

Each functional scenario prePp ∧ Ci ∧ Di defines an independent behaviour, which it
means that if prePp ∧ Ci is satisfied by the initial state (or the input data), the final state (or
the output data) is defined by the defining condition, Di. For example, in the simplified
process of Check_Pass in Figure 3, according to the definition of functional scenarios, the
three functional scenarios defined in the specification are listed as follows:

• (∃x ∈ Bank_Account · x.id = id ∧ x.password = pass_no) ∧ sel = true ∧ acc1 = x
• (∃x ∈ Bank_Account · x.id = id ∧ x.password = pass_no) ∧ sel = f alse ∧ acc2 = x
• ¬(∃x ∈ Bank_Account · x.id = id ∧ x.password = pass_no) ∧ err_msg = “Your

password or account number is incorrect”

Since any postcondition can be transformed into the equivalent disjunctive normal
form, simply treating the disjunctive clause in the disjunctive normal form of a post-
condition as a functional scenario is not necessarily correct in some cases. For example,
x ≤ 0∧ (y = x ∨ y = −x) ∨ x > 0∧ y = x/2 is the postcondition of the operation, where x
is the input and y is the output. It states that when x ≤ 0, y is defined as x or −x. In this
case, if we convert it to a disjunctive normal form x ≤ 0 ∧ y = x ∨ x ≤ 0 ∧ y = −x ∨ x >
0 ∧ y = x/2 and treat the two disjuncts separately, as in sentences x ≤ 0 ∧ y = x and
x ≤ 0 ∧ y = −x as a separate functional scenario, we may not find a satisfactory answer
in the analysis, then we can only judge that these two scenarios are classified as the same
scenario (does not affect the integration result when the scenario path is integrated), or
modify it when writing the product family’s formal specification.

Definition 4. Given a module m, a path of m is a sequence of processes
[
pi · · · pj

]
, iff

∃pi ,··· ,pj∈Pm · (∃n∈[i+1,j] · @OPort(pn)∪T×L→IPort(pi)∪T) (1)

Appl. Sci. 2022, 12, 6241 10 of 22

∃pi ,··· ,pj∈Pm · (∃m∈[i,j−1] · @IPort(pm)∪T×L→OPort(pj)∪T) (2)

∀oPortj∈OPort(pi),iPorti∈IPort(pi+1)
· oPortj ∪ iPorti 6= ∅ (3)

The first condition means that there is no process in the path whose output is an
input to pi, and the second condition implies no process whose input is from pj. The
third condition indicates that each process should be connected to other processes with
their input or output ports in the path. All paths connect processes Pij and Pnm, which
are denoted by Path(pij, pnm). The process Pnm is obtained from the input of the nth port
of a process p in the module to the output of the mth port. A path can have one or more
subpaths in the module.

Definition 5. Given two paths, Path(i, j) and Path(m, n), where Path(i, j) is a subpath of
Path(m, n), denoted as Path(pi, pj) ⊆ Path(pm, pn), iff

∃x∈[m,n] · ∃OPort(px)∪T×L→IPort(pi)∪T (4)

∃y∈[m,n] · ∃Iport(pj)∪T×L→OPort(py)∪T (5)

Each module corresponds to a set of functional scenario paths. All functional scenarios
of a process p, denoted as Fsp, have a functional scenario path, which is defined as follows:

Definition 6. A functional scenario path is a sequence [f s1, · · · , f sn] in the module m, iff

∃[p1,··· ,pn]∈Pathm(p1,pn) · ∃p1,pn∈Pm · ∀i∈[1,n] · fsi ∈ Fspi (6)

The functional scenario path, denoted as FsPath
(

pij, pnm
)
, reflects the behavior of

module m f . The m f performs different functional scenario paths when receiving different
data inputs. For simplicity, we only consider the postcondition in deriving functional
scenarios discussed in this paper. All possible functional scenarios f si(i ∈ {1, 2, · · · , n})
are derived from the formal specification of pairs based on the data dependency among
operations Ci ∧ Di, and a set of functional scenarios {fs1, fs2, · · · , fsn} are obtained, where
f si is the related functional scenario of p. we use sequence {IV(fs1)}[fs1]{OV(fs1)} →
{IV(fs2)}[fs2]{OV(fs2)} → · · · → {IV(fsn)}[fsn]{OV(fsn)} for the scenario path. Each
{IV(fsn)}[fsn]{OV(fsn)} is a functional scenario. The input IV(f s1) of f s1 comes from
the objects outside the module m and the set OV(f s1) is the outputs of f s1. The process
Pij in the scenario path receives the input data item IV(f si) and produces a data item
OV(f si), where one or more variables in IV(f si) are contained in the guard condition, and
the variables in OV(f si) are contained in a defining condition. The functional scenario
path of each process p within m f will be generated based on the functional scenarios. The
process input and output variables ivij, ovij can help to filter the functional scenarios of a
process and obtain the relevant scenario paths. We implement the above process, as follows
in Algorithm 2.

Here, we take the feature ReserveforBus and ReserveforFlight of TMS as an example.
Figure 6 is the CDFD diagram of the formal specification of the feature. It can be ob-
served from the figure that there are four processes in the module ReserveforBus: Check_Bus,
Check_Pass, Con f irm_Bus, and Con f irm_invoice and four processes in the module Reserve-
forFlight. Each module has one or more functional scenario paths, as shown in Table 2.
For example, there are four functional scenario paths for the feature ReserveforBus, of which
the first scenario path [reserve_for_bus_request, user_id]Check_Bus11[wrong_id] is a functional
scenario based on the process Check_Bus. The number 11 behind Check_Bus represents the
port number, respectively; reserve_for_bus_request, user_id is from the first input port to
enter the process Check_Bus, and the output is from the first port of the output after passing
through the post-condition. The last three scenario paths are also similar.

Appl. Sci. 2022, 12, 6241 11 of 22

Algorithm 2 Feature Scenario Paths Generation
Input: module m f

Output: Path /* the set of functional scenario paths */
1 postPm f ← P1 ∨ P2 · · · ∨ Pn Pi(i ∈ {1 · · · n});
2 foreach Pt ← R1 ∧ R2 · · · ∧ Rm(m ≥ 1) do
3 {IO1, IO2} ← ivij ⊆ IO1, ovij ⊆ IO2

4 end
5 foreach IOk, k ∈ {1, 2} do
6 Ct

1 ← ∧i∈sRi, s ∈ {i ∈ [1 · · ·m]|Ri∈IO1};
7 Dt

2 ← ∧i∈sRi, s ∈ {i ∈ [1 · · ·m]|Ri∈IO2};
8 end
9 fsi ← Ct

1 ∧ Dt
2;

10 Path← ∪ f si, i ∈ {1 · · · t};
11 return Path;

Figure 6. The CDFD for Reserve f orBus and Reserve f orFlight.

Table 2. The functional scenario paths involved in the selected modules.

Feature/Module Functional Scenario Paths

ReserveforBus

[reserve_for_bus_request,user_id]Check_Bus11[wrong_id]

[reserve_for_bus_request,user_id]Check_Bus12[bus_plan]->[bus_plan,pass_no]Check_Pass11
[account_info]->[cost,account_info]Confirm_Bus11[failed_msg]

[reserve_for_bus_request,user_id]Check_Bus12[bus_plan]->[bus_plan,pass_no]Check_Pass12
[err_msg]

[reserve_for_bus_request,user_id]Check_Bus12[bus_plan]->[bus_plan,pass_no]Check_Pass11
[account_info]->[cost,account_info]Confirm_Bus12[pay_confirmed]->[pay_confirmed]
Confirm_Invoice11[invoice]

ReserveforFlight

[reserve_for_filght_request,user_id]Check_Filght11[wrong_id]

[reserve_for_filght_request,user_id]Check_Filght12[filght_plan]->[filght_plan,pass_no]
Check_Pass11[account_info]->[cost,account_info]Confirm_Filght11[failed_msg]

[reserve_for_filght_request,user_id]Check_Filght12[filght_plan]->[filght_plan,pass_no]
Check_Pass11[account_info]->[cost,account_info]Confirm_Filght12[pay_confirmed]->
[pay_confirmed]Confirm_Invoice11[invoice]

[reserve_for_filght_request,user_id]Check_Filght12[filght_plan]->[filght_plan,pass_no]
Check_Pass12[err_msg]

Function integration based on path matching. The goal of the integration is that all
behaviors included in a single feature will be retained in the final feature’s behaviors.

Appl. Sci. 2022, 12, 6241 12 of 22

Definition 7. Given two features f1, f2, let S f1· f2 = (M1, M2, · · · , Mn) denote a integrated
feature specification, where each M = (TM, VM, IM, FSM)(i ∈ {1, 2, · · · n}) is a module defined
in the specification, TM, VM, ,IM and FSM are the set of all type declarations, state variable
declarations, invariants, and functional scenarios, respectively. f1 · f2 is said to be a behavior
preserving integration, if

FS f1· f2 =
n⋃

i=1

Mi · FSM (7)

Tf1· f2 =
n⋃

i=1

Mi · TM (8)

Vf1· f2 =
n⋃

i=1

Mi ·VM (9)

I f1· f2 =
n⋃

i=1

Mi · IM (10)

∀FsPathm f 1 ,FsPathm f 2⊆FsPathm f
· ∃o∈OPort(Pm f 1)∧i∈IPort(Pm f 2)∧(i∧o 6=∅) (11)

∀FsPathm f 1 ,FsPathm f 2⊆FsPathm f
· ∃i∈IPort(Pm f 1)∧o∈OPort(Pm f 2)∧(i∧o 6=∅) (12)

where FS f1· f2 are the set of all functional scenarios defined in the entire formal specification; Tf1· f2
and Vf1· f2 are the sets of all types and state variable declarations, respectively; and I f1· f2 are the set
of all invariants.

The functional scenario is the basic unit in the formal specification for presenting the
desired functions, and the process can be transformed into the conjunction or disjunction
of functional scenarios. The module contains the set of all functional scenarios derived
from the processes of f1 and f2. For each feature pair, feature integration can be conducted
if its functional scenario path matches another feature. Function integration based on
path matching aims to connect fragmented process paths into functional paths that can
express independent operations. If the union of the scenario paths of modules provides
multiple valid paths, a complete CDFD graph can be formed. It is called a matchable path.
The matching of multiple process scenario paths in the feature can be regarded as the input
and output of multiple sets aligned one by one. Therefore, the connection between paths is
judged based on the data flow, and path matching is performed to form a complete scenario
path operation.

Before the integration operation, the validity needs to be checked for each path. For
two adjacent functional scenario paths, a post-condition that cannot be mapped to an-
other pre-condition is an invalid path, that is ∀FsPathm f i ,FsPathm f j⊆FsPathm f

· ∃postPm f i
;prePm f j

.

Note that some checks, such as path checks related to data flow, may be conducted auto-
matically by the tool, but having a manual check may reveal subtle defects that the machine
cannot find. For example, in the ATM case [42], the user’s withdrawal operation changes
from Receive_Command to Withdraw, thus the data will not flow to the query balance. Such
a mistake is hardly recognized by machines, but human beings can find it.

In terms of feature behavior, features will interact through both a database information
exchange and process scenario path exchange. The database exchange means that the data
stream of one operation will be read into the database, and the data stream of another
operation will be written to the same database. This kind of information exchange is usually
retained in the integrated features, and the module remains formally unchanged. In a
simple case, the path matching needs to satisfy whether the connection between different
port variables of the process can be matched. The conditions are as follows:

∃FsPathm f i∈FsPathm f 1 , FsPathm f j∈FsPathm f 2
· FsPathm f i 6= FsPathmfj

∧(iPort(Pm f i) = oPort(Pm f j) ∨ iPort(Pm f j) = oPort(Pm f i))
(13)

Appl. Sci. 2022, 12, 6241 13 of 22

∃FsPathm f i∈FsPathm f 1 ,FsPathm f j∈FsPathm f 2
· FsPathm f i 6= FsPathm f j

∧(iPort(Pm f i) ⊆ oPort(Pm f j) ∨ iPort(Pm f j) ⊆ oPort(Pm f i))
(14)

Condition 1 states that, for the functional scenario paths of different features f1 and f2,
if a set of inputs and outputs are the same, the scenario paths are matchable. Condition
2 states that if the set of input variables of the functional scenario path of feature f1 is a
subset of the output variables of another f2 or vice versa, it is intuitive to assume that they
are related and can be matched.

Considering that there are multiple ways to connect the scenario, the connection of the
complex scenario path can be divided into three cases, as shown in Figure 7. Figure 7a is the
sequential path of scenario connections because the conditional process B will only be fired
after the scenarios of processes A1, A2, ..., An are all satisfied. It can be formally expressed as
(preA1 ∧ postA1(v1)) ∧ (preA2 ∧ postA2(v2)) ∧ · · · ∧ (preAn ∧ postAn(vn)) ⇒ preB where
each postAi(vi)(i = 1, · · · , n) is a sub-logical expression of the postcondition postAi, repre-
senting a component of one of the scenarios of process Ai. For process connections that
select structures in Figure 7b, its connection is judged as (pre ∧ post(v)) ∧ C(v)⇒ preB or
(pre ∧ post(v)) ∧ ¬C(v)⇒ preB, where pre is the precondition of the preceding condition
process; post(v) is the sub-logical expression of its postcondition, which contains variable
v; and preB is the precondition of the condition process B. For the process connection of
the case structure in Figure 7c, its connection is judged as pre ∧ post(v) ∧ Ci(v) ⇒ preBi

,
where i = 1, · · · , n. If the variable v satisfies the condition Ci(v), the precondition that the
scenario related to v is connected to the conditional process Bi needs to be guaranteed by
the conjunction pre ∧ post(v) ∧ Ci(v) so as to connect the scenario path correctly.

Figure 7. Different path connection structures.

After the path matching is completed, there will be some paths that may have data
exchange but are not connected, and some feature fragments that have not been matched.
For partially fragmented paths, our solution is to add templates (templates are empty
processes), allowing users to fill in the syntax compliant input and output according to the
functional scenarios. Here, the matching is only to find fragments that can be integrated and
to detect whether the fragments of the specification can be integrated together. Integration
merges the declarations of feature specifications according to the path, and the process
fuses in turn according to the functional scenario path to form a larger feature specification.
The above methods work well generally, but no guarantee can be given to ensure that a
matchable path for integration will always be found or will always be efficiently found.
If the function integration is unsuccessful, a manual check is required to determine whether
there is a scenario path that satisfies the integration.

3.3.3. Validity Check

A validity check for a functional scenario path aims at checking the consistency
between the integrated functional scenario path of the features and the desired scenario
of independent features. Taking the strategy described in Definitions 8, the inspector

Appl. Sci. 2022, 12, 6241 14 of 22

concentrates on the examination of whether or not every scenario defined in the integrated
feature is implemented correctly by a single or set of paths in the path.

Definition 8. Let Fs = { f s1, f s2, · · · , f sn} be the set of all the functional scenarios defined in
feature f1 and f2, and FSp = {p1, p2, · · · , pn} be the set of all the possible functional scenario
paths of the integrated feature F. Then, F satisfies f1 and f2 if and only if there exists a mapping
M : Fs → power(FSp) that satisfies the following condition:

∀ f s∈Fs∃p∈power(FSp) ·M(f s) = p (15)

where power(FSp) denotes the power set of FSp, and M(f s) = p (p ∈ FSp) means that the set of
the functional scenario paths p connects correctly the functional scenario f s.

The connection of the scenarios of f1 and f2 to the paths can be automatically performed
if all the variables and the logical expressions used in the feature specification are preserved
directly in the integrated feature; otherwise, it can be performed manually with human
support. The discovery of any inconsistency between the functional scenario in f1 and f2
and the corresponding scenario in F will indicate the existence of potential errors, and the
nature of the inconsistency can be determined based on a rigorous path contrast analysis.

4. Supporting Tool and Case Study
4.1. Supporting Tool

We have developed a tool to support the product model derivation from a feature
model and feature specification. The tool is developed using C# in the Visual Studio 2017
environment. The tool currently mainly offers three functions:

• Obtaining the feature integration order;
• Structuring and matching feature scenario paths;
• Integrating the formal specification of features.

The tool facilitates the user to select features, view the integration order, and allows
feature function scenarios to be generated both automatically and manually before inte-
grating feature specifications. Once the functional scenario path is valid, the tool will
use the selected feature pair to generate integrated features by clicking the right button.
The updated integrated feature specification can be obtained if the scenario path matching
is complete.

Figure 8 shows a snapshot of the tool. The structure of the feature model in the current
project is displayed in the upper left corner of our support tool, and its selected feature
formal specification is given in the middle pane. When a feature is selected, its scenario
path is automatically generated and rendered in the lower pane area. When you click the
button in the upper right corner of the lower pane, you can operate on the scenario path
or add a template. The integration process can be conducted automatically, or it can be
conducted step-by-step with the user’s operation.

Appl. Sci. 2022, 12, 6241 15 of 22

Figure 8. A snapshot of the tool.

4.2. Case Study

We have conducted case studies with four product family models and the correspond-
ing formal specifications (including the Online Shopping System (OSS), Beverage Vending
Machine System (BVMS), Hotel Room Reservation (HRR), and Tourism Management Sys-
tem (TMS)). In these case studies, we import the feature model and feature specification of
the selected features and obtain the feature integration order through the support tool. The
tool guides us to integrate the feature pair specification in order, and we judge the scenario
path with the partial assistance of the tool and analyze whether the integration results are
reasonable. If it meets our expectations, we perform the integration of the next feature
pair, repeat the above steps, and obtain the formal specification of the specific product.
Specifically, as shown in Table 3,

• The OSS product family has 14 features, the user selects 9 features, and these features
contain 12 processes, of which the declaration integration used the rules 4, 5, and 6 in
Table 1, and 5 paths are effectively matched. The final product’s formal specification
was as expected.

• The BVMS product family has 11 features, and the user selects 7 features, including
7 processes. Since the function is relatively simple, there is no declaration integration
involved, and there are two valid paths matching obtain. The effect of the formalized
specification of the product is not obvious.

• The HRR product family has 9 features, and the user selects 6 features, of which the
rules 4 and 6 about Composite and Set collections in Table 1 are used in declaration in-
tegration, and 4 paths are effectively matched. The final product’s formal specification
is as expected.

Appl. Sci. 2022, 12, 6241 16 of 22

• The TMS product family has 11 features. The user selects 5 of them, the declaration
integration applies rules 4 and 6, and 4 paths are effectively matched. The final
product’s formal specification is as expected.

Table 3. The implementation details of four product family models’ derivation.

Product
Family

Integration Order
Rules Used in

Declaration
Integration

The Number of
Scenario Path

The Number of
Scenario Paths

Matched

OSS
[Login, Logout, FillOrderForm, SubmitOrderform,
CheckOrderForm, SendInvoice, ReceiveInvoice,
MakePayment, AcceptPayment]

Composite, set,
sequence 17 5

BVMS
[Tea, Coffee, HotWater, Vegetable, Tomato,
BalanceOut, Coinin]

\ 7 2

HRR
[CheckIn, CheckOut,ReserveRoom, ReserveCancel,
Reservation, TelService]

Composite, set 11 4

TMS
[ReserveforFlight, ReserveforBus, Login, Register,
UpdateProfile]

Composite, set , 16 4

1 Rules 4, 5, and 6 for set, sequence, and Composite collections in Table 1. 2 Rules 4 and 6 for set and Composite
collections in Table 1.

We illustrate our approach in detail with a simplified product derivation process of the
TMS product family (Figure 1) and its formal specification. The case study aims to illustrate
how our approach integrates the feature specifications through a sequence of scenario paths
and guides the user to construct a comprehensive description of a specific product.

According to the proposed approach, the feature model of the specific product and the
formal specification of the product family is used as input. Since our method is applicable
to the process from the product family to a specific product, the integration of feature
specifications is usually conducted after the product configuration is completed. The
selected features are shown in Figure 9.

Figure 9. The selected features.

Based on the feature model structure and Integration Ordering algorithm, starting
from the top root node, all nodes will be traversed to find non-leaf nodes. Then merge all
the leaf nodes under the non-leaf nodes until the root node is merged. The resulting order
is [ReserveforFlight, ReserveforBus, Login, Register, UpdateProfile].

We need to integrate the types and variables in the declaration first. Some fea-
ture specification declarations have great similarities. They do not involve the inter-
section of data and information, and the fusion results are not particularly obvious.
Here, we list the declaration integration of two features, Login and ReserveforBus. The type
variable that module Login contains has the basic information of the user (id, pass_no,
status, phone_no, etc.), module ReserveforBus has type variables (id, pass_no, card_name,
etc.). The variable Customer is a composite type in the two modules, including the
common variables user_id and pass_no. The declaration integration needs to satisfy the
composite type integration rules in Table 1, namely comp(CustomerLogin·Reserve f orBus) =
CustomerLogin union CustomerReserve f orBus. Only one is retained after integrating the same
variables in the two modules Reserve f orBus and Login. The variables in the two modules
Reserve f orBus and Login are user-defined variables. There is no information interaction,

Appl. Sci. 2022, 12, 6241 17 of 22

so the two variables are directly retained in the integrated feature. The integration results
are shown in Figure 10.

Figure 10. Declaration integration of feature pair.

The second step of feature pair integration is to fuse the process in the formal specifi-
cation. The main judgment is based on the behavior of the feature pair, that is, whether
the functional scenario path can be matched. We explained the process in detail by the
integration of two features ReserveforBus and ReserveforFlight. Formal specifications for
ReserveforBus and ReserveforFlight. are shown in Figure 11. We only focus on the functional
integration based on scenario paths, so only the key parts are presented. ReserveforBus and
ReserveforFlight have four processes, respectively, and their scenario paths are shown in
Table 2. Intuitively, it can be found that they have similar operation processes, especially
Check_Pass and Con f irm_invoice. They have the same functional scenario at the module
level, and the input and output port variables are the same, then the processes (Check_Pass,
Con f irm_invoice) can be merged.

The tool automatically finds the functional scenario of the feature by parsing the
formal specification of the feature and guides the user to match the two features’ functional
scenario paths according to the ordering. The matched scenario paths are shown in Table 4.

Table 4. The integrated functional scenario paths of Reserve f orBus and Reserve f orFlight.

Feature/Module No. Functional Scenario Path

reserveforBus,reserveforFlight

1 [reserve_for_bus_request,user_id]Check_Bus11[wrong_id]

2 [reserve_for_filght_request,user_id]Check_Filght11[wrong_id]

3 [reserve_for_filght_request,user_id]Check_Filght12[filght_plan]->
[filght_plan,pass_no] Check_Pass23[account_info2]->
[cost, account_info2]Confirm_Filght11[failed_msg]

4
[reserve_for_filght_request,user_id]Check_Filght12[filght_plan]->
[filght_plan,pass_no] Check_Pass23[account_info2]->
[cost, account_info2]Confirm_Filght12[pay_confirmed2]->
[pay_confirmed2] Confirm_invoice11[invoice]

5 [reserve_for_filght_request,user_id]Check_Filght12[filght_plan]->
[filght_plan,pass_no]Check_Pass12[err_msg]

6 [reserve_for_bus_request,user_id]Check_Bus12[bus_plan]->
[bus_plan,pass_no] Check_Pass11[account_info1]->
[cost, account_info1]Confirm_Bus11[failed_msg]

7
[reserve_for_bus_request,user_id]Check_Bus12[bus_plan]->
[bus_plan,pass_no] Check_Pass11[account_info1]->
[cost, account_info1]Confirm_Bus12[pay_confirmed1]->
[pay_confirmed1] Confirm_invoice11[invoice]

8 [reserve_for_bus_request,user_id]Check_Bus12[bus_plan]->
[bus_plan,pass_no]Check_Pass12[err_msg]

Appl. Sci. 2022, 12, 6241 18 of 22

There are eight scenario paths after the integration, and the process Check_Pass and
Con f irm_invoice marked in bold black have changed compared with those before the integra-
tion. Process Check_Pass used to have one input and two outputs, but now it has two inputs
and three outputs. Process Con f irm_invoice used to have one input but now has two inputs.
The corresponding integrated CDFD is shown in Figure 12. The formal specification of the
integrated feature pair is shown in Figure 13. After integration, the user can add templates to
ensure complete functional operation for ReserveforBus and ReserveforFlight. As the final step of
product derivation, the tool repeatedly guides the user through the integration of feature pairs
until the final full product formal specification is obtained.

Figure 11. Formal specification of ReserveforBus and ReserveforFlight.

Figure 12. CDFD diagram of integrating features.

Appl. Sci. 2022, 12, 6241 19 of 22

Figure 13. Formal specification of integrated feature pair.

5. Discussion

Through our experience with several case studies that we have conducted, we have
found several benefits of our approach and, at the same time, found some limitations of
our approach.

5.1. The Advantage of our Method

Our method has effectiveness in product derivation. Supported by the tool, our
method is not limited to product derivation at the feature level. It can fully identify and
understand the internal behavior of each feature, and the obtained product description
is accurate. In addition, the requirements for operators are not high, and it only needs
to understand the basic SOFL syntax. For managers and practitioners, our method can
accurately grasp user needs through feature behaviors and provide a product derivation
guideline; for academics, it can provide a new way of thinking about how to describe
products accurately in terms of product derivation.

The supporting tool can capture all functional scenarios of the feature specification
and provide reasonable integrating results for the user to confirm. In particular, if feature
behaviors are unreasonable, we can effectively guide users to perform feature pair integra-
tion operations by adjusting and deleting scenario paths or adding templates, which shows
the flexibility of our method. Therefore, we can remove unreasonable scenarios and add
template operations to fit the needs of real-world users, effectively guiding the generation
of product models.

5.2. The Limitations of our Method

Applying the tool-supported approach in the case study, we have also found some
limitations. The first is to check the validity of the scenario path matching. Although
paths can exhibit feature behavior, determining whether the integration results meet user
intent still depends, to a certain extent, on human experience and understanding of the
requirements and domain knowledge. The second major limitation is that the variability of
features is not well represented. The main reason is that we take the selected features and

Appl. Sci. 2022, 12, 6241 20 of 22

formal specifications as input in the product configuration phase, assuming that the user
selects the functions required by the final product.

Despite these limitations, through the case study, we believe that the methodology
can help researchers facilitate the product derivation process in practice.

6. Conclusions

In this paper, we propose a product derivation method that can computer-aid the
construction of formal product models from feature models and feature specifications,
filling the method gap of formal models from product families to specific products. For-
mal specifications for building a product are critical for stages such as coding, validating,
and maintaining subsequent products. Our approach builds on product families to generate
specific products by integrating formal specifications for each feature based on feature
models and formal specifications. The method further proposes a behavioral preservation
mechanism based on functional scenarios of feature formal specification, which ensures the
consistency of formal specification before and after integration and ensures the integrity of
the final product model.

Due to the well-defined formal syntax and semantics of the method, we developed a
supporting tool for our method with multiple integrated functions to guide the product
model-building process and reduce the burden of product derivation. Furthermore, we ap-
ply the method through the tool to a case study in which the integrated results improve the
quality of derivative products and illustrate the feasibility and effectiveness of our method.

In the future, we will continue to extend our tool with more capabilities for product
derivation. We will also focus on the application in complex/large applications and the
verification of the consistency in the behavior preserving integration (e.g., checking that
feature interconnections in the derived product are correct) and developing criteria or
algorithms that support integration in the presence of complex path mismatches, and at
the same time improve our support tools to make them more user-friendly.

Author Contributions: Formal analysis, X.W., W.W. and H.L.; writing—original draft, W.W.; writing—
review, X.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the NSFCs of China (No. 61872144 and No. 61902234),
National Social Science Foundation (No. 17AZX003) and Key Projects of Philosophy and Social
Sciences Research, Ministry of Education (No. 18JZD013).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable; the study does not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Losavio, F.; Ordaz, O. Quality-based heuristic for optimal product derivation in Software Product Lines. In Proceedings of the

2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 125–131.
2. Li, Z.; Ding, L. Research on Fuzzy Hierarchy Optimization of Product Family for Mass Customization. In Proceedings of the 2019

International Conference on Economic Management and Model Engineering (ICEMME), Malacca, Malaysia, 6–8 December 2019;
pp. 564–568.

3. Holl, G.; Grünbacher, P.; Elsner, C.; Klambauer, T.; Vierhauser, M. Constraint checking in distributed product configuration of
multi product lines. In Proceedings of the 2013 20th Asia-Pacific Software Engineering Conference (APSEC), Bangkok, Thailand,
2–5 December 2013; Volume 1, pp. 347–354.

4. Michelon, G.K.; Obermann, D.; Assunção, W.K.; Linsbauer, L.; Grünbacher, P.; Fischer, S.; Lopez-Herrejon, R.E.; Egyed, A.
Evolving software system families in space and time with feature revisions. Empir. Softw. Eng. 2022, 27, 112. [CrossRef]

5. Cu, C.; Zheng, Y. Architecture-centric derivation of products in a software product line. In Proceedings of the 2016 IEEE/ACM
8th International Workshop on Modeling in Software Engineering (MiSE), Austin, TX, USA, 16–17 May 2016; pp. 27–33.

6. Angerer, F.; Grimmer, A.; Prähofer, H.; Grünbacher, P. Change impact analysis for maintenance and evolution of variable software
systems. Autom. Softw. Eng. 2019, 26, 417–461. [CrossRef]

http://doi.org/10.1007/s10664-021-10108-z
http://dx.doi.org/10.1007/s10515-019-00253-7

Appl. Sci. 2022, 12, 6241 21 of 22

7. Moreira, R.A.F.; Assunção, W.K.; Martinez, J.; Figueiredo, E. Open-source software product line extraction processes: the
ArgoUML-SPL and Phaser cases. Empir. Softw. Eng. 2022, 27, 85. [CrossRef]

8. Ananieva, S.; Greiner, S.; Kühn, T.; Krüger, J.; Linsbauer, L.; Grüner, S.; Kehrer, T.; Klare, H.; Koziolek, A.; Lönn, H.; et al.
A conceptual model for unifying variability in space and time. In Proceedings of the 24th ACM Conference on Systems and
Software Product Line, Montreal, QC, Canada, 19–23 October 2020; pp. 1–12.

9. Kästner, C.; Giarrusso, P.G.; Rendel, T.; Erdweg, S.; Ostermann, K.; Berger, T. Variability-aware parsing in the presence of lexical
macros and conditional compilation. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, Portland, OR, USA, 22–27 October 2011; pp. 805–824.

10. Eichelberger, H.; Schmid, K. A systematic analysis of textual variability modeling languages. In Proceedings of the 17th
International Software Product Line Conference, Tokyo, Japan, 26–30 August 2013; pp. 12–21.

11. Ghabach, E.; Blay-Fornarino, M.; El Khoury, F.; Baz, B. Clone-and-own software product derivation based on developer
preferences and cost estimation. In Proceedings of the 2018 12th International Conference on Research Challenges in Information
Science (RCIS), Nantes, France, 29–31 May 2018; pp. 1–6.

12. González-Huerta, J.; Insfran, E.; Abrahão, S.; McGregor, J.D. Architecture derivation in product line development through model
transformations. In Proceedings of the Information System Development, Auckland, New Zealand, 14–17 December 2014;
pp. 371–384.

13. Tawhid, R.; Petriu, D.C. Product model derivation by model transformation in software product lines. In Proceedings of the 2011
14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops,
Newport Beach, CA, USA, 28–31 March 2011; pp. 72–79.

14. Wang, X. Combining Product Line Approach and Formal Specification for Product Family Modeling. In Proceedings of the
2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–10 December 2019;
pp. 515–519.

15. Wang, X.; Khedri, R.; Miao, W. A Formal Engineering Approach to Product Family Modeling. In Proceedings of the 2021
International Symposium on Theoretical Aspects of Software Engineering (TASE), Shanghai, China, 25–27 August 2021; pp. 87–94.

16. Liu, S.; Miao, W. A formal specification animation method for operation validation. J. Syst. Softw. 2021, 178, 110948. [CrossRef]
17. Liu, S. A three-step hybrid specification approach to error prevention. J. Syst. Softw. 2021, 178, 110975. [CrossRef]
18. Liu, S.; Nakajima, S. Automatic test case and test oracle generation based on functional scenarios in formal specifications for

conformance testing. IEEE Trans. Softw. Eng. 2020, 48, 691–712. [CrossRef]
19. Wang, R.; Liu, S.; Sato, Y. SIT-SE: A Specification-Based Incremental Testing Method With Symbolic Execution. IEEE Trans. Reliab.

2021, 70, 1053–1070. [CrossRef]
20. Li, J.; Liu, S.; Liu, A.; Huang, R. Multilevel Traceability Links Establishments Between SOFL Formal Specifications and Java

Codes Using Multi-dimensional Similarity Measures. In Proceedings of the 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security (QRS), Hainan, China, 6–10 December 2021; pp. 852–863.

21. Dai, Y.; Liu, S. Applying Cognitive Complexity to Checklist-Based Human-Machine Pair Inspection. In Proceedings of the
2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Hainan, China, 6–10
December 2021; pp. 314–318.

22. de Souza, L.O.; O’Leary, P.; de Almeida, E.S.; de Lemos Meira, S.R. Product derivation in practice. Inf. Softw. Technol. 2015,
58, 319–337. [CrossRef]

23. O’Leary, P.; De Almeida, E.S.; Richardson, I. The pro-pd process model for product derivation within software product lines.
Inf. Softw. Technol. 2012, 54, 1014–1028. [CrossRef]

24. Feichtinger, K.; Hinterreiter, D.; Linsbauer, L.; Prähofer, H.; Grünbacher, P. Guiding feature model evolution by lifting code-level
dependencies. J. Comput. Lang. 2021, 63, 101034. [CrossRef]

25. Tërnava, X.; Collet, P. A framework for managing the imperfect modularity of variability implementations. J. Comput. Lang. 2020,
61, 100998. [CrossRef]

26. Marah, H.; Kardas, G.; Challenger, M. Model-driven round-trip engineering for TinyOS-based WSN applications. J. Comput.
Lang. 2021, 65, 101051. [CrossRef]

27. Sepúlveda, S.; Cravero, A.; Cachero, C. Requirements modeling languages for software product lines: A systematic literature
review. Inf. Softw. Technol. 2016, 69, 16–36. [CrossRef]

28. Hajri, I.; Goknil, A.; Briand, L.C.; Stephany, T. Change impact analysis for evolving configuration decisions in product line use
case models. J. Syst. Softw. 2018, 139, 211–237. [CrossRef]

29. Ziadi, T.; Frias, L.; da Silva, M.A.A.; Ziane, M. Feature identification from the source code of product variants. In Proceedings
of the 2012 16th European Conference on Software Maintenance and Reengineering, Szeged, Hungary, 27–30 March 2012;
pp. 417–422.

30. Marcolino, A.; Oliveira, E.; Gimenes, I. Variability identification and representation in software product line UML sequence
diagrams: Proposal and empirical study. In Proceedings of the 2014 Brazilian Symposium on Software Engineering, Maceió,
Brazil, 28 September–3 October 2014; pp. 141–150.

31. Fronchetti, F.; Ritschel, N.; Holmes, R.; Li, L.; Soto, M.; Jetley, R.; Wiese, I.; Shepherd, D. Language impact on productivity for
industrial end users: A case study from Programmable Logic Controllers. J. Comput. Lang. 2022, 69, 101087. [CrossRef]

http://dx.doi.org/10.1007/s10664-021-10104-3
http://dx.doi.org/10.1016/j.jss.2021.110948
http://dx.doi.org/10.1016/j.jss.2021.110975
http://dx.doi.org/10.1109/TSE.2020.2999884
http://dx.doi.org/10.1109/TR.2021.3078714
http://dx.doi.org/10.1016/j.infsof.2014.07.004
http://dx.doi.org/10.1016/j.infsof.2012.03.008
http://dx.doi.org/10.1016/j.cola.2021.101034
http://dx.doi.org/10.1016/j.cola.2020.100998
http://dx.doi.org/10.1016/j.cola.2021.101051
http://dx.doi.org/10.1016/j.infsof.2015.08.007
http://dx.doi.org/10.1016/j.jss.2018.02.021
http://dx.doi.org/10.1016/j.cola.2021.101087

Appl. Sci. 2022, 12, 6241 22 of 22

32. Vještica, M.; Dimitrieski, V.; Pisarić, M.; Kordić, S.; Ristić, S.; Luković, I. Multi-level production process modeling language.
J. Comput. Lang. 2021, 66, 101053. [CrossRef]

33. Nieke, M.; Hoff, A.; Seidl, C.; Schaefer, I. Augmenting metamodels with seamless support for planning, tracking, and slicing
model evolution timelines. J. Comput. Lang. 2021, 63, 101031. [CrossRef]

34. Nejati, S.; Sabetzadeh, M.; Chechik, M.; Easterbrook, S.; Zave, P. Matching and merging of variant feature specifications. IEEE
Trans. Softw. Eng. 2011, 38, 1355–1375. [CrossRef]

35. Sibay, G.E.; Braberman, V.; Uchitel, S.; Kramer, J. Synthesizing modal transition systems from triggered scenarios. IEEE Trans.
Softw. Eng. 2012, 39, 975–1001. [CrossRef]

36. Harel, D.; Maoz, S.; Szekely, S.; Barkan, D. PlayGo: towards a comprehensive tool for scenario based programming. In Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, 20–24 September 2010;
pp. 359–360.

37. Cordy, M.; Davril, J.M.; Greenyer, J.; Gressi, E.; Heymans, P. All-at-once-synthesis of controllers from scenario-based product line
specifications. In Proceedings of the 19th International Conference on Software Product Line, Nashville, TN, USA, 20–24 July
2015; pp. 26–35.

38. Harel, D.; Maoz, S. Assert and negate revisited: Modal semantics for UML sequence diagrams. Softw. Syst. Model. 2008,
7, 237–252. [CrossRef]

39. Śmiałek, M.; Straszak, T. Facilitating transition from requirements to code with the ReDSeeDS tool. In Proceedings of the 2012
20th IEEE International Requirements Engineering Conference (RE), Chicago, IL, USA, 24–28 September 2012; pp. 321–322.

40. Liu, S. Formal Engineering for Industrial Software Development: Using the SOFL Method; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

41. Apel, S.; Lengauer, C.; Möller, B.; Kästner, C. An algebraic foundation for automatic feature-based program synthesis. Sci. Comput.
Program. 2010, 75, 1022–1047. [CrossRef]

42. Li, M.; Liu, S. Adopting Variable Dependency in Animation for Presenting the Behaviour of Process. In Proceedings of
the International Workshop on Structured Object-Oriented Formal Language and Method, Luxembourg, 5–6 November 2014;
pp. 81–93.

http://dx.doi.org/10.1016/j.cola.2021.101053
http://dx.doi.org/10.1016/j.cola.2021.101031
http://dx.doi.org/10.1109/TSE.2011.112
http://dx.doi.org/10.1109/TSE.2012.62
http://dx.doi.org/10.1007/s10270-007-0054-z
http://dx.doi.org/10.1016/j.scico.2010.02.001

	Introduction
	Related Work
	Product Derivation Based on Feature Model and Specification Approach
	Feature Model
	SOFL
	Product Model Derivation Approach
	Integration Ordering
	Behavior Preserving Integration
	Validity Check

	Supporting Tool and Case Study
	Supporting Tool
	Case Study

	Discussion
	The Advantage of our Method
	The Limitations of our Method

	Conclusions
	References

