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Abstract: Computer-aided diagnosis (CAD) systems can help radiologists in numerous medical
tasks including classification and staging of the various diseases. The 3D tomosynthesis imaging
technique adds value to the CAD systems in diagnosis and classification of the breast lesions. Several
convolutional neural network (CNN) architectures have been proposed to classify the lesion shapes
to the respective classes using a similar imaging method. However, not only is the black box nature of
these CNN models questionable in the healthcare domain, but so is the morphological-based cancer
classification, concerning the clinicians. As a result, this study proposes both a mathematically and
visually explainable deep-learning-driven multiclass shape-based classification framework for the
tomosynthesis breast lesion images. In this study, authors exploit eight pretrained CNN architectures
for the classification task on the previously extracted regions of interests images containing the
lesions. Additionally, the study also unleashes the black box nature of the deep learning models
using two well-known perceptive explainable artificial intelligence (XAI) algorithms including Grad-
CAM and LIME. Moreover, two mathematical-structure-based interpretability techniques, i.e., t-SNE
and UMAP, are employed to investigate the pretrained models’ behavior towards multiclass feature
clustering. The experimental results of the classification task validate the applicability of the proposed
framework by yielding the mean area under the curve of 98.2%. The explanability study validates
the applicability of all employed methods, mainly emphasizing the pros and cons of both Grad-CAM
and LIME methods that can provide useful insights towards explainable CAD systems.

Keywords: breast cancer; deep learning; explainable AI; Grad-CAM; LIME; t-SNE; UMAP; tomosynthesis;
mammography; DBT; CNN; shape classification

1. Introduction

Breast cancer, which is the second most widespread cancer among women worldwide,
has turned into global public health issue due to its complex intrinsic aetiology [1]. The early
diagnosis and monitoring of the cancer significantly reduces the death risks, leads to better
prognosis and therapy, and lowers the treatment cost.

Mammography wears the crown of being the gold standard among several imaging
modalities because it offers the potential of early detection of pathology [2]. However,
mammography is a 2D method that reduces the ability to visualize lesions in case of
prevalent glandular component in dense breast. Moreover, the mammography represents
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a 2D projection of a 3D structure for which, geometrically, tissues belonging to different
planes are superimposed in the radiographic image.

Other imaging techniques including magnetic resonance (MR), computed tomography
(CT), and digital breast tomosynthesis (DBT) are strong candidates where in-depth analysis
of hazardous cases is required. Among these, the DBT is proven to have higher accuracy
with respect to the 2D imaging methods [3]. After acquisition of the multiple thin and
high-resolution images, the DBT system produces a quasi-three-dimensional format of the
reconstructed breast images aiming to reduce the effect of tissue superimposition.

Moreover, the required radiation dose is not high, contrary to the conventional imaging
techniques, and the generated images appear to have greater resolution and contrast [4].
The DBT represents a more accurate diagnostic indicator than 2D imaging for evaluating
the morphological features, e.g., shape and margin of the different immunophenotypes
of the breast cancer, thus being able to play a crucial role in the molecular imaging and
prognosis [5–9].

Over the last decade, deep learning (DL) has emerged as a promising computational
approach for the automatic detection, classification, and segmentation of cancerous masses
thorough the analysis of diagnostic medical images, thus enabling the computer-aided
diagnosis (CAD) and clinical decision support systems [10–13]. The DL methods along
with the traditional image processing techniques have already been established as an ef-
fective approach to automatically analyze diagnostic images for breast cancer diagnosis
and monitoring [3,14,15]. Numerous studies dealt with automatic detection, segmentation,
and classification of the breast lesions that achieved considerably moderate to high perfor-
mances [16–25]. However, the automatic classification of the breast lesions according to
shape, size, and physical appearance remains a challenging task due to the varying shape
that refers to different type and stage of the cancer [26] (see Figure 1). The breast cancer is
morphologically categorized into several varying shapes based on cancer growth pattern,
named as round, oval, lobulated, irregular, and architectural distortion [27,28].
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Figure 1. The morphological division of the breast cancer shapes according to the growth pattern [27].

Numerous existing studies deal with the shape-based breast cancer classification [26,29,30];
however, most of these consider the mammogram instead of the DBT that offers several
advantages as discussed above. A deep discussion of the state of the art is presented in
Section 2. In spite of the enormous success, the complex nature of the DL techniques hides
any possible information of the underlying decision mechanism [31,32], which questions
its usage in the healthcare domain where explainability holds paramount significance to
build a trust on decisions made by surging artificial intelligence (AI). Explainable artificial
intelligence (XAI) brings forward the possibility of explaining the results of DL models and
reveals how the models produce these results. Generally, XAI is supposed to fit a model
onto four basic attributes [33]:

• Transparent : open to the degree where humans can understand the decision-making
mechanism.

• Justifiable : the decision can be supported or justified along each step.
• Informative : to provide reasoning and allow reasoning.
• Uncertainty yielding : does not follow hard-coded structure, but open to change.
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XAI has drawn a tremendous amount of attention in the recent past (see Figure 2)
and it is not hard to comprehend the importance of such methodologies in the clinical
field where AI is spreading fast [34]. Such new research topic is extremely fascinating yet
challenging, because as it can be easily envisaged, a more complex AI model that can reach
high-level performance is less interpretable than, for example, a simple rule-based model
(see Figure 3).
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Figure 2. The popularity index of the term ‘explainable AI’ over the period of 2017–2022. Google Item
Search indicates the queries in Google search engine, whereas Google Scholar Search points out the
published studies available at Google Scholar (* results until March 2022 are extracted).
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Figure 3. The complex models are less explainable as compared to the simple models, because of
the increasing number of hidden layers and parameters. The more simple a model is, the more
interpretable it is.

Numerous XAI methods and relative updated versions have been proposed in the liter-
ature [34]. The presented approaches can be classified into two major categories: perceptive
interpretability and mathematical interpretability. The former includes interpretabilities
that can be visually perceived by humans, for example, the heatmaps that report the
importance of input components in their contribution to that decision. The mathematical-
interpretability-based methods usually rely on very easy models, e.g., linear models, or on
correlation/clustering methods that analyze the extracted features. When visual evidence
is not useful or erroneous, the mathematical evidence can also be used as a complement for
the interpretability. Therefore, various methods should be applied simultaneously for the
sake of providing reliable interpretability [35].
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A limited number of studies on shape-based classification of the breast lesion images
dealt with the explainability of the trained DL models [36,37]. However, all the revised
studies exclusively consider the same single method and binary classification that, in most
of the cases, is related to malignant vs. benign lesion classification. A deep discussion of
the state of the art is presented in Section 2.

In this study, the authors develop and validate a convolutional neural network (CNN)-
based DL framework for the classification of breast lesions according to the shape by
analyzing the related region of interest (RoI) on DBT images. Considering the shapes of
cancerous masses, the breast imaging reporting and data system (BIRADS) classification of
the American College of Radiology, which is the most commonly employed in the clinical
and digital breast tomosynthesis settings, has been considered [38]. Such kind of taxonomy
refers to the following three classes (see Figure 4):

• Regular opacity (Oro) which includes the round, oval, and lobulated shapes;
• Irregular opacity (Ori);
• Architectural distortion shape (Ost).

(a) (b)

(c) (d)

Figure 4. The ready-to-classify RoIs on the images. (a) Example of image with no lesions (None);
(b) example of image with irregular opacity (Ori); (c) example of image with regular opacity (Oro);
and (d) example of image with stellar opacity (Ost).

The clinical importance of the three BIRADS classes consists of the possibility of iden-
tifying regular masses or irregular masses/architectural distortions which is the principal
purpose of the clinical breast setting for early diagnosis of breast cancer. In fact, it is well
known that the Oro lesions are usually benign, whereas Ori and Ost lesions are malignant.
Finally, it is also worth mentioning that in this study the None class, i.e., images that do
not contain any lesion, is also included (see Figure 4).

Moreover, the study employs eight state-of-the-art pretrained CNN architectures
that have been compared both with and without fine-tuning. Two different online data
augmentation routines have been tested to study the impact of several augmentation
methods on the performances. The dataset used in this study comes from authors’ previous
study and comprises 39 breast DBT exams of 16 patients. Interested readers are kindly
referred to such study to explore more about the data acquisition and composition [39].
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The trained DL models and related results have been further interpreted, employ-
ing two different methodologies for each of the two explanation mechanisms. Gradient-
weighted class activation mapping (Grad-CAM) method and local interpretable model-
agnostic explanations (LIME) have been used to visually interpret the results, whereas
t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approxima-
tion and projection (UMAP) techniques have been utilized to study the mathematical
interpretability of the features automatically extracted by all eight CNN architectures [34].

The remainder of the article is organized as follows: studies related to the shape-
based cancer classification and the breast cancer explainability are presented in Section 2;
Section 3 comprises materials exerted in the study and provides the comprehensive details
about the employed methods; results are described in Section 4 and further discussed
comprehensively in Section 5; Section 6 highlights the shortcomings and offers a future
perspective of the study for potential research community; finally, the article concludes by
making the final remarks in Section 7.

2. Related Studies

Over the last decade, because of the superior aptitude to capture cancers, the DBT has
become the new gold standard for the digital mastography [40]. Alongside this, machine
learning has revolutionized the medical field by offering automatic detection, segmentation,
and classification of the cancer [24,25,41–44].

Moreover, XAI has additionally elevated the confidence of the research community to
apply DL in the computer-assisted treatments [34] by uncovering the black box and hidden
nature of the DL. This helps building confidence on the usage of AI in clinical settings, also
paving the way towards the DL-centered image-guided CAD systems.

This section presents and discusses the most relevant and original studies dealing
with automatic breast cancer classification and the incorporation of the XAI techniques on
the breast cancer imaging recently.

The shape of the breast tumors leads to diagnosis of the different types and stages of
the cancer [26]. Generally, the breast cancer is morphologically categorized into five shapes
based on tumor growth pattern, named round, oval, lobulated, irregular, and stellar [27],
as depicted in Figure 1. Numerous authors claim that the transition from the round shape
to stellar shape of the cancer is the journey from benign to malignant cancer [26,29,45].

The shape-based breast cancer classification of mammogram images at RoI level
using generative adversarial network (GAN) and CNN is presented by Singh et al. [29].
The authors used a publicly available dataset for validation and achieved an overall
classification accuracy of 80% for irregular, lobular, oval, and round shape classes.

Similarly, Kisilev et al. [28] proposed a multi-task loss CNN architecture based on the
Faster R-CNN model to detect tumor lesions by considering irregular, round, and oval
shapes of the breast cancerous lesions using in-house and publicly available datasets.
Their approach generated bounding boxes around the tumor, and then used the semantic
descriptors to identify the lesion shape inside the RoI. The accuracy on in-house and public
datasets reached 88% and 82%, respectively, where both accuracy values were computed
on accurately labeled data for testing purposes.

In a previous study by authors [39], two different approaches for the classification
of DBT images into four lesions, i.e., irregular opacity, regular opacity, stellar opacity
lesions, and no lesions, were implemented and tested on an in-house dataset. The first
approach utilizes an artificial neural network that takes morphological and hand-crafted
features extracted from the RoI images and performs classification. The second framework
encompasses the pretrained CNNs without requiring the hand-crafted features. The authors
claimed that the VGG network outperformed the other pretrained architectures by reaching
91.61% and 81.49% accuracy with and without augmentation.

A GAN-based interpretable CAD system for the classification of oval, round, irregular,
and lobular shapes on the mammogram images was devised by Kim et al. [30]. The CAD
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system was tested on a public dataset that managed to achieve 71% accuracy on the lesion
shape classification.

A study on mammogram and MR scans on three publicly available datasets was
conducted by Shrivastava et al. [26] to classify the shapes of the tumorous regions using
geometrical feature-based classifier. Since the authors merely considered the binary classifi-
cation problem (benign lesion vs. malignant lesion), unlike previously explained methods,
the reported accuracy, i.e., 91.4%, was pretty high.

A recent study by Sakai et al. used SVM, random forests, naive Bayes, and multilayer
perceptron methods to classify the breast lesions on tomosynthesis images [46]. The authors
also considered radiomic features along with the shape of the lesion. All the round and oval
tumors were labeled benign, whereas the irregular and the stellar were labeled malignant
on an in-house dataset. The best achieved accuracy value was 55% for round vs. oval
classification, and 84% in case of irregular vs. stellar classification.

Said et al. [47] adopted the genetic algorithm to select the most significant hand-crafted
features out of the total 130. Finally, the back-propagation neural network was employed
for the classification task on round, oval, lobular, and irregular shapes that reached 84.5%
accuracy on the digital database for screening mammography dataset.

Several studies in the literature dealt with the breast cancer imaging and XAI. Ric-
ciardi et al. proposed a binary classification framework based on AlexNet and VGG-19
architectures to recognize the presence or absence of mass lesion on DBT image of two
in-house datasets [37]. The authors adopted the Grad-CAM method to study the behavior
of the classifiers, i.e., whether they align with the delineated lesion labeled by the expert
radiologists. Employing the Grad-CAM method, the authors concluded that central areas
of the lesion contribute more towards classification, whereas the branches of the tumor
bring less impact on classification.

Masud et al. performed multiclass classification of ultrasound breast images consider-
ing benign, malignant, and normal classes on two public datasets [48] using eight pretrained
CNNs and a custom model. The highest accuracy among the pretrained architectures was
achieved by ResNet-50 with a value of 92%, whereas the customized model achieved 100%
accuracy. For explaining the classification mechanism and to study the performance of the
customized model, the Grad-CAM heat map visualization was also incorporated.

Suh et al. compared the binary classification performance of DenseNet-169 and
EfficientNet-B5 models on predicting the availability of malignancy of the lesions from
the mammogram images on an in-house dataset [36]. The former network achieved an
accuracy of 88.1%, whereas the latter reached to 87.9%. The Grad-CAM method was used
merely to spotlight the important regions over an image that lead to the classification.
The authors claimed that Grad-CAM also spotlights the surrounding areas of the tumor,
which shows the importance of not only the tumorous region but also the nearby regions.

Similarly, Lou et al. [49] proposed a framework driven by a custom model and a
pretrained (ResNet-50) architecture to classify the benign and malignant masses on two
publicly available mammogram datasets. The authors reached an accuracy of 83.75%.
The Grad-CAM is employed to examine the spatial position of the object located by the
CNNs. The authors claim that in case of successful classification, the XAI method highlights
the mass correctly, however, it may also focus on the irrelevant regions due to spots that
are not lesions.

Apart from the unavailability of explainability in majority of the existing articles
dealing with DBT image classification task, only few authors [28–30,47] considered the
shape-based cancer classification of the lesion, which not only distinguishes among the
normal and abnormal images but also highlights the growth pattern of the tumor shapes.

Unlike the proposed multi-class morphological CAD classification framework in this
study, most of the authors merely focused on malignant vs. benign classification of the
lesion [26,41–44,46] and provided no, or unsatisfactory, XAI discussion in some cases.
The only two authors which provided XAI in their CAD system [36,37], limited it to the
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Grad-CAM method, and did not consider more complex classifications of the breast cancer,
such as the shape one investigated by this study.

The main contributions of the study can be stated as (i) the multi-class classification
framework of breast lesions that is based on DBT images and considers multiple shapes
also including on-the-fly data-augmentation procedures; (ii) to investigate the applicability
of both perceptive and mathematical XAI methods at RoI level in the DBT images; (iii) to
investigate the reliability of features and learning process and correlate it with the overall DL
model performance; (iv) to perform a comprehensive comparison of the CNN architectures
and the XAI methods in order to guide the engineers and the radiologists interested in
implementing DL-driven CAD systems.

3. Materials and Methods
3.1. Dataset

Back in 2016, a total number of 16 patients participated in breast tomosynthesis
examination. The average age of all the considered subjects was 49.8 years with a standard
deviation of 9.2 years. The patient with minimum age was 35, whereas the patient with
maximum age was 65 years. Since few subjects underwent multiple trials, the total number
of examinations summed up to 39.

This study inherits the RoI-level images generated in a previous study [39] aimed
at constructing a dataset of RoIs that can be fed to the DL models for the shape-based
classification, where the machine learning algorithms are employed to generate the tiles
from the original images. Figure 4 shows the RoIs over the images after the segmentation
phase, where in the case of None class (i.e., no lesion class), random images were taken
from the area of the breasts containing no lesion.

A radiologist (University of Bari Medical School, Bari, Italy) with fifteen years of
experience in the field of breast imaging labeled the images. In order to verify labeling
accuracy, all radiological reports were assessed, including the histological reports for all
detected lesions and 2 years’ follow up with DBT for negative cases. The images were
labeled and classified into four classes, comprising no lesions (None); irregular opacity
(Ori); regular opacity (Oro); and stellar opacity (Ost). The None class contained 1000 images,
whereas the Ori, Oro, and Ost classes contained 391, 654, and 480 lesion images, respectively,
constituting a total number of 2525 samples.

3.2. CNN Models

In this section, the CNN architectures considered for the classification task of the
shape-based breast lesions are briefly introduced.

• VGG
The VGG [50] comes in two famous versions, with 16 and 19 layers comprising
144 million parameters. This study considers the earlier VGG-16, which consists of
several number of channels, 3 × 3 receptive fields, and a stride of 1. This model
is composed of convolution layers, max pooling layers, fully connected layers with
5 blocks and each block with a max pooling layer, and extra convolutional layers
contained in the last three blocks.

• ResNet
The deep neural networks suffer from the gradient vanish problem, which led to the
development of residual network (ResNet) architecture. The ResNet takes care of the
gradient vanishing problem and makes sure the performance remains satisfactory over
the top and lower layers. ResNet comes with several variants where the number of
layers is the distinguishing parameter among numerous architectures, however the
underlying mechanism remains similar. This architecture utilizes skip connections
between layers. The ResNet-34 and ResNet-50 [51] contain 34 and 50 layers and
implement residual learning. This net is efficient to train and also improves the accuracy,
which led us to utilize the two versions of network for multiclass classification purposes.
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• ResNeXt
The ResNeXt, a counterpart of ResNet, is a specifically designed image classification
network with very few tuneable parameters. It contains a series of blocks with a set of
aggregations of similar topology with an additional dimension called cardinality. This
cardinality, which creates major difference between its brother networks, competes
with the depth and width of the network [52]. The simpler architecture based on VGG
and ResNet with fewer parameters yields better accuracy on ImageNet classification
dataset. The word NeXt in the name of the network refers to next dimension which
surpasses ResNet-101, ResNet-152, ResNet-200, Inception-v3, and ResNet-v2 on the
ImageNet dataset in accuracy.

• DenseNet
The DenseNet [53], or in other cases, dense convolutional network, is a type of CNN
designed to guarantee the maximum information flow between all layers in the
network. The layers are subjected to align the feature map size and connect among
each other, forming a dense network. The DenseNet works on feed-forward principle.
Each layer in the network receives the input from the preceding layer, grabs the
additional input, and hands it over to the following layer along with the feature map.
All the layers follow a similar analogy. Differently from ResNets, in which the features
are not combined through summation before they are passed into a layer, the feature
combination is performed by the concatenation of these ones.
DenseNet comes with several variants where the number of layers is the distinguish-
ing parameter among numerous architectures, however the underlying mechanism
remains similar. The DenseNet-121 and DenseNet-161 contain 121 and 161 layers and
follow the feed-forward method. This net is efficient to train and also improves the
accuracy, which led us to utilize the two versions of network for multiclass classifica-
tion purposes.

• SqueezeNet
The SqueezeNet is another popular CNN model particularly known for its smaller size.
The major motivations and reasons that caused this network to be smaller include the
following: (a) during the procedure of training, the communication over the servers is
shortened, (b) the minimum requirement of bandwidth for exporting a model from
cloud to any other device is also cut, and (c) the smaller a model is, the less hardware
and memory it requires to run.
The SqueezeNet architecture is also simple; it contains 8 fire modules sandwiched
between two convolutional layers. The sandwiched fire modules also contain a
squeeze convolution layer with numerous filters of varying sizes. Each fire module
comprises several filters that increase with respect to the network progression, being
fewer in the start and more in the end. The SqueezeNet also utilizes the max pooling
operation at several levels, including first and last layers.
The SqueezeNet appears to achieve comparable accuracy to AlexNet on the ImageNet
dataset with fifty-times-reduced number of parameters. It also offers scalability that
implies that the size of SqueezeNet model can also be compressed to as low as 0.5 MB.

• MobileNet-v2
The MobileNet-v2 [54], a depthwise separable convolutional network aimed at down-
sizing the model, is an architecture based on inverted residual connections. These
residual connections appear between bottleneck layers. The total number of residual
bottleneck layers in MobileNet-v2 count to 19 which follow the fully convolution layer
comprising 32 filters. The network brings several benefits, including the time and
memory savings with higher accuracy of results. The output of the model speaks to
the validity of the architecture.
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3.3. Explainable AI Methods

The interpretability and explainability have largely been achieved by applying two
families of methods, namely, perceptive interpretability and mathematical interpretabil-
ity [34]. The perceptive XAI is responsible for bringing a straightforward view of the
top contributing features that affect the final predictions, whereas the mathematical in-
terpretability provides insights into the used models and portrays the features that are
employed to make the final predictions. The former is used to study the feature-level classi-
fication behavior (the importance of a particular region towards classification) of the DL
architectures, whereas the latter is used to study the clustering capabilities of the networks.

3.3.1. Perceptive XAI

This study adopts two of the most widely admired XAI-based perceptive explanation
methods called Grad-CAM and LIME [34] in order to explain the decisions made by the
CNN architectures. Both the models are post hoc (i.e., they take as input an already
trained model [34]) and can be extended to any DL network for explanation without any
alteration in the rudimentary mechanism of the DL methods. Below, a brief description of
the Grad-CAM and the LIME models is reported.

• Grad-CAM
According to Das et al. [55], Grad-CAM can be classified as a back-propagation-based
method, meaning that the algorithm makes several forward-passes (one or more)
through the neural network and generates attributions during the back-propagation
stage using partial derivatives of the activations. Contrary to the CAM, which requires
a particular pattern of network under analysis, the Grad-CAM is the generalization
that can be applied without any modifications in the DL model [56].
The Grad-CAM produces a heatmap of the class activation in response to the input
image and a class. In other words, for a particular provided class, the Grad-CAM
produces approximate and comprehensible representations of the network’s decision-
making mechanism in the form of a heatmap that translates to the feature importance.
Specifically, in the last layers of a CNN, neurons look for semantic information associ-
ated with a specific class. In this layer, Grad-CAM uses the gradient flowing into it
to assign a weight to each neuron according to its contribution to the decision in the
classification task. The computed information is translated into a jet color scheme to
depict the saliency zones, where the red color represents the higher intensity, i.e., pixels
on which the network is focusing more for performing the classification, while the
blue color represents the lower intensity of the focus.

• Local Interpretable Model-Agnostic Explanations
In this study, the authors incorporated another well-known explanation technique
based on model-agnostic phenomena known as LIME, that can be applied to any DL
model. Specifically:

– Local: states that LIME explains the behavior of the model by approximating its
local behavior;

– Interpretable: emphasizes the ability of the LIME to provide an output useful to
understand the behavior of the model from a human point of view;

– Model-Agnostic: means that LIME is not dependent on the model used; all models
are treated as a black-box.

In our classification problem, the explanation of LIME remains simple. It takes the
superpixels (a patch of pixels) of the original input image after generating a linear
model, and generates several samples by exploiting the superpixels. The quick-shift
algorithm is responsible for the computation of superpixels of an image. Thereafter,
the perturbation images are generated and the final prediction is made.
Afterwards, a heatmap appears over the image that highlights the important pixels,
i.e., regions that contribute in classification. The positively contributing features are
highlighted in green while the negatively contributing superpixels are colored in red.
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The LIME also allows to pick a threshold value to select the number of top contributing
pixels, either positively or negatively.

3.3.2. Mathematically Explained XAI

This section introduces two widely adopted and useful techniques for performing the
task of mathematical interpretability implemented in the presented work. The mathematical
interpretability offers t-SNE and UMAP techniques to represent the high-dimensional graph
into lower dimensional space without compromising on the clustering structure.

Primarily, both the t-SNE and UMAP are meant for visualization; however, the main
difference lies in the interpretation of the distance between the clusters. The t-SNE merely
preserves the local structure in the data, whereas the UMAP can preserve both local and
global structure in the data, which means that unlike the UMAP, the dissimilarity and the
distance between clusters can not be interpreted with the t-SNE.

• T-Distributed Stochastic Neighbor Embedding (t-SNE)
The t-SNE [57] is a variation of the SNE technique that makes the visualization of
high-dimensional data possible by associating with each datum a location in lower
dimensional space of two or three dimensions. It has been developed to face two
issues that affect SNE technique:

1. The optimization of the cost function, by using a variation of SNE cost func-
tion (symmetrized) and using a Student’s t distribution for the computation of
similarity between two datapoints in the lower-dimensional space.

2. The so-called “crowding problem”, by using a heavy-tailored distribution in
low-dimensional space.

• Uniform Manifold Approximation and Projection (UMAP)
The UMAP [58] is a nonlinear technique for the dimensionality reduction. It is based
on three assumptions:

1. Data are uniformly distributed on an existing manifold;
2. Topological structure of the manifold should be preserved;
3. Manifold is locally connected.

The UMAP method can be divided into two main phases: learning a manifold struc-
ture in a high-dimensional space and finding the relative representation in the low-
dimensional space. In the first phase, the initial step is to find the nearest neighbors for
all datapoints, using the nearest-neighbor-descent algorithm. Then, UMAP constructs
a graph by connecting the neighbors identified previously; it should be noticed that
the data are uniformly distributed across the manifold, so the space between data-
points varies according to regions where data are denser or sparse. According to this
assumption, it is possible to introduce the concept of ‘edge weights’: from each point,
the distance with respect to the nearest neighbors is computed, so the edge weights
between datapoints are computed, but there exists a problem of disagreeing edges.

3.4. Experimental Workflow

Figure 5 shows the overall flow diagram of the experimental approach. As depicted,
the experimental setup starts by fine-tuning the considered pretrained networks with three
different datasets, i.e., the original one and two datasets obtained with two different data
augmentation procedures. Thereafter, the features extracted by the features maps of all
versions of fine-tuned and pretrained networks were analyzed with both t-SNE and UMAP.
Finally, Grad-CAM and LIME were applied to the RoI images.
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Figure 5. The overall flow diagram of the experiments. The experimental setup starts by fine-tuning
the considered pretrained networks with three different datasets, i.e., the original one and two
datasets obtained with two different data augmentation procedures. Thereafter, the features extracted
by the feature maps of all versions of fine-tuned and pretrained networks were analyzed with both
t-SNE and UMAP. Finally, Grad-CAM and LIME were applied to the RoI images.

3.4.1. Data Augmentation Procedures

Due to the unavailability of large datasets, two types of augmentation were considered,
i.e., basic and advanced. The basic augmentation comprises rotation and flip, whereas
the advanced augmentation also includes color jittering. Numerous configurations with
respect to data augmentation were considered, as reported in the Table 1 and described
hereunder. By exploiting the transforms.Compose interface provided by PyTorch [59], the aug-
mentations are sequentially performed on the fly, each with a given probability that has
been set to 0.25.

Table 1. Data augmentation summary. All augmentations are carried out on the fly with 0.25
probability in the order they are presented in the table. ’No Aug’, ’Basic Aug’ and ’Adv Aug’ stand
for ’No Augmentation’, ’Basic Augmentation’ and ’Advanced Augmentation’. The 3 and 7 symbols
mean that the transform is included or excluded, respectively. Normalization is always performed at
after all other augmentations. ColorJitter refers to the random alterations of the brightness, range:
[0.8, 1.2]; contrast, range: [0.8, 1.2]; saturation, range: [0.8, 1.2]; and hue, range: [−0.2, 0.2].

Transform No Aug Basic Aug Adv Aug

RandomRotation90 7 3 3
RandomRotation180 7 3 3
RandomRotation270 7 3 3
RandomHorizontalFlip 7 3 3
RandomVerticalFlip 7 3 3
ColorJitter 7 7 3
Normalization 3 3 3
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No Aug refers to the adoption of no augmentation, with the exception of normaliza-
tion, by rescaling intensity values of images from integers ranging [0, 255] to float values
in [0, 1]. Basic Aug consists of performing random rotation by the degrees in multiples
of 90, and performing random horizontal and vertical flips. Adv Aug takes advantage of
ColorJitter transformations in addition to the previous configuration of basic augmenta-
tion. The advanced augmentation comprises random perturbations of brightness, contrast,
saturation, and hue. Finally, normalization is performed similar to No Aug.

3.4.2. Training Procedures and Cross-Validation

This study also implements the transfer learning (TL) paradigm using the weights
of eight well-known CNN architectures, which not only saves the computational time
but also produces higher performance outcomes. The major benefit of using TL comes
into practice when the available dataset is not sufficiently large, whereas the performance
also remains considerable on small datasets. For the classification problems, applying a
pretrained model seems more rational rather than developing a model from scratch. This
approach is also referred to as TL because the pretrained models’ weights are transferred
to other models to address the similar image classification problems.

Moreover, since the manual tuning of parameters is a time-consuming and less efficient
process, this study encompasses the grid search to initially select, but later on settles to
the learning rate of 1 × 10−5, batch size of 32, and number of epochs to 50. Furthermore,
a range of optimizers is available which can be selected depending upon the nature of
problem; however, in this work, the Adam optimizer is used due to the simplicity and
effectiveness on the classification problems. The used loss function was the cross entropy.
Additionally, moving towards the train–test split, 5-fold cross-validation with stratification
is performed in such a manner that approximately 80% of the data belonging to each class
resides in train partition, whereas the remaining 20% dwells in the validation set.

3.5. Classification Performance Assessment

The results of all pretrained and fine-tuned nets are analyzed based on area under the
curve (AUC). The mean and standard deviation of AUC are computed for each classifier
among 5-fold results. The AUC and the standard deviation are also computed for each
individual class against all architectures in three augmentation configurations.

Furthermore, the training and validation losses during the experimental procedure are
also plotted to investigate the eventual problems that arise during the potential overfitting
at each epoch. All the experiments are performed on a machine running on Windows 10
operating system, and a Python 3.7 environment is exploited with PyTorch (torch v1.10.0,
torchvision v0.11.0), grad-cam v1.3.6, and lime v0.2.0 libraries for DL and XAI. To this
end, CUDA 11.3 is used to take advantage of the GPU power.

Explainable AI

Lastly, the saliency maps using Grad-CAM algorithm are analyzed, and superpixel
importance (both positive and negative) with the LIME technique is used to inquire what
aspects the classifiers are focusing on, so as to build a trust for CAD systems that can be
exploited to support the radiologists’ diagnostic workflow are computed. Generally, these
methods identify which features oblige a DL model to discriminate among different lesions
present on the image.

Particularly, to generate the heatmap visualizations from the Grad-CAM, all the
architectures, except the VGG-16, utilize the last layer before the global average pooling
layer. In case of VGG-16 architecture, the Grad-CAM is run at the maxpool layer before
the first fully connected layer. Note that VGG16 is the only CNN among the considered
architectures in this study that does not implement global average pooling, since it is an
old architecture based on stack of fully connected layers at the end. On the other hand,
the LIME is a model-agnostic method; therefore, it creates the perturbations once the CNN
finishes the classification task. In both cases, the specific class modeled as base class differs
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for all the networks; therefore, the labeled and the targeted classes are provided within
figures. Moreover, the t-SNE and UMAP embeddings, before and after the fine-tuning of
all architectures on the DBT image training set, are computed to understand how well TL
approaches work on the radiological image scenario. The feature sets considered for t-SNE
and UMAP are the same as for Grad-CAM discussed above.

4. Experimental Outcomes

The section below illustrates the experimental results of the study in terms of the
classification performance, XAI outcomes, and the relevant training and validation trends.
The section contains a comparative analysis of the employed techniques and highlights the
identified significant trade-offs.

4.1. Performance Module

The summary of the experimental results of all eight CNN models considered in this
study in terms of AUC with 5-fold cross-validation is provided in Table 2 for the three
conceived experimental configurations, i.e., without augmentation (No Aug), with basic
augmentation (Basic Aug), and with advanced augmentation (Adv Aug), respectively.

Table 2. The summary of the results obtained for No Aug, Basic Aug, and Adv Aug configurations is
provided hereunder. The bold text represents the best value of the corresponding parameter among
all CNN models, which is mean over all four classes.

Architecture

Area under the Curve (AUC)

No Aug
(None, Ori,
Oro, Ost)

Basic Aug
(None, Ori,
Oro, Ost)

Adv Aug
(None, Ori,
Oro, Ost)

MobileNet-v2

91.9 ± 1.1 92.4 ± 0.9 93.6 ± 1.2
97.4 ± 0.4 98.0 ± 0.6 97.6 ± 0.9
95.2 ± 1.3 95.9 ± 1.1 96.3 ± 0.9
95.8 ± 0.7 96.6 ± 0.5 96.5 ± 0.7

95.1 95.7 96.0

DenseNet-121

90.1 ± 1.2 93.9 ± 1.9 94.5 ± 1.3
94.2 ± 1.4 98.5 ± 0.6 98.2 ± 0.8
89.9 ± 1.7 95.5 ± 0.6 96.7 ± 0.8
92.9 ± 1.8 97.1 ± 0.8 97.2 ± 1.2

91.8 96.2 96.6

DenseNet-161

94.8 ± 0.9 95.8 ± 1.0 96.4 ± 0.5
97.6 ± 1.4 99.1 ± 0.7 99.4 ± 0.2
95.8 ± 1.3 97.8 ± 1.0 98.7 ± 0.7
97.0 ± 0.9 98.2 ± 0.3 98.0 ± 0.7

96.3 97.7 98.2

SqueezeNet

50.9 ± 3.0 56.6 ± 5.6 62.7 ± 8.1
85.9 ± 3.2 84.3 ± 1.4 86.4 ± 2.9
68.9 ± 5.6 67.6 ± 3.8 71.7 ± 7.2
83.8 ± 2.6 86.2 ± 3.7 87.6 ± 3.1

72.4 73.7 77.1
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Table 2. Cont.

Architecture

Area under the Curve (AUC)

No Aug
(None, Ori,
Oro, Ost)

Basic Aug
(None, Ori,
Oro, Ost)

Adv Aug
(None, Ori,
Oro, Ost)

ResNet-34

92.0 ± 0.8 94.5 ± 1.0 95.4 ± 0.6
96.2 ± 0.8 98.6 ± 0.5 98.9 ± 0.5
94.7 ± 1.7 97.6 ± 0.4 97.4 ± 1.0
96.1 ± 1.3 97.6 ± 0.7 97.7 ± 0.7

94.8 97.1 97.3

ResNet-50

93.8 ± 1.1 95.3 ± 1.2 96.2 ± 0.6
98.0 ± 0.5 99.4 ± 0.3 99.3 ± 0.3
95.8 ± 0.8 97.8 ± 0.6 97.9 ± 0.7
97.0 ± 1.0 97.8 ± 0.9 98.5 ± 0.4

96.1 97.6 98.0

VGG-16

90.6 ± 1.7 92.5 ± 1.4 93.6 ± 1.3
98.1 ± 0.6 98.9 ± 0.6 97.7 ± 0.7
96.1 ± 0.7 96.7 ± 0.7 97.2 ± 0.7
96.6 ± 0.4 97.7 ± 0.6 98.1 ± 0.6

95.3 96.4 96.6

ResNeXt

94.1 ± 1.0 96.1 ± 0.7 95.8 ± 0.7
97.7 ± 0.7 99.3 ± 0.2 99.0 ± 0.7
96.0 ± 0.8 97.9 ± 0.7 98.2 ± 0.8
97.1 ± 0.5 98.3 ± 0.3 98.2 ± 0.9

96.2 97.9 97.8

4.1.1. Classification Results

In the case of No Aug configuration, it can be observed from Table 2 that DenseNet-161
is the architecture with the highest mean AUC of 96.3%. The ResNeXt and ResNet-50
networks are slightly behind, with AUC of 96.2% and 96.1%, respectively. The MobileNet-
v2, ResNet-34, and VGG-16 collectively form a third cluster with AUC of around 95%.
Conversely, the SqueezeNet is the worst-performing model in our experimental setup,
managing to achieve merely 72.4% AUC.

In the case of the Basic Aug configuration, all architectures performed considerably
better than the previous No Aug configuration. The results reveal that ResNeXt obtained
the highest AUC of 97.9%, beating all other architectures. The DenseNet-161 and ResNet-50
achieved similar performances with the AUC of 97.7% and 97.6%, respectively. Once again,
the performance of the SqueezeNet failed to present significant outcomes, thus abiding by
the No Aug configuration.

The second augmentation setup, called Adv Aug, emerged to be even better than both
previously conceived No Aug and Basic Aug setups. The DenseNet-161 reached the top
AUC of 98.2%. The ResNet-50 appeared to be the second best model, with a slightly lower
AUC of 98.0%.

Finally, as noted during the No Aug and Basic Aug configurations, the SqueezeNet is
the model which offers least reliability with the largest inter-fold variability; however, it
improved the AUC from the previous setups.

Therefore, it can be summed up that the ResNeXt and DenseNet-161 remain the
top-performing models, and the augmentation configurations considerably improved
the performance of all CNN architectures. However, the SqueezeNet failed to produce
convincing results.
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4.1.2. Train and Validation Loss Trends

The training and validation losses fluctuate with respect to each epoch. All models
were run at different values of epoch starting from 10 up to 50; however, for the purpose of
clarity and concision, only the results obtained considering the 50 epochs are illustrated.

The loss curves demonstrate important trends to monitor in order to clearly distinguish
the working mechanism of the CNN architectures over the repeated iterations. In Figure 6,
it is distinctive to visualize the loss on both train and validation sets (first fold) for the best,
i.e., DenseNet-161, and the worst, i.e., SqueezeNet, CNN architectures in the case of No
Aug configuration.
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Figure 6. The train and validation loss for the fold = 0 of cross-validation. (a) DenseNet-161 with No
Aug configuration; (b) SqueezeNet with No Aug configuration. The reported behavior of train and
validation loss trends is comparable to that of the other folds.

Although the SqueezeNet shows decreasing loss on both train and validation sets in
Figure 6b, the training loss curve becomes constant right after fewer epochs in DenseNet-
161 in Figure 6a. Moreover, the validation curve depicts increasing behavior after fewer
than ten epochs for the DenseNet-161. Such behavior could be motivated by the huge
number of parameters that might cause the overfitting problem on the train set.

The train and validation loss curves considering the advanced data augmentation
configuration are provided in Figure 7. The augmentation helped the DenseNet-161 to
overcome the increasing validation loss, as shown in Figure 7a. This evidences that incorpo-
rating on-the-fly data augmentation solved the overfitting issues. However, the SqueezeNet
struggles to keep the loss low, as depicted in Figure 7b, and ends up with even worse
performance than the no augmentation configuration. Differently from DenseNet-161,
the SqueezeNet does not seem to take advantage of the on-the-fly augmentation, possibly
due to lower number of parameters.

Additionally, the reported behavior of the loss trends on both train and validation sets
is comparable to the other folds. With the intention of concision, authors decided to depict
the outcomes of the best and the worst performing architectures, i.e., DenseNet-161 and
SqueezeNet, respectively, in terms of AUC and loss.
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Figure 7. The train and validation loss for the fold = 0 of cross-validation. Figure (a) DenseNet-161
with Adv Aug configuration; (b) SqueezeNet with Adv Aug configuration. The reported behavior of
train and validation loss trends is comparable to that of the other folds.

4.2. Area under the Curve and Number of Parameters Trade-Off

During the experimental phase, the authors came across an interesting trend between
the mean AUC (computed on the test set) and the number of parameters of the employed
architectures. A plot illustrating the relationship between AUC and the number of pa-
rameters for the eight considered CNNs is presented in Figure 8. It is observable that the
VGG-16 holds a gigantic number of parameters but without yielding the corresponding
improvement in the AUC. The SqueezeNet, on the contrary, is a small architecture in terms
of number of parameters, but fails to realize commendable AUC among the contemplated
models. The best trade-off between the number of parameters and the performance can be
seen in ResNet-like models, with ResNet-50 winning the dispute.

Figure 8. The relationship between area under the curve and number of trainable parameters for the
eight CNN architectures considered throughout this study.



Appl. Sci. 2022, 12, 6230 17 of 27

4.3. XAI Interpretation

This study employed XAI techniques from two families comprising mathematical
interpretability, i.e., t-SNE and UMAP, and perceptive interpretability, i.e., Grad-CAM
and LIME. The experimental outcomes of both XAI approaches on all CNN models are
explained hereunder.

4.3.1. t-SNE and UMAP

The extracted features from both pretrained and fine-tuned networks are visualized
in order to understand what patterns emerge in low-dimensional spaces after having
employed nonlinear dimensionality reduction techniques such as t-SNE and UMAP.

In Figure 9, the t-SNE embedding plots for both pretrained and fine-tuned DenseNet-
161 and SqueezeNet architectures are pictorially represented. Similarly, Figure 10 presents
the UMAP embedding plots for both pretrained and fine-tuned DenseNet-161 and SqueezeNet
models. In the pretrained version, no clear patterns arise from both embedding plots,
showing that features learned from ImageNet dataset are not necessarily well discriminative
for radiological image applications.

Nonetheless, after 50 epochs of fine-tuning on the designated train set, the clusters
appear more distinctive. In fact, with trained CNN features, both UMAP and t-SNE allow
to visualize different clusters for all four considered classes: None, Ori, Oro, and Ost.
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Figure 9. The t-SNE embedding plots of the features extracted from pretrained (a,c) and fine-tuned
(b,d) DenseNet-161 and SqueezeNet, respectively, on the validation set of 1st fold. It is clearly visible
that the fully TL paradigm does not allow a clear clustering of the features in low-dimensionality
space, whereas the finetuned model is able to discover more discriminative features with respect to
its pretrained-only version.
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Figure 10. The UMAP embedding plots of the features extracted from the pretrained (a,c) and
fine-tuned (b,d) DenseNet-161 and SqueezeNet, respectively, on the validation set of 1st fold. It
is distinctly visible that the fully TL paradigm does not allow a clear clustering of the features in
low-dimensionality space, whereas the finetuned model is able to discover more discriminative
features with respect to its pretrained-only version.

As described in Section 3, the distance between the clusters cannot be interpreted
by using the t-SNE visualizations. For instance, it cannot be inferred from Figure 9 that
clusters are dissimilar to each other when one cluster is closer to the other. However, it can
be stated that points closer to each other are more similar objects than the points at farther
ends, whereas Figure 10, thanks to the local and global feature representation capability of
the UMAP, clearly plots the points that can be interpreted as distinguishing clusters and
the position of the points.

4.3.2. Class Activation Mapping

The visual explanation of all eight fine-tuned networks is pictorially depicted in
Figure 11, considering the Grad-CAM as reference method. In the figure, two sample
images for every class are depicted, and the corresponding saliency maps are reported
for every network. This figure considers only images for which every network makes the
correct prediction, in order to visualize the link between the highlighting of the lesion
area and the network performance. The saliency maps of the approximate features are
generated considering the ground truth/predicted class view.

Interestingly, the CNN architectures that find troubles in correctly identifying the
lesion areas also appear to have worse performance in the classification task. For instance,
SqueezeNet, which is the worst-performing network in terms of AUC, and VGG-16, which
also appears to have a trade-off between AUC and the number of parameters, as shown in
Figure 8, fail to spotlight the relevant lesion area. Here, the trade-off refers to the fact that
the increasing number of parameters seldom yields increased AUC. In contrast, DenseNet-
161, DenseNet-121, and ResNet-50 correctly highlight the lesion on the images. Thus, our
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XAI-based CAD system unveils the potential applicability of the reliable and suspicious
candidates to adopt in the CAD systems.

OriNone OstOro

MobileNet-v2

DenseNet-121

DenseNet-161

SqueezeNet

ResNet-34

ResNet-50

VGG-16

ResNeXt

Figure 11. The visualization of the Grad-CAM method with the eight different CNN architectures con-
sidered throughout the study. To illustrate the better view, two examples for each class are portrayed,
and the ground truth class label is provided above the set of each image. As the jet color scheme is
employed for depicting saliency zones, the red color represents the higher intensity, i.e., pixels on
which the network is focusing more for performing the classification, whereas the tendency towards
the blue color represents the lower intensity of focus. The header bar is used to distinguish among
several classes and is colored uniquely. The similar color of header for two images represents the
samples chosen from the same class.

4.3.3. Local Interpretable Model-Agnostic Explanations

It is worth mentioning that the visual results of the Grad-CAM and LIME must not
be confused. Unlike the Grad-CAM method, which emphasizes the lesion area with
the intensity of the color closer to the center, the LIME method works differently by
providing the top contributing s that resulted in the classification of the image into any
given class. However, in both cases, the images were generated by observing the ground
truth/predicted class view.

The s perturbations performed by the LIME are shown in Figure 12. The observations
experienced with respect to the performance of the LIME technique are similar to the
Grad-CAM method. The figure reports the exact images that were compared in Figure 11
for the Grad-CAM method, to create a robust and clear comparison. The class considered
for performing the LIME perturbations is the ground truth class, which, in this case,
corresponds also to the prediction of all the CNNs. The regions which are positively
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correlated with the decision made by the CNN are highlighted in green, whereas those
negatively correlated are colored red.

OriNone OstOro

DenseNet-121

DenseNet-161

MobileNet-v2

ResNeXt

ResNet-34

ResNet-50

SqueezeNet

VGG-16

Figure 12. The visualization of LIME superpixels positive and negative regions with the eight
different CNN architectures considered throughout this study. To illustrate the better view, two
examples for each class are portrayed and the ground truth class label is provided above the set of each
image. The red color highlights the negatively contributing superpixels, whereas the green represents
otherwise. The header bar is used to distinguish among several classes and is colored uniquely.
The similar color of header for two images represents the samples chosen from the same class.

However, it has to be noted that reasoning in terms of s can result in explanations
which are visually less clear to understand than those of their CAM-based counterpart.
Comparing Figures 11 and 12, we can see that some superpixels which are correlated to the
prediction according to the LIME method are not considered relevant in the corresponding
Grad-CAM activation maps. Therefore, we advise to consider both methods when trying
to devise an explanation for a CAD system, in a way that complementary information can
be extracted from both sources to obtain a broader view of how the model is working.

5. Discussion

This study proposes a novel, visually explainable DL-driven multiclass shape-based
breast cancer classification framework for tomosynthesis lesion images. For the task of
morphological classification, eight DL models are employed on tomosynthesis breast
images and two families of XAI methods, i.e., perceptive interpretability and mathematical
interpretability, are incorporated to explain the results acquired during the validation study
in order to create the trust among the clinicians and AI.
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The perceptive interpretability models are responsible for visually explaining the top
contributing features towards the classification, whereas the mathematical interpretability
methods portray feature clustering capabilities of the DL architectures. The CAD system
developed in this study is able to encircle the potential growth pattern of the tumorous
regions on the DBT images and results in the improved diagnostic and prognostic per-
formance. The successful implementation also enhances the trustworthiness among the
clinical field and the high-accuracy-yielding DL architectures.

The sections below comparatively discuss the shape-based breast cancer classification
and the interpretation of the DL models using XAI techniques.

5.1. Shape-Based Breast Cancer Classification

Quantitatively, the extensive experimental results are elaborated, considering the
pretrained DL methods on both with and without data augmentation configurations.
The mean AUC values of the developed models improved during the augmentation phases.
The crown of overall best performing algorithm belongs to DenseNet-161 due to persistent
performance, i.e., reaching higher than 96.0% across No Aug, Basic Aug, and Adv Aug setups.

In particular, the best-performing model, i.e., DenseNet-161, increases by 1.45% and
1.97% in the mean AUC from No Aug to Basic Aug and Adv Aug, respectively. It impres-
sively increases by 33.01%, 33.28%, and 27.10% over the SqueezeNet in configuration-to-
configuration comparison, i.e., No Aug to No Aug, and so on. In the case of Basic Aug,
the ResNeXt outperforms all other architectures with a percent increase of 33.56 from the
worst-performing model.

Since the results are comparable, any particular model performing best in terms of
AUC and loss may not perform ideally in all aspects. The reason is the primitive learning
and weight updating mechanism of the CNN models. For example, in the No Aug phase,
three out of four individual AUC values of ResNeXt among classes remain higher than the
respective individual AUC values of the DenseNet-161, despite the equal mean AUC.

The utilization of the augmentation techniques revamped the trends of the validation
loss, as shown in Figures 6 and 7; however, the improvement in the validation loss is
negative for the worst-performing model, i.e., SqueezeNet, which fluctuates between 0.3 to
1.3 and 0.7 to 1.3 for No Aug and Adv Aug configurations, respectively. Both the training
and validation losses increased.

The illustrated loss values are evidently coherent to the fact that a huge model such as
DenseNet-161, with tons of parameters, overfits when it is trained with no augmentation
over an increasing number of epochs in our experimental setup. Instead, SqueezeNet has
the opposite problem, being unable to even properly comprehend the fundamental patterns,
resulting in an underfit behavior. After augmentation, underfitting problem of SqueezeNet
cannot be resolved, as shown by comparing Figures 6b and 7b, but the overfitting issue of
the DenseNet-161 is mitigated as presented by comparing Figures 6a and 7a.

A noteworthy consideration arises when considering the performance of a model
in relation to its size and complexity. In Figure 8, a noteworthy trend exists between the
number of parameters and the AUC, the models having a huge number of parameters
compromised at the mean AUC at certain levels. On the contrary, the models with an
extremely low number of parameters may result in bad generalization performance, since
with reduced number of parameters, the model is hardly able to learn simple patterns in
our study.

Nevertheless, the two different augmentation configurations and three different exe-
cution setups (i.e., 10, 30, and 50 epochs) disclose a clear improvement with augmentation
in our DBT classification framework. The basic augmentation improves performance
compared to no augmentation, and the advanced augmentation plays its part and further
increases the AUC outcomes. One major reason reckoned is the considerably high visually
noticeable resemblance between the training and the validation data, whereas the state-of-
the-art architectures, the significant clinical data, and the RoI-level cropped images may
possibly be other driving causes.
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5.2. Explainable AI in Breast Cancer Classification

Concerning the mathematical explanation, as emerged from the visualization of the
feature embeddings, one can discern that both t-SNE and UMAP are able to extract mean-
ingful relationship in the low-dimensionality spaces when the features are representative of
the underlying patterns in the sample images. In Figures 9 and 10, four clusters are clearly
visible for the DenseNet-161 architecture. On the contrary, when the model is less accurate,
as in the case of fast and light SqueezeNet (in terms of number of parameters), the cluster
formation behaves differently, with UMAP resulting in more compact representations. As a
general suggestion, therefore, the study recommends to use these mathematical XAI tech-
niques to visualize if considered features for a problem under consideration are relevant.

With respect to the perceptive XAI techniques, the performance results of the CNN
models are aligned with the complementary information that can be extracted from Grad-
CAM and LIME methods. While the first allows to detect which regions have a gradient
that is deemed relevant for performing the prediction, the second permits to understand,
for each superpixel, if it is positively or negatively correlated to the prediction. Moreover,
the LIME method has an adjustable parameter for deciding the number of top contributing
features to show over the original image. Since we already have the intensity values from
the saliency maps of Grad-CAM, we decided to mark in green every positively correlated
region and in red every negatively correlated region, so that the mixed information obtained
can be exploited to obtain an intuitive understanding of which regions are more important
(higher intensity values in CAM maps), and which are positively or negatively correlated
to the final outcome (green and red, respectively).

Interestingly, the CNN architectures that find trouble in correctly identifying the lesion
areas also appear to have a lower AUC. Thus, on a general scale, the higher AUC can
be explained by using XAI methods. For instance, the SqueezeNet, which is the worst-
performing network in terms of AUC and validation loss, and VGG-16, which has a trade-
off between the AUC and the number of parameters, as shown in Figure 8, fail to spotlight
the relevant lesions as illustrated in Figure 11. In contrast, DenseNet-161, DenseNet-121,
ResNeXt, and ResNet-50, which feature higher AUC values, correctly highlight the lesion
when tested with the Grad-CAM method.

Moreover, as the loss trends and the AUC tables show, none of the CNNs yielded 100%
performance, which means the misclassified examples are also present. These samples of
the misclassified images are also presented to the XAI methods in order to dive into the
features that resulted in misclassification. The reason behind misclassification of one type
of cancerous image to another type might be related to the homogeneity of the shapes of a
few examples with other classes. Figure 13 illustrates the results of both Grad-CAM and
LIME methods regarding examples of misclassified images.

The labels provided above the samples represent the ground truth, whereas the labels
provided under the saliency maps are the predictions made by the CNNs. This figure
proves that XAI could also help the physician understand why the AI is failing. For instance,
the None image in the Figure 13 contains a mesh that is not lesion according to the expert
radiologists. However, it fools the CNN to misclassify the image as Ori. Both the CAM and
LIME methods highlighted the regions that carry analogous properties, thus explaining the
cause of the misclassification. It is worth noting that a similar discussion emerges from the
other examples provided in Figure 13.

In order to understand how the results of two XAI perceptive methods vary according
to the different target classes, Figure 14 reports the explanation results of both methods
considering eight different correctly classified images. It is worth noting that the CAM
results did not differ among the four XAI target classes. Interestingly, the results are
different when LIME is analyzed. For instance, when considering None as target class and
visualizing its explanation outcome on an Ori class image, the LIME-highlighted lesion
area has a region that contributes negatively towards the classification of the chosen target
class. In the same image, the LIME explanation with the Ori target class highlighted the
lesion region as green (positively correlated) since the image belongs to the Ori class. This
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kind of comment could also be easily applied to other images of Figure 14, thus confirming
the difference and the utility of more than one perceptive XAI method.

OriNone OstOro
ORIGINAL LABEL

OstOri OroOri
PREDICTED LABEL

Figure 13. The examples of the misclassified samples due to the relevancy of one type of shape to
other type of shape for all four classes. The labels provided above the samples represent ground
truth, whereas the labels provided under the saliency maps are the predictions made by CNNs.

OriNone OstOro

Ori

None

Ost

Oro

GROUND-TRUTH CLASSES

X
A

I T
A

R
G

ET
 C

LA
SS

ES

Figure 14. Grad-CAM and LIME comparison. One sample image is used for every class; then, the re-
sults of the XAI perceptive method are shown, considering each of the four possible target classes.

Finally, from several discussed dimensions, our study proves the applicability of the
CNN models in the classification task of DBT lesions on RoI level. Taking the advantage
of TL, our framework reaches efficient results with fine-tuning of several parameters.
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The black-box nature of the DL models is successfully unveiled to build the trust of
radiologists to emerge towards the reliable CAD systems for the diagnostic tasks.

6. Limitations and Future Directions

In this article, the pretrained DL models are employed for the classification tasks using
a 5-fold cross-validation strategy. Since the train and validation data come from the same
source, few models suffer from generalizability and overfitting problems. The models can
be validated on the external datasets after training for better understanding. Additionally,
the dataset used in the study is relatively small; this is a major reason to incorporate the
pretrained models and perform fine-tuning also with data augmentation. The used models
could be trained and tested with large-scale datasets acquired from different cohorts.

The study also unleashes the hidden classification mechanism of DL techniques by
integrating numerous XAI techniques. The Grad-CAM methods produce a coarse localiza-
tion map. In the experimental outcome section, it can clearly be observed that at a certain
point the XAI methods explain the DL methods’ results with slightly different regions. This
is because of the model overfitting. A robust investigation may demonstrate productive
conclusions. The CAM method only focuses on a general region of the image instead of
focusing on minute peculiarities, such as that LIME technique generates the perturbations
and highlights the top features. Similarly, the SHapley Additive exPlanations (SHAP)
model quantifies the exact amount of contribution made by a particular region, and can be
added in future studies.

7. Conclusions

Breast cancer is the leading deadly ailment in women, and its inevitable progression
has become a major concern for the healthcare industry. However, timely diagnosis can
significantly improve the medication and prevent the further expansion of the cancerous
regions. DL offers great success in automatic detection and classification using medical
imaging data. However, the black-box nature of the decision-making mechanism of the
DL architectures hampers the trust among the clinicians. The XAI techniques uncover
the black-box and hidden nature of the DL and provide useful apprehension of the high-
accuracy-yielding DL models. This builds confidence in machine learning in the clinical
domain and paves the way towards DL-centered image-guided CAD systems.

In this work, authors proposed a robust visually and mathematically explainable DL
framework for multiclass shape classification of tomosynthesis breast lesion using eight
pretrained CNN models using an in-house dataset. Due to small-scale data availability,
the data augmentation was incorporated. The best fine-tuned model achieved mean AUC
values of 98.2% and 96.3% with and without considering the data augmentation, respectively.

Furthermore, considering the hypersensitive clinical realm, two families of XAI meth-
ods, i.e., perceptive interpretability and mathematical interpretability, were incorporated to
visually explain the CNN models’ classification performance. The former interpretability
method includes Grad-CAM and LIME, which are responsible for visually explaining
the experimental outcomes in terms of feature-level contribution towards classification,
whereas the latter method comprises t-SNE and UMAP techniques that portray feature
clustering capabilities of the DL architectures. The performances of all models were aligned
with the visual and mathematical interpretations, hence developing the necessary trust
between the healthcare industry and the DL architectures. The results proved the usability
of XAI to understand the mechanism of employed AI models, also in the cases of failures.

In future, authors aim to further enhance the interpretability of the CNN models by
calculating the single feature-level weightage towards classification. The authors also plan
to investigate the performance of the proposed framework on unforeseen datasets and to
integrate the novel DL models.
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