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Abstract: Frequency estimation of a sinusoidal signal is a fundamental problem in signal processing
for the Internet of Things. The frequency interpolation estimation algorithm based on the fast Fourier
transform is susceptible to being disturbed by noise, which leads to estimation error. In order to
improve the accuracy of frequency estimation, an improved Rife frequency estimation algorithm
based on phase angle interpolation is proposed in this paper, namely the PAI–Rife algorithm. We
changed the existing frequency deviation factor of the Rife algorithm using phase angle interpolation.
Then, by setting the frequency shift threshold, the frequency that is not within the threshold range is
shifted to the optimal estimation space. The simulation results show that the proposed algorithm has
a wider valid estimation range, and the estimated standard deviation is closer to the Cramer–Rao
lower bound. Compared with the Rife algorithm and some recently proposed advanced algorithms,
the proposed algorithm has less computational complexity, lower misjudgment rate, and more
stable performance.

Keywords: frequency estimation; phase angle interpolation; frequency shift; Cramer–Rao lower bound

1. Introduction

Due to the existence of white Gaussian noise, the sinusoidal signal obtained by the
wireless sensor is polluted, and the valid signal is covered. Therefore, harmonic components
will appear when the microcontroller analyzes the spectrum, which affects the wireless
sensor, to obtain accurate frequency information [1]. How to accurately estimate the
sinusoidal signal frequency with noise is a crucial subject in signal processing, and it is also
the focus of this paper. It is currently applied in communication [2], radar [3], mechanical
fault diagnosis [4], smart cities [5], autonomous driving [6], and especially the Internet of
Things (IoT) [7].

IoT systems rely on different technologies: wireless sensors for data acquisition and
control operations, communication modules for data transmission, real-time databases for
data storage, and applications for data visualization. With the commercialization of 5G,
NB-IoT wireless modules are widely used in IoT communications, enabling wireless sensors
to communicate in a wide area in a self-organizing manner. The NB-IoT wireless module
combined with the trust-based data acquisition security system [8] can create an intelligent
and secure urban IoT system. As the key to the IoT, wireless sensor technology has ensured
that the system can collect the information it needs. The acquisition and processing of
information became the basis for realizing the IoT [9]. In this context, wireless sensors must
be guaranteed to have the correct information.
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With the development of the IoT in full swing, the significance of information technol-
ogy to the modern industry has been upgraded from purely providing monitoring center
functions to building a comprehensive information framework for industrial processes [10].
Hence, in developing the IoT, we have to consider the sensor network capabilities on the
one hand. Li et al. [11] proposed a pilot-assisted fast frequency monitoring algorithm
to enable Narrow Band IoT (NB-IoT) to establish a communication link quickly. Fang
et al. [12] surveyed the trust management scheme for wireless sensor networks. They pro-
posed a secure multi-path routing scheme based on energy efficiency [13], which effectively
ensured the security and integrity of data transmission. On the other hand, we have to
estimate the signal parameters, mainly the frequency, which provides technical support for
the research and the integration of sensor networks and sensors.

Wireless sensors have detected events or physical states through unique algorithms,
converted environmental parameters into electrical signals, and sent the data to a database
to receive and respond to appropriate conditions. Because the actual frequency point is
usually between the two sampling frequency points, spectral leakage and fence effects are
generated, resulting in a biased frequency estimate [14]. Usually, the fast Fourier transform
(FFT) interpolation is used to improve frequency estimation accuracy, and it can also satisfy
the needs of real-time estimation. Rife et al. [15] proposed a classical double-spectrum-line
interpolation algorithm. They used the ratio of the maximum and sub-maximum spectrum
to interpolate, which improved frequency estimation accuracy. However, the interpolation
direction is easily misjudged when the actual frequency is close to the quantized point.
In order to reduce the estimation error caused by spectrum leakage and enable wireless
sensors to obtain accurate signal frequency, we proposed an improved Rife algorithm based
on phase angle interpolation (PAI–Rife). Our contributions are summarized as follows:

1. Redefined the frequency deviation factor: we modified the spectrum–ratio relationship
and defined the frequency deviation factor as the ratio of the maximum spectrum
and the sum of it and the sub-maximum spectrum, which improved the frequency
deviation correction capability.

2. Designed the phase angle interpolation and the criterion: we used the exceptional
stability of the phase angle to convert the amplitude of the spectrum into the phase
angle. In this way, we determined the frequency deviation factor and the interpolation
direction, which enhanced the anti-interference ability of the algorithm.

3. Shifted the frequency: we set the optimal frequency shift decision threshold, and
through frequency shift, the estimation accuracy of different frequency points
is guaranteed.

The rest of this paper is organized as follows: firstly, existing frequency estimation
algorithms are reviewed and analyzed in Section 2. Then, an improved frequency estimation
algorithm is proposed in Section 3. Furthermore, the numerical simulation and analysis are
provided and discussed in Section 4. Finally, the research work of this paper is summarized
in Section 5.

2. Related Works

Frequency estimation of wireless sensor signals can be divided into non-distributed
and distributed methods. For the distributed method, the distribution of the estimated
values of each sensor is used to obtain the final frequency. Khalaf et al. [16] proposed
a frequency estimation method based on the minimum mean square error and P-value
distribution. They defined appropriate cost functions and employed a distributed method
to estimate signal frequency in wireless sensors. Although they improved the accuracy
of sensor frequency estimation, unfortunately, they did not consider the strong noise
environment and frequency estimation timeliness. The non-distributed method for a single
sensor is mainly based on signal processing for estimation, so the anti-noise performance is
better than distributed. It can meet the needs for real-time monitoring of the IoT.

The non-distributed frequency estimation algorithms are classified into time domain
estimation and frequency domain estimation. In the former, the autocorrelation function is
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used to estimate the frequency. Campobello et al. [17] used the autocorrelation ratio of the
adjacent two sets of functions to correct the frequency estimation bias, which improved
the estimation accuracy and frequency range. In the latter, the peak location of the FFT
spectrum is used to estimate signal frequency. Compared with the latter, the former is more
sensitive to the noise environment, and the range of frequency estimation was relatively
limited. It is due to phase wrapping produced by the autocorrelation calculation. Therefore,
we will improve the frequency estimation performance of wireless sensors in the frequency
domain to avoid phase wrapping effects.

The existing frequency estimation algorithms did not consider negative frequency
components, which led to a lower bound on the estimation error. Bai et al. [18] proposed
an accurate frequency estimation algorithm for real sinusoidal signals to solve this problem
and further improve the estimation accuracy. They proposed three new interpolators. These
three new interpolators consist of two initial interpolators and a fine interpolator. The
former was used to estimate the frequency roughly, and the latter was used to correct the
estimation error. Their proposed algorithm removed the lower bound of the frequency
estimation error and improved its accuracy. However, they did not optimize the estimation
accuracy at a low signal-to-noise ratio (SNR).

Serbes et al. [19] proposed a fast and efficient iterative discrete Fourier transform
(DFT) interpolation algorithm called the q-shift estimation (QSE) algorithm. The proposed
algorithm used the ratio of the two spectra in the vicinity of the DFT peak to compensate the
signal for energy and performed multiple iterations of frequency shift. The results showed
that as the number of iterations increases, the variance of frequency estimation gradually
approaches the Cramer–Rao lower bound (CRLB), and the estimation accuracy was better
than that of the Aboutanios and Mulgrew (A&M) algorithm. Because multiple iterative
operations increased the algorithm’s computational complexity, they further optimized and
proposed a hybrid half-shift and q-shift estimation (HAQSE) algorithm [20]. They combined
the QSE and A&M algorithms to control the number of iterative operations within two,
thus reducing the algorithm’s complexity. However, the estimation performance of the
algorithm degraded when the signal was longer.

Djukanović et al. [21] proposed a frequency estimation algorithm based on the maxi-
mization three-point periodogram (T-PP). They used the Canda algorithm to obtain the
deviation of the frequency initially and arbitrarily selected a frequency division factor
within 0 ∼ 1/N. The position near the quantized frequency point was divided into three
parts by the frequency division factor, and the corresponding frequencies were calculated,
respectively. They obtained the final frequency by fitting the three frequency values. How-
ever, they did not derive selection criteria for the frequency division factor that affected the
fitting outcome.

The above algorithms all improved the frequency estimation accuracy to varying
degrees. However, in terms of algorithm complexity, there was much less computation of
the Rife algorithm than other algorithms, and it was easy to implement. Unfortunately,
the Rife algorithm had specific requirements for the frequency range. Therefore, many
researchers have improved and optimized the Rife algorithm.

To further improve the ability of the Rife algorithm to solve spectral leakage,
Li et al. [22] introduced the Hanning self-convolution window and proposed an enhanced
Rife algorithm. They divided the proposed algorithm into two parts. In the first part,
a Hanning window was added to the signal to reduce the picket fence effect. In the second
part, the position of the quantized frequency point was determined. They selected the
Rife algorithm to estimate the frequency directly when it was located in the central area of
the maximum and sub-maximum spectral lines. On the contrary, the frequency shift Rife
algorithm was used to shift the signal to the center area, and then frequency estimation was
performed. They reduced the effects of spectral leakage but did not improve the signal’s
immunity to interference.

The frequency interpolation method based on DFT was easily affected by noise, which
led to an increase in error. Chen et al. [23] analyzed this problem and proposed a high-
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precision frequency estimation method based on third-order frequency deviation. They
divided the frequency estimation into three stages. The Rife algorithm was used to roughly
estimate the frequency and calculate the frequency deviation in the first stage. In the second
stage, they judged whether the frequency deviation was within the optimal estimation
range of the Rife algorithm and transferred the coarse estimated frequency deviation to
the effective estimation range of the Rife algorithm. In the third stage, the frequency-
shifted signal was re-interpolated and estimated. They improved the frequency estimation
accuracy under a low SNR. Nonetheless, there was a lack of optimization of the algorithm
performance within the optimal interval.

Yao et al. [24] used the three spectral lines adjacent to the maximum spectral line to
estimate the frequency directly. They were inspired by the Quinn and Rife methods and
proposed a novel combined Quinn–Rife estimator (CQRE). They combined the decision
condition of the Quinn algorithm and the frequency deviation factor of the Rife algorithm
and made a double judgment on the frequency deviation factor of the CQRE algorithm.
In addition, they exploited the relationship between spectrum and phase to improve the
stability of the CQRE algorithm. However, since both the Quinn and Rife algorithms had
the same shortcomings, the improvement effect of the estimation accuracy was limited
when the estimated frequency was closed to the quantization frequency point.

Many frequency estimation algorithms increased computational complexity while
improving performance. To balance the complexity and performance of signal frequency
estimation, Dou et al. [25] proposed an automatic segmentation-improved Quinn–Rife
algorithm (ASIQ–Rife). They divided the quantized frequency points into three segments
and judged them separately. If 0 ≤ δ ≤ 0.15, the improved Quinn algorithm was used for
frequency estimation. If 0.3 ≤ δ ≤ 0.5, the frequency estimation method was the same as
the Rife algorithm. If 0.15 < δ < 0.3, the improved Quinn algorithm was used to determine
the interpolation direction, and the Rife algorithm was used to calculate the frequency
deviation. They adaptively selected the optimal estimation method in different frequency
ranges, which improved the algorithm’s stability. However, they did not consider the
complexity of the algorithm.

Whether the frequency estimation performance of the Rife algorithm was stable
depended on the judgment of the interpolation direction. Nian et al. [26] proposed
an anticipated Rife (An–Rife) interpolation algorithm to improve the correction judgment
rate of the interpolation direction. They improved Rife’s original single-discrimination
method using frequency-shifting technology and recalculated the frequency-shifted spec-
trum. Then, they estimated the final frequency by judging the correctness of the interpo-
lation direction. They increased the estimation stability of the algorithm in an arbitrary
frequency range but used the frequency shifting technique many times, which significantly
increased the complexity of the algorithm.

For the problem that ordinary frequency domain estimation was unsuitable for es-
timating two adjacent frequency components, Li et al. [27] changed the spectral main
lobe estimation to side lobe estimation and proposed a frequency estimation based on
the first sidelobe method. They found that the inter-spectral interference of the side lobes
is smaller than that of the main lobe, from which the main lobe peak could be inferred.
Unfortunately, due to the influence of the fence effect, the accurate side lobe peak could
not be obtained by directly performing the FFT of the signal. Therefore, before the FFT,
they zero-padded the sequence, increased the monitoring time, and accurately estimated
the frequency. The improved frequency estimation algorithm proposed by Xiang et al.
also padded the samples with zeros [28]. Unlike the Rife algorithm, the ratio of the real
part of the maximum spectrum to the real part of the sub-maximum spectrum was used
for interpolation estimation. The above two algorithms improved the search accuracy of
frequency quantization points to varying degrees. Still, the amount of calculation was
increased due to the artificial growth of the sample length.

The above several improved algorithms for Rife all optimized the performance of
frequency estimation in different ways. However, some algorithms sacrificed the amount of
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computation, and some only balanced the estimation accuracy of the Rife algorithm at each
frequency point. The difference is that our proposed algorithm changed the interpolation
method and used the phase angle to estimate the frequency deviation, which improved the
algorithm’s accuracy and made the frequency estimation error closer to CRLB.

3. PAI–Rife Algorithm
3.1. Redefined the Frequency Deviation Factor

It is known that when the estimated frequency is in the center region of the two
quantization frequency points, the estimation accuracy of the Rife algorithm is higher.
Nevertheless, the estimation accuracy is lower when close to the quantized frequency
point. To overcome the shortcomings of the Rife algorithm and reduce the effect of spectral
leakage, we added a Rife–Vincent (I) window [29] to the raw sinusoidal signal and redefined
the frequency deviation factor.

The Rife–Vincent (I) window function is defined as

h(t) = hτ(t)
4M(M!)2

(2M)!
sin2M

(
πt
T

)
, (1)

where, 0 ≤ M � N/2 is the order of the window function, T = N/ fs is the sampling
period, hτ(t) is the rectangular window.

Due to the symmetry of the DFT of the real sequence, only the positive frequency part
of the spectrum is considered here. The spectrum of the windowed signal is expressed as

F(k) = (−1)M(M!)2 AN
2

sin[2π(k− k0)]

π
M
∏

n=−M
(k− k0 + n)

, (2)

where, A is the amplitude of the sinusoidal signal, N is the sampling number of DFT.
Assuming that the maximum spectral value is F(k1), the corresponding quantization

frequency point index is k1; the sub-maximum spectral value is F(k2), and the correspond-
ing quantization frequency point index is k2; the quantization index corresponding to the
actual frequency of the signal is k0. The actual frequency of the signal is always between k1
and k2, and the interval between these two indices is r = ±1. It is known that the sampling
frequency and the actual frequency do not satisfy the relationship of integer multiples in
practice, so there is a deviation δ0 between k1 and k0, i.e., the frequency deviation factor.
It satisfied the relationship 0 ≤ δ0 ≤ 1/2. According to the relationship between the
frequency spectra, the frequency deviation factor is obtained using the ratio of F(k1) to
F(k2). These two spectral values are obtained using Formula (2).

F(k1) = (−1)M(M!)2 AN
2

sin(πδ0)

π
M
∏

n=−M
(δ0 + n)

, (3)

and

F(k2) = (−1)M(M!)2 AN
2

sin[π(δ0 − r)]

π
M
∏

n=−M
(δ0 + n− r)

. (4)

Rife et al. gave the relevant parameters of the Rife–Vincent (I) window [15]. When
M = 0, there is no tailing phenomenon in this window function, and the influence on the
signal is minimal. Therefore, our redefined frequency deviation factor can be expressed as

δ0 = r
F(k1)

F(k1) + F(k2)
. (5)

3.2. Designed Phase Angle Interpolation and Criterion

The variation interval of the phase angle is limited to 0 ∼ π, which is more stable
than the amplitude [24]. Therefore, the algorithm proposed in this paper used phase angle
interpolation to estimate the frequency.
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Since the window function only reduced the spectrum leakage, it will not affect the
amplitude and phase angle changes. For the convenience of understanding, the spectrum
of the raw sinusoidal signal is used for analysis in the following.

The spectrum of a general sinusoidal signal can be expressed as

X(k) ≈ A sin[π(k− k0)]

2 sin[π(k− k0)/N]
ej[θ0−(k−k0)π] = A(k) cos[ϕ(k)] + jA(k) sin[ϕ(k)]. (6)

The magnitude of the phase angle corresponding to the spectrum is determined by
A(k) and ϕ(k). When k1 is the quantization frequency point index corresponding to the
maximum spectrum, A(k1) and A(k1 + 1) are positive values, and A(k1 − 1) is a nega-
tive value.

Assuming 0 < θ0 − (k1 − k0)π < π/2, we can conclude that ϕ(k1) is in the first
quadrant, and both ϕ(k1 − 1) and ϕ(k1 + 1) are in the third quadrant. Based on formula (6),
we generated the following results: 

X(k1) > 0
X(k1 + 1) < 0
X(k1 − 1) > 0

. (7)

The above analysis shows that the phase angles corresponding to k1 and k1 − 1 are
in the first quadrant, and the phase angle corresponding to k1 + 1 is in the third quadrant.
Since the phase angle at k1 + 1 varies considerably, the interpolation correction will be
performed between k1 and k1 + 1. The direction of frequency deviation correction is likewise
judged according to the degree of phase angle change. Similarly, the above analysis can be
obtained by the same conclusion when ϕ(k1) is in other quadrants.

Combining Formulas (2) and (5), we obtained the frequency deviation factor based on
the phase angle:

δ1 = r1
|angle[F(k1)]|

|angle[F(k1)]|+ |angle[F(k1 + r1)]|
, (8)

where, angle(·) is the phase angle function, r1 is the correction direction. The judgment
conditions for the correction direction are as follows:

r1 =

{
1, |angle[F(k1 + 1)]| ≥ |angle[F(k1 − 1)]|
−1, |angle[F(k1 + 1)]| ≤ |angle[F(k1 − 1)]| . (9)

If r1 = 1, the actual frequency point is located to the right of the position k1 corre-
sponding to the maximum spectrum; if r1 = −1, the actual frequency point is located to
the left of the position k1.

In order to analyze the correction ability of the phase angle interpolation method
proposed in this paper to the frequency estimation value, we calculated the corrected
frequency using the formula (10). Then, the estimated standard deviation of the phase
angle interpolation method is compared with the spectral interpolation method of the
Rife algorithm

f̂0 =
(k1 + r1δ1) fs

N
, (10)

where, fs is the sampling frequency.
The comparison results of two different interpolation methods are shown in Figure 1.

Compared with the spectral interpolation method, the phase angle interpolation has better
anti-interference performance, which reduces the estimation error of the Rife algorithm
when the estimated frequency point is close to the quantized frequency. However, since
the phase angles at k1 ± 1 are approximately equal, when the estimated frequency point is
located in the center area of the two quantized frequency points, the correction direction in
this area is easily misjudged, and the frequency estimation error is increased. We analyzed
that there is an optimal correction interval for the frequency deviation factor in the phase
angle interpolation mode, which is expressed as 0.1 ≤ δ1 ≤ 0.4. When 0 ≤ δ1 < 0.1,
due to the influence of noise, the optimal estimation performance is not achieved. When
0.4 < δ1 ≤ 0.5, the correction direction is prone to misjudgment, the error is increased.
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Figure 1. Correction performance of the phase angle interpolation method (SNR is −6 dB).

We also introduced CRLB (Cramer–Rao lower bound) in the comparison process.
It defined the lower bound on the standard deviation of the frequency estimate for the
optimal method:

StdCRLB =
1

2π

√
12 f 2

s Ss

SnN(N2 − 1)
, (11)

where, Ss is the signal power, Sn is the noise power.
Based on the above analysis, further optimization directions are proposed in this paper,

which will be described in detail in the following subsection.

3.3. Shifted the Frequency

We have obtained the optimal correction interval under the phase angle interpolation
method. Therefore, the frequency estimation method will be optimized using the frequency
shift technique.

Foremost, the estimation threshold of the frequency deviation factor is set, i.e., the
upper threshold Vdown = 0.4, and the lower threshold Vup = 0.1. Then, the threshold
judgment is performed on the frequency deviation factor obtained by formula (8). If the
frequency deviation factor is within the decision threshold, the signal frequency can be
estimated directly using Formula (10). Otherwise, the signal needs to be shifted to the left
or right by δk quantized frequency units according to the correction direction r1, and the
signal is moved to the optimal estimation interval.

The frequency shift factor is expressed as

δk = 0.3− δ1. (12)

After the frequency shift of the signal, DFT is performed again to calculate the spectrum:

F′(k) = (−1)M(M!)2 AN
2

sin[2π(k− k0 + r1δk)]

π
M
∏

n=−M
(k− k0 + n + r1δk)

. (13)

Secondly, the phase angles of the F′(k1) and F′(k1 ± 1) are calculated using the phase
angle function angle(·), and the phase angles of F′(k1 + 1) and F′(k1 − 1) are compared
again to determine the correction direction r2 after the frequency shift. Eventually, the
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Formula (8) is used to determine the frequency deviation factor δ2 after the frequency shift.
The calculation method of the signal frequency is expressed as

f̂0 =
(k0 + r2δ2 − r1δk) fs

N
. (14)

3.4. PAI–Rife Algorithm

Based on the contents of three subsections, A, B, and C, an improved algorithm is
sorted out, namely the PAI–Rife algorithm. The proposed algorithm is divided into signal
windowing, phase angle interpolation, and frequency shift optimization. The spectrum
leakage, judgment of correction direction, and interpolation method are optimized, respec-
tively. The calculation process of the PAI–Rife algorithm is given in Algorithm 1.

Algorithm 1: The proposed PAI–Rife Algorithm
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1. The Rife–Vincent (I) window is added to the signal, and an N-point DFT calculation is
performed to obtain the signal spectrum.

2. Using the phase angle function to calculate the phase angle P1 corresponding to the
maximum spectrum and the phase angles P2 and P3 corresponding to the adjacent
two spectrums.

3. By comparing the sizes of P2 and P3, the correction direction r1 and the frequency
deviation factor δ1 are preliminarily determined. Assuming P2 = angle[F′(k1 − 1)], if
P2 > P3, interpolation will be performed on the left of the maximum spectrum, at this
time r1 = −1. If P2 < P3, then the actual frequency point is considered to be on the
right of the maximum spectrum, at this time r1 = 1.

4. A threshold decision is made on the frequency deviation factor δ1. If 0.15 ≤ δ1 ≤ 0.35,
the formula (10) is used to calculate the frequency. Otherwise, go to step 5.

5. The signal frequency is shifted by δk quantized frequency units, and steps 2 and 3 are
repeated to determine the correction direction r2 and the frequency deviation factor
δ2. The final frequency is calculated using Formula (14).

4. Simulation Analysis
4.1. Experimental Methods

The MATLAB simulation platform is used to simulate and analyze the PAI–Rife
algorithm. Computational complexity, mean, standard deviation, and misjudgment rate of
correction direction are used as evaluation indicators to compare with Rife [15], CQRE [25],
ASIQ–Rife [26], An–Rife [27] algorithms. Meanwhile, the mean and standard deviation
of PAI–Rife are compared with other frequency domain estimation algorithms, such as
HAQSE [21] and T-PP [22]. In the simulation process, additive white Gaussian noise with
a mean of zero is added to the signal, and the CRLB is introduced as an index for estimation
accuracy. The specific simulation parameters are shown in Table 1.

Table 1. Simulation parameters.

Parameters Value

Monte Carlo times 10,000
Sampling points (N) 1024
Quantization frequency ( f0) 19 Hz
Sampling frequency ( fs) 1024 Hz
Frequency resolution (4 f ) 1 Hz
SNR −10 dB:2 dB:10 dB

4.2. Computation Complexity

It is known that the number of complex multiplications required by the Rife algorithm
to perform an N-point FFT operation is

CM =
N
2

log(N), (15)

and the number of complex additions is

CA = N log(N), (16)

where, log(·) is the base 2 logarithmic operation.
During the simulation, 2N complex multiplications and 2(N − 1) complex additions

are required to compute the maximal and submaximal spectra. The signal frequency shift
also required N complex multiplications. In the PAI–Rife algorithm, the probability that
the signal is frequency shifted is 40%. Therefore, the algorithm increased the computational
quantity compared to the Rife algorithm by 0.4(N + 2N) = 1.2N complex multiplica-
tions and 0.4(2(N − 1)) = 0.8(N − 1) complex additions. The computation complexity of
different Rife algorithms is shown in Table 2.
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Table 2. Complexity of different Rife algorithms (N = 1024 ).

Algorithm Complex Multiplications Complex Additions Computation Points Increased Complexity

Rife CM CA 15,360.0 0%
ASIQ–Rife CM + 8N CA + 5.3(N − 1) 28,973.9 88.6%
An–Rife CM + 5N CA + 3.3(N − 1) 24,265.1 55.3%
CQRE CM + 2N CA + 2(N − 1) 19,454.0 26.7%
PAI–Rife CM + 1.2N CA + 0.8(N − 1) 17,407.2 13.3%

The computational complexity of several Rife algorithms is listed in Table 2. Although
the ASIQ–Rife algorithm does not need its frequency shifted, the Rife and Quinn algorithms
are used many times during its computation, resulting in a significantly increased computa-
tional complexity. The An–Rife algorithm required two frequency shifts, and the probability
of being frequency shifted for the second time is 66%, resulting in a 55.3% increased amount
of computation. The CQRE algorithm only needs to perform a spectral peak search again,
so the increased amount of calculation is slight. In the estimation process of the PAI–Rife
algorithm, the spectrum is recalculated only after the frequency shift, and the probability
of the frequency shift is only 40%, so the calculation amount is much smaller than the other
three improved algorithms. Compared with the CQRE algorithm, the calculation amount
is reduced by 13.4% while improving the performance.

In addition, we counted the single simulation time of the PAI–Rife algorithm. From the
time the signal is received to the end of the estimated frequency, the total is 0.574 ms. It is
enough to show that the PAI–Rife algorithm can estimate the signal frequency in real-time
and meet the needs of the IoT for real-time monitoring of structural status, positioning,
and tracking.

4.3. Estimated Performance at Different Frequencies

In this subsection, the estimation performance of the PAI–Rife algorithm at different
frequencies is tested. The quantization frequency f0 = 19 Hz is set, 0.05∆ f is the quantiza-
tion interval, and 11 quantization frequency points fi are taken between ( f0 ∼ f0 + ∆ f /2).
The SNR is −6 dB.

The comparison results of PAI–Rife and several other Rife algorithms are shown in
Figures 2 and 3. The estimation error of the Rife algorithm is substantial near the quanti-
zation frequency. The ASIQ–Rife, An–Rife, and CQRE algorithms have been improved to
reduce the estimation error near to the quantization frequency. However, they have not
changed the spectral interpolation method of the Rife algorithm. Therefore, the estimation
accuracy in the optimal interval is the same. The PAI–Rife algorithm proposed in this paper
changed the interpolation method and designed the judgment basis for the correction direc-
tion, making the estimation of the frequency deviation factor more accurate. At the same
time, a more reasonable and accurate decision threshold is set, and the signal frequency
is shifted to the optimal estimation interval, which makes the performance of frequency
estimation more stable.

According to the statistics of standard deviation results, the mean value of the standard
deviation of the Rife algorithm on 11 frequency points is about 0.029. The mean value
of the standard deviation of the better-performing An–Rife algorithm among the three
existing improved algorithms is about 0.013. The mean value of the standard deviation
of the proposed PAI–Rife algorithm is about 0.008. Therefore, the frequency estimation
accuracy of the PAI–Rife algorithm has been dramatically improved, which is 38.5% higher
than that of the An–Rife algorithm. The signal frequency can be calculated with better
estimation accuracy than the other four algorithms at different frequency points.
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After comparing several Rife algorithms, we also conducted a comparative analysis
under the same conditions with other frequency domain estimation algorithms, such
as T-PP and HAQSE. The comparison results are shown in Figures 4 and 5. Since the
estimation error of the PAI–Rife algorithm and these two algorithms at different frequencies
is small, the mean is relatively close. We conclude from the partially enlarged image of
Figure 4 that the mean value calculated by PAI–Rife is closer to the actual frequency. With
the change of the quantization frequency points, the standard deviation of the PAI–Rife
algorithm is the smallest, and the estimation performance is the most stable. At the same
time, since the phase angle interpolation is used, its frequency deviation correction ability
is improved, and the estimation accuracy of different frequencies is better than the other
two algorithms.
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4.4. Estimated Performance at Different SNRs

The previous subsection analyzed the estimation performance of several algorithms for
different frequencies. This subsection will investigate the interference of noise on frequency
estimation. The quantization frequency point fi = 19.2 Hz is set. The comparison results
with other Rife algorithms are shown in Figures 6 and 7.

We can conclude that since the ASIQ–Rife, An–Rife, and CQRE algorithms are im-
proved in different ways, the estimation accuracy at low SNR is improved. Our proposed
PAI–Rife algorithm changes the traditional spectral interpolation method to the phase angle
interpolation method. It used the stability of the phase angle to reduce the influence of
noise on the signal. Therefore, the PAI–Rife algorithm’s mean of frequency estimation is
the most stable in the environment with different SNRs.
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It is calculated that the mean value of the standard deviation of the Rife algorithm
is about 0.063. The CQRE algorithm performed the best among the three modified Rife
algorithms, with a mean value of the standard deviation of about 0.02. The mean value
of the standard deviation of the PAI–Rife algorithm is about 0.012. Compared with the
CQRE algorithm, the anti-noise performance of the PAI–Rife algorithm is improved by 40%.
The anti-noise performance is better than Rife, ASIQ–Rife, An–Rife, and CQRE algorithms.
Especially in a low SNR environment, the improvement is more significant. The standard
deviation is relatively closer to the CRLB.

The comparison results between the PAI–Rife and other frequency-domain estimation
algorithms under different SNRs are obtained from Figures 8 and 9. Due to the increased
number of iterative computations, the length of the signal estimated by the HAQSE algo-
rithm is limited. As the signal length increased, the estimation accuracy of the HAQSE
algorithm gradually decreased. Therefore, in the low SNR environment, the estimation
performance of the HAQSE algorithm is the worst. The PAI–Rife algorithm estimated
a more precise frequency deviation factor through the proportional relationship between
the phase angles. The estimated frequency value is closer to the actual frequency, which is
not affected by the length of the signal.
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4.5. Correction Direction Misjudgment Rate

There are two reasons for the error in frequency estimation: one is that the estimate of
the frequency deviation factor is not accurate enough, and the other is that the correction
direction is misjudged. In this subsection, the influence of the frequency deviation factor on
the frequency estimation is analyzed, and the judgment results of the correction direction
will be compared. Because the two frequency domain estimation algorithms of HAQSE and
T-PP do not judge the correction direction, we only compared the misjudgment situation of
PAI–Rife with Rife, ASIQ–Rife, An–Rife, and CQRE algorithms under different SNRs.

From the previous analysis of the frequency estimation algorithm, it can be seen that
when the frequency point is close to the quantized frequency, the correction direction
misjudgment rate of the Rife algorithm is relatively large, increasing the frequency error
after frequency deviation correction. For the ASIQ–Rife algorithm, it judged the correction
direction again after the signal frequency shift and reduced the misjudgment rate. Due to
the improvement of the correction direction judgment method of the Quinn algorithm, the
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correction ability of the An–Rife algorithm has been optimized. The misjudgment rate of
the CQRE and PAI–Rife algorithms are almost the same, and both have been significantly
reduced. The reason is that the two methods of judging and correcting the direction are
combined, which makes up for the shortcomings of the CQRE algorithm. For the PAI–Rife
algorithm, we shifted the signal frequency to the best estimate range and used a phase
angle less susceptible to noise to determine the direction of correction. Therefore, in the
low signal-to-noise ratio environment, the accuracy of the correction direction judgment of
the CQRE and PAI–Rife algorithms has been improved. After the analysis, it is concluded
that under the condition of strong noise, the misjudgment rate of the correction direction
of the PAI–Rife algorithm is very close to zero, which is much lower than that of the Rife,
ASIQ–Rife, and An–Rife algorithms (Figure 10).
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4.6. Analysis of Actual Measurement Data

We used an FMCW (Frequency Modulation Continuous Wave) radar sensor to obtain
actual data of five different distances and further verified the estimation accuracy of the
PAI–Rife algorithm. In addition, we estimated the frequency of the echo signal using the
PAI–Rife algorithm. The estimated value of the distance is obtained by

R =
cT fe

2B
, (17)

where, T = N/ fs is the sampling period, c = 299, 792, 458 m/s is the speed of electromag-
netic waves, B is the signal bandwidth.

The measurement environment is a closed room. The radar is placed horizontally
with the launch panel facing the roof. The distance data between the radar and the roof
is obtained, and the data are sent to the terminal through serial communication. Before
the measurement, the sampling frequency of the FMCW radar is set to fs = 92.7835 KHz,
the signal bandwidth B = 999.47 MHz, and the sampling number N = 1024. The actual
distances measured by the radar are 2097 mm, 2378 mm, 2420 mm, 2561 mm, and 2653 mm.
Above all, the frequency estimation algorithm is used to estimate the beat frequency of
the radar, and then the distance value is calculated. The results obtained by different Rife
algorithms are shown in Table 3. From the bias in the table, it can be concluded that for these
five different distance data, the Rife algorithm has the worst estimation ability. Compared
with the other four algorithms, the results obtained using the PAI–Rife algorithm are closer
to the actual distance. In terms of distance estimation accuracy, the error rate of PAI–Rife is
only 0.2%.
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Table 3. Comparison of distance values obtained by different algorithms.

Algorithm
2097 mm 2378 mm 2420 mm 2561 mm 2653 mm

Results Bias Results Bias Results Bias Results Bias Results Bias

Rife 2095.8 1.2 2320.3 57.7 2476.1 56.1 2587.5 38.9 2610.3 42.7
ASIQ–Rife 2095.8 1.2 2321.0 57.0 2475.8 55.8 2587.5 26.5 2614.4 38.6
An–Rife 2095.6 1.4 2321.0 57.0 2472.9 52.9 2591.8 30.8 2614.1 38.9
CQRE 2095.6 1.4 2323.4 54.6 2453.8 33.8 2581.6 20.6 2630.7 22.3
PAI–Rife 2097.1 0.1 2364.1 13.9 2413.8 6.2 2565.9 4.9 2652.5 0.5

5. Conclusions

The signal input of IoT wireless sensors is often affected by noise, resulting in data
loss from the original signal and the inability to access and correctly estimate the signal
frequency. Spectral leakage and fence effects are issues that must be addressed when
estimating frequency using a single-sensor approach based on signal processing. Among
such algorithms, the Rife algorithm is widely used in microcontrollers of wireless sensors
because of its simplicity and ease of implementation. Nevertheless, it is susceptible to noise
and has limitations on the frequency range. To address this problem, we proposed the
PAI–Rife algorithm. The main innovation of this algorithm is that it overturned the original
frequency deviation factor and redefined it. Then, the traditional spectral interpolation
method of the frequency estimation algorithm is improved with the help of the stable
characteristic of the phase angle, the anti-noise performance of the algorithm is enhanced,
and the frequency estimation accuracy is improved. The PAI–Rife algorithm met the needs
of real-time monitoring of the IoT with low complexity and ensured the validity of the
frequency information of wireless sensors.

Based on the Rife algorithm, the computational complexity of the PAI–Rife algorithm
is only increased by 13.3%, which is much lower than the other three improved Rife
algorithms. Moreover, while maintaining low computational complexity, the anti-noise
performance is enhanced by 80.3%, and the frequency estimation accuracy is improved
by 72.4%. The PAI–Rife algorithm proposed in this paper balanced the computational
complexity and estimation accuracy. Its estimation performance is better than Rife, ASIQ–
Rife, An–Rife, CQRE, HAQSE, and T-PP algorithms. Unfortunately, we did not test the
proposed algorithm in the sensor communication link due to time constraints. In further
work, we will realize the application in the communication link and complete the technical
advancement from acquisition to transmission. At the same time, continuing to optimize
the frequency estimation performance of the algorithm in a lower SNR environment to
meet the practical application of the IoT in a more severe environment.
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