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Abstract: Climate change has contributed substantially to the weather and land characteristic phe-
nomena. Accurate time series forecasting for climate and land parameters is highly essential in the
modern era for climatologists. This paper provides a brief introduction to the algorithm and its
implementation in Python. The pattern-sequence-based forecasting (PSF) algorithm aims to forecast
future values of a univariate time series. The algorithm is divided into two major processes: the
clustering of data and prediction. The clustering part includes the selection of an optimum value for
the number of clusters and labeling the time series data. The prediction part consists of the selection
of a window size and the prediction of future values with reference to past patterns. The package
aims to ease the use and implementation of PSF for python users. It provides results similar to the
PSF package available in R. Finally, the results of the proposed Python package are compared with
results of the PSF and ARIMA methods in R. One of the issues with PSF is that the performance
of forecasting result degrades if the time series has positive or negative trends. To overcome this
problem difference pattern-sequence-based forecasting (DPSF) was proposed. The Python package
also implements the DPSF method. In this method, the time series data are first differenced. Then,
the PSF algorithm is applied to this differenced time series. Finally, the original and predicted values
are restored by applying the reverse method of the differencing process. The proposed methodology
is tested on several complex climate and land processes and its potential is evidenced.
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1. Introduction

Time series forecasting is a field of interest in many research and society fields
such as energy [1–3], economics [4,5], health [6,7], agriculture [8,9], education [10,11],
infrastructure [12,13], defense [14], technology [15], hydrology [16,17], and many others.
Time series are generally addressed in terms of stochastic processes in which values are
placed at consecutive points in time [18]. Time series forecasting is the process of predicting
values of a historical data sequence [19]. In the digitized development, with the increase
in extensive historical data, more powerful and cross-platform-compatible forecasting
methods are highly desirable [20,21].

Pattern-sequence-based forecasting (PSF) is a univariate time series forecasting method
which was proposed in 2011 [22]. It was developed to predict a discrete time series and
proposed to use clustering methods to transform a time series into a sequence of labels.
To date, several researchers have proposed modifications for its improvement [23–26] and
recently, its implementation in the form of an R package was also proposed [27,28]. PSF
has been successfully used in various domains including wind speed [29], solar power [26],
water demand [13], electricity prices [30], CO2 emissions [31], and cognitive radio [32].

The PSF algorithm consists of various processes. These processes are broadly cate-
gorized into two steps, clustering of data and, based on this clustered data, performing
forecasting. The predicted values are appended at the end of the original data and these
new data are used to forecast future values. This makes PSF a closed-loop algorithm, which
allows PSF to predict values for a longer duration. PSF has the ability to forecast more than
one values at the same time, i.e., it deals with arbitrary lengths for the prediction horizon.
It must be noted that this algorithm was particularly developed to forecast data which
contain some patterns. Figure 1 shows the steps involved in the PSF method.

Figure 1. Block diagram of the PSF method (Source: [33]).

The goal of the clustering step is to discover clusters and label them accordingly
in the data. It consists of the normalization of the data, the selection of the optimal
number of clusters, and applying k-means clustering using the optimum number of clusters.
Normalization is an important part of any data processing technique. The formula used to
normalize the data is:

X′j =
Xj

1
N ∑N

i=1 Xi
(1)

where Xj is an input time series and X′j denotes the normalized value for Xj and i = 1, . . . , N.
The k-means clustering technique is used to cluster and label the data. However, k-means
requires the number of clusters (k) to be provided as an input. To calculate the optimum
value of k, the silhouette index was used. The clustering step outputs the time series as a
series of labels which are used for forecasting.

Then, the last “w” labels are selected from the series of labels outputted by the cluster-
ing step. This sequence of w labels is searched for in the series of labels. If the sequence
is not found, then the search is repeated with the last (w− 1) labels. The selection of the
optimum value of w is crucial in order to get accurate prediction results. Formally, the size
of the window for which the error in forecasting is minimum during the training process is
called the optimum window size. The error function used is shown in (2).
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∑
tεTS

∥∥X̂(t)− X(t)
∥∥ (2)

where X̂(t) is a predicted value at time t, X(t) is the measured data at same time instance,
and TS represents the time series under study.

After the selection of the optimum window size (w), the last w values are searched for
in a series of labels and labels next to the discovered sequence are stored in a new vector
called ES. The data corresponding to these labels from the original time series are retrieved.
The future time series value is predicted by averaging the retrieved data from the time
series with the expression (3).

X̂(t) =
1

size(ES)
×

size(ES)

∑
j=1

ES(j) (3)

This predicted value is appended to the original time series and the process is repeated for
predicting the next value as shown in Figure 2. This allows PSF to make long-term predictions.

Figure 2. Prediction with PSF algorithm (Source: [27]).

In the current research, the main intention of the current investigation was to develop
a new Python package for modeling univariate time series data that are characterized by
natural stochasticity. This can contribute remarkably to the best knowledge of monitoring,
assessment, and advisable support for decision makers that are interested with such time-
series-related problems. Among several time series engineering problems, hydrological
time series forecasting is one of the highly attractive topics recently discovered [34–36].
Hydrological time series processes are very complex and stochastic problems that require
robust technologies to tackle their complicated mechanisms. Hence, in this research, several
hydrological time series examples were tested to validate the proposed methodology.

2. Difference Pattern-Sequence-Based Forecasting (DPSF) Method

The PSF algorithm was particularly developed to forecast data for a time series which
contains pattern or is seasonal, thus the prediction error is very small for such time series.
However, if the time series follows some trends or is not seasonal, then the error increases.
This can be observed in the illustrative examples provided in the later sections. The “nottem”
dataset is very seasonal, thus the predictions of PSF are observed to be better than that of
ARIMA. However, in the “CO2” dataset, the result of PSF is not as good as that of ARIMA.
This is because the “CO2” dataset follows an upward trend. The forecasting results with
the PSF method are degraded with positive or negative trends. To tackle this problem the
DPSF model was proposed [3].

The DPSF method is a modification of the PSF algorithm. The time series is differenced
once. These differenced data are then used for prediction using the PSF algorithm. The
predicted values are then appended to the differenced time series, which was used for
prediction using PSF. Finally, the original time series is attempted to be regenerated using
the reverse method of the first-order differencing process.

The DPSF method gives better results for data where positive or negative trends
can be observed in the data. However, the PSF method does not work well with such
datasets and prefers seasonal datasets. This can also be observed in examples shown in
Sections 4.1 and 4.2. An example in Section 4.1 uses a seasonal dataset (nottem), where the



Appl. Sci. 2022, 12, 6194 4 of 19

PSF results are better than the DPSF results. In Section 4.2, the CO2 dataset is used, which
shows a positive trend. Here the results of DPSF are significantly better than those of PSF.

3. Description of the Python Package for PSF (PSF_Py)

The proposed Python package for PSF (PSF_Py) is available at the Python repository,
describing license, version, and required package imports [37]. The package can be installed
using command in Listing 1.

Listing 1. Command to install PSF_Py package.

pip i n s t a l l PSF_Py

The package makes use of “pandas”, “numpy”, “matplotlib”, “sklearn” packages. The
various tasks of the processes are accomplished by using various functions, such as psf(),
predict(), psf_predict(), optimum_k(), optimum_w(), cluster_labels(), neighbour(),
psf_model(), and psf_plot(). The code for all the functions was made available on
GitHub [38]. All these functions were made private and are not directly accessible by the
user. The user needs to create an object of the class Psf, which takes as inputs the time
series, cycle, values for the window size (w), and the number of clusters (k) to be formed.
The values of k and w are optional; if not specified by the user, then they are internally
calculated using the optimum_k() and optimum_w() functions. Once the PSF model has
been created, the predictions can be made using the predict() method. The predict()
takes as its input the number of predictions to make (n_ahead). For the DPSF model, the
user makes use of the class Dpsf. The remaining process is the same as that of Psf.

After the predictions are made using the predict() method of class Psf, the model
can be viewed using the model_print() method. The original time series and predicted
values are plotted using the psf_plot() or dpsf_plot() methods. Alternatively, the user
can use “matplotlib” functions to plot the time series.

3.1. optimum_k()

The optimum_k function is used to calculate the optimum number of clusters for
forecasting. The PSF uses the k-means algorithm to cluster the data, but the algorithm
requires the number of clusters as an input. The function takes as inputs the time series and
a tuple consisting of the desired values for k. The function performs k-means clustering
using KMeans() from the sklearn package, calculates its silhouette score using the “the
silhouette_score()” function and returns the value of k for which the score was maximum.

3.2. optimum_w()

The optimum_w function is used to calculate the optimum window size. The window
size is a critical parameter for getting accurate predictions. A cross-validation is performed
to find the optimum value for the window size. The time series is divided into a training
and test set. The test set consists of the last cycle values of the time series and the training
set consists of the remaining time series values. PSF is performed on the training set and
cycle values are predicted. Then, the error is calculated for the predicted values and on the
test set. The error is calculated using the mean absolute error (MAE). The function returns
the value of w for which the error is minimum.

The functions for calculating the optimum window size and clustering the data may
yield a different result in R and Python. Therefore, the predictions done in R and Python
can vary in some cases. Furthermore, the default window values in optimum_w() range
from 5 to 20 in Python. In R, they range from 1 to 10. In some cases, it was observed that
the optimum number of clusters was calculated more accurately in Python. Overall, the
predicted values were very similar to R.

3.3. get_ts()

In the Python package for PSF, some time series are included, namely, “nottem”,
“AirPassengers”, “Nile”, “morley”, “penguin”, “sunspots”, and “wineind”. It should be
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noted that the package does not provide the entire data frames (datasets). It only provides
a 1D array that consists of the data for the time series. These can be accessed using the
get_ts() function, which takes as an input the name of the time series.

3.4. predict()

The predict() method is used to perform the forecasting. This method returns a
numpy array of values predicted according to the PSF algorithm (or DPSF algorithm, if
the DPSF model is used). The actual calculations take place in the psf_predict() function,
which was made private and not intended to be directly used by the user. The predict()
method also calculates the optimum values of k and w, in case no values are given by the
user, using the optimum_w() and optimum_k() functions described above. If a tuple of
values is passed instead of an integer, then the optimum k and w are calculated from those
values. Furthermore, the normalization of the data is done in this method.

Some other functions are available to the users. The model_print() function prints
the actual time series, predicted values, values of k and w used for predictions, and value of
cycle for the time series. This function does not return anything; it only prints the data and
parameters. The functions psf_plot() and dpsf_plot() take the PSF model and predicted
values as inputs and plot them. The functions make use of the “matplotlib” package.

4. Demonstration

Following several established research works from the literature, proposing a new soft-
computing methodology must be validated with real time series datasets [39–42]. The proposed
package in the current research was examined on six different time series dataset. The per-
formance of forecasting methods were compared with the root-mean-square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE), and Nash–Sutcliffe
efficiency (NSE) [43,44]. These error metrics are defined in Equations (4)–(7), respectively.

RMSE =

√√√√ 1
N

N

∑
i=1

∣∣Xi − X̂i
∣∣2 (4)

MAE =
1
N

N

∑
i=1

∣∣Xi − X̂i
∣∣ (5)

MAPE =
1
N

N

∑
i=1

∣∣Xi − X̂i
∣∣

Xi
× 100% (6)

NSE = 1− ∑N
i=1(Xi − X̂i)

2

∑N
i=1(Xi − Xmean)2

(7)

where Xi and X̂i are the measured and predicted data at time t. Xmean is the mean of the
measured data and N is the number of predicted values.

For each of the examples demonstrated, the original dataset was divided into training
and test data. The number of observation values used for the test data is mentioned in
each example. Once the forecasted values were calculated, they were compared against the
test data.

4.1. Example 1: Nottem Dataset

In the below example, the “nottem” time series was used for the model training,
forecasting, and plotting. It contains the average air temperatures at Nottingham Castle in
degrees Fahrenheit over 20 years [45]. The procedure is the same for other univariate time
series. Table 1 reveals the statistical characteristics of the time series.
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Table 1. Statistical characteristics of the “nottem” dataset.

Mean Median Min Max SD Kurtosis Skewness

280.3 265.5 104.0 622.0 119.9663 −0.429844 0.5710676

The package contains the get_ts() function, which can be used to access some uni-
variate time series included in the package using command in Listing 2.

Listing 2. get_ts() function to access univariate time series included in the package.

# From t h e p a c k a g e imp or t c l a s s PSF , and
# f u n c t i o n g e t _ t s ( ) and p s f _ p l o t ( )
>>> from PSF_Py import Psf , ge t_ t s , p s f _ p l o t

# Get t h e Time s e r i e s ’ not tem ’
>>> t s = g e t _ t s ( ’ nottem ’ )

We split the time series into training and test parts. The test contained the last 12
values of the time series and the training part contained the remaining data. A Psf model
was then created using the training set as shown in Listing 3.

Listing 3. Command to create a Psf model.

>>> t r a i n , t e s t = t s [ : len ( t s ) −12] , t s [ len ( t s ) − 1 2 : ]

# C r e a t e a PSF model f o r p r e d i c t i o n
>>> a = Psf ( data= t r a i n , c y c l e =12)

The model can be printed using the model_print() method as shown in Listing 4.

Listing 4. Command to print the model.

>>> a . model_print ( )

Or ig ina l time − s e r i e s :
0 4 0 . 6
1 4 0 . 8
2 4 4 . 4
3 4 6 . 7
4 5 4 . 1
5 5 8 . 5
6 5 7 . 7
7 5 6 . 4
8 5 4 . 3
9 5 0 . 5
10 4 2 . 9
\dots
219 4 6 . 6
220 5 2 . 4
221 5 9 . 0
222 5 9 . 6
223 6 0 . 4
224 5 7 . 0
225 5 0 . 7
226 4 7 . 8
227 3 9 . 2
Length : 228 , dtype : f l o a t 6 4
k = 2
w = 12
c y c l e = 12
dmin = 3 1 . 3
dmax = 6 6 . 5
type = < c l a s s ’ PSF_Py . psf . Psf ’>

Then, Listing 5 shows how the actual prediction was performed using this PSF model.
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Listing 5. Command to predict using PSF model.

# Per form p r e d i c t i o n us ing p r e d i c t method o f
# c l a s s P s f .
>>> b = a . p r e d i c t ( n_ahead =12)
>>> b

array ( [ 3 9 . 6 2 7 2 7 2 7 3 , 39 .65454545 , 41 .87272727 ,
46 .25454545 , 52 .87272727 , 58 .37272727 , 62 .40909091 ,
60 .25454545 , 5 6 . 3 8 , 4 9 . 4 5 , 43 .02857143 , 4 0 . 5 ] )

where b contains the predicted values.
The model and predictions can be plotted using the psf_plot() function (shown in

Listing 6) as shown in Figure 3.

Listing 6. Command to plot the original and predicted values.

>>> p s f _ p l o t ( a , b )

A similar procedure was carried out to perform the prediction in R using the PSF
library. Several error metrics was calculated for the predicted values and testing set. The
performance of Python and R are compared in Table 2 and Figure 4.
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Figure 3. Result of psf_plot() for the “nottem” dataset.

Table 2. Comparison of forecast methods with different error metrics for the “nottem” dataset.

Function Psf( ) Dpsf( ) psf( ) auto.arima( )
(Python) (Python) (R) (R)

Models (k, w) = (2, 12) (k, w) = (2, 12) (k, w) = (2, 2) -

RMSE 1.84 5.27 2.24 2.34
MAE 1.54 4.77 1.94 1.93

MAPE 3.23 9.43 4.14 4.21
NSE 0.94 0.59 0.92 0.91
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Figure 4. Plot showing the test data and values forecasted using various methods for the “nottem” dataset.

4.2. Example 2: CO2 Dataset

This example demonstrates the use of the DPSF algorithm. The dataset consisted of
atmospheric concentrations of CO2 expressed in parts per million (ppm) and reported in
the preliminary 1997 SIO manometric mole fraction scale [46]. The values for February,
March, and April of 1964 were missing and were obtained by interpolating linearly between
the values for January and May of 1964. Table 3 contains the statistical characteristics of the
time series.

Table 3. Statistical characteristics of the “CO2” dataset.

Mean Median Min Max SD Kurtosis Skewness

337.1 335.2 313.2 366.8 14.96622 −1.223013 0.2419156

The time series data were divided into training and testing datasets. The training set
contained the time series data, excluding the last 12 values. The testing dataset contained
the last 12 values. A Dpsf model was created using the training dataset, and the future 12
values were forecasted as shown in Figure 5. The corresponding commands are shown in
Listing 7. These predictions were then compared with the testing dataset. The comparisons
are provided in Table 4 and Figure 6.
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Figure 5. Result of dpsf_plot() for the “CO2” dataset.
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Listing 7. Commands to create and use Dpsf model.

# Impor t Dpsf , g e t _ t s ( ) , and d p s f _ p l o t ( )
# from PSF_Py p a c k a g e
>>> from PSF_Py import Dpsf , dpsf_plot , g e t _ t s

# Load t h e t ime s e r i e s CO2
>>> t s = g e t _ t s ( ’ co2 ’ )

# D iv id e t h e t ime s e r i e s i n t o t r a i n i n g and t e s t i n g
>>> t r a i n , t e s t = t s [ : len ( t s ) −12] , t s [ len ( t s ) − 1 2 : ]

# C r e a t e Dpsf model
>>> a = Dpsf ( data= t r a i n , c y c l e =12)

# The c r e a t e d model can be d i s p l a y e d us ing
# m o d e l _ p r i n t ( ) method
>>> a . model_print ( )
Or ig ina l time − s e r i e s :
0 315 .42
1 316 .31
2 316 .50
3 317 .56
4 318 .13
5 318 .00
6 316 .39
7 314 .65
8 313 .68
9 313 .18
10 314 .66
\dots
448 365 .45
449 365 .01
450 363 .70
451 361 .54
452 359 .51
453 359 .65
454 360 .80
455 362 .38
Length : 456 , dtype : f l o a t 6 4
k = 2
w = 18
c y c l e = 12
dmin = 313 .18
dmax = 365 .45
type = < c l a s s ’ PSF_Py . dpsf . Dpsf ’>

# Per form p r e d i c t i o n us ing p r e d i c t ( ) method
>>> b = a . p r e d i c t ( n_ahead =12)
>>> b
array ( [ 3 6 3 . 3 5 3 4 7 8 2 6 , 364 .19434783 , 365 .03521739 ,
366 .27304348 , 366 .79695652 , 366 .19913043 , 364 .75913043 ,
362 .73458498 , 361 .06708498 , 361 .03143281 , 362 .2740415 ,
3 6 3 . 5 1 4 4 5 8 1 7 ] )

# P l o t t h e model and p r e d i c t e d v a l u e s
>>> dpsf_plot ( a , b )

Table 4. Comparison of forecast methods with different error metrics for the “CO2” dataset.

Function Dpsf( ) Psf( ) psf( ) auto.arima( )
(Python) (Python) (R) (R)

Models (k, w) = (2, 18) (k, w) = (9, 19) (k, w) = (2, 10) -

RMSE 0.41 1.48 5.93 1.63
MAE 0.32 9.27 5.91 1.40

MAPE 0.08 2.67 1.62 0.38
NSE 0.95 0.32 −8.15 0.302
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Figure 6. Plot showing the test data and values forecasted using various methods for the “CO2” dataset.

4.3. Example 3: Water Demand Dataset

The PSF and DPSF algorithms were applied to forecast water demand on the given
dataset. Investigating such high complex time series data is highly important for water
management [47]. Table 5 contains the statistical characteristics of the time series.

Table 5. Statistical characteristics of the “Water Demand” dataset.

Mean Median Min Max SD Kurtosis Skewness

18.97 17.41 0.93 45.98 7.988099 0.3019151 0.6812421

Different error metrics comparison is listed in Table 6. The error for the Psf() function
in python was found to be better than that of the other algorithms adopted in this study.
The dataset and predictions using Psf() and Dpsf() are plotted in Figures 7 and 8. Further,
the comparison of forecasted values using various methods are shown in Figure 9.
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Figure 7. Result of psf_plot() for the “Water Demand” dataset.
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Figure 8. Result of dpsf_plot() for the “Water Demand” dataset.

Table 6. Comparison of forecast methods with different error metrics for the “Water Demand” dataset.

Function Dpsf( ) Psf( ) psf( ) auto.arima( )
(Python) (Python) (R) (R)

RMSE 6.16 5.92 6.45 7.55
MAE 4.98 4.37 5.07 5.93

MAPE 45.69 49.55 70.99 86.58
NSE −1.79 −5.22 −0.17 −0.61
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Figure 9. Plot showing the test data and values forecasted using various methods for the “Water
Demand” dataset.

4.4. Example 4: Total Solar Radiation Dataset

Among several climatological time series, total solar radiation is one of the essential
climatological processes. Providing a robust soft-computing methodology for solar radiation
can contribute remarkably to clean and friendly sources of energy [48]. The dataset consisted
of daily solar radiation readings for year 2010 to year 2018 at Baker station in North Dakota.
Before applying the algorithms, the dataset was reduced by taking the mean of the values for
each month. Table 7 presents the statistical characteristics of the time series. Performance of
various methods are tabulated in Table 8. Results of psf_plot() and dpsf_plot() for the
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“Total Solar Radiation” dataset are shown in Figures 10 and 11. Further, the comparison of
forecasted values with different methods are shown in Figure 12.

Table 7. Statistical characteristics of the “Total Solar Radiation” dataset.

Mean Median Min Max SD Kurtosis Skewness

325.11 296.90 16.71 750.09 188.0211 −0.7063935 0.5369928

The error for Psf() was significantly less the that for auto.arima() and Dpsf(). The
errors are listed in Table 8.

Table 8. Comparison of forecast methods with different error metrics for “Total Solar Radiation” dataset.

Function Dpsf( ) Psf( ) psf( ) auto.arima( )
(Python) (Python) (R) (R)

RMSE 446.48 121.84 137.73 233.17
MAE 345.22 108.20 104.66 197.16

MAPE 338.73 52.37 56.56 124.71
NSE −4.58 0.25 0.63 −0.043
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Figure 10. Result of psf_plot() for the “Total Solar Radiation” dataset.
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Figure 11. Result of dpsf_plot() for the “Total Solar Radiation” dataset.
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Figure 12. Plot showing the test data and values forecasted using various methods for the “Total
Solar Radiation” dataset.

4.5. Example 5: Average Bare Soil Temperature

Soil temperature is an important process that is related to geoscience engineering [49].
Based on the factual mechanism, soil temperature has highly nonstationary features due to
the influence of the soil morphology, climate, and hydrology information [50,51]. Hence,
taking the soil temperature as a time series forecasting is highly useful for multiple geo-
science engineering applications [52]. The data were obtained from the same region as
in Example 4 (“Baker station”) and using the same data span, “2010–2018”. A similar
modeling procedure was implemented as in Section 4.4. Table 9 reports the statistical
characteristics of the soil temperature time series, and the performance of various methods
are tabulated in Table 10. Results of psf_plot() and dpsf_plot() for the “Average Bare
Soil Temperature” dataset are shown in Figures 13 and 14. Further, the comparison of
forecasted values with different methods are shown in Figure 15.

Table 9. Statistical characteristics of the “Average Bare Soil Temperature”.

Mean Median Min Max SD Kurtosis Skewness

46.65 42.38 21.48 78.21 17.18163 −1.395386 0.355737
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Figure 13. Result of psf_plot() for the “Average Bare Soil Temperature” dataset.
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Figure 14. Result of dpsf_plot() for the “Average Bare Soil Temperature” dataset.

Table 10. Comparison of forecast methods with different error metrics for the “Average Bare Soil
Temperature” dataset.

Function Dpsf( ) Psf( ) psf( ) auto.arima( )
(Python) (Python) (R) (R)

RMSE 12.70 7.92 9.38 8.75
MAE 9.40 5.79 7.69 7.32

MAPE 18.23 10.85 15.42 14.39
NSE 0.37 0.70 0.69 0.73
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Figure 15. Plot showing the test data and values forecasted using various methods for the “Average
Bare Soil Temperature” dataset.

4.6. Example 6: Average Temperature

The final example reported in this research is modeling the air temperature. Having
a reliable and robust technique for air temperature is very essential for diverse water
resources and hydrological processes [53,54], for instance, in agriculture, water body evap-
oration, crops production, etc. [55]. Similar to Examples 4 and 5, the air temperature data
were from the same station, region, and data span. For these data, the procedure followed
was the same as in Examples 4 and 5. Table 11 indicates the statistical characteristics of
the time series. The performance of various methods are tabulated in Table 12. Result of



Appl. Sci. 2022, 12, 6194 15 of 19

psf_plot() for the “Average Temperature” dataset are shown in Figure 16. Further, the
comparison of forecasted values with different methods are shown in Figure 17.

Table 11. Statistical characteristics of the “Average Temperature” dataset.

Mean Median Min Max SD Kurtosis Skewness

39.48 43.47 −15.70 77.85 24.23293 −0.85042 −0.4995846

Table 12. Comparison of forecast methods with different error metrics for the “Average Tempera-
ture” dataset.

Function
Psf( ) Dpsf( ) psf( ) auto.arima( )

(Python) (Python) (R) (R)

RMSE 7.83 85.14 12.34 10.87
MAE 6.41 80.91 9.62 8.83

MAPE 22.29 207.16 22.03 22.03
NSE 0.69 −35.81 0.61 0.69
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Figure 16. Plot showing result of psf_plot() for the “Average Temperature” dataset.
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Figure 17. Plot showing the test data and values forecasted using various methods for the “Average
Temperature” dataset.
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5. Discussion and Conclusions

This paper described the PSF_Py package in detail and demonstrated its use for
implementing the PSF and DPSF algorithms for diverse applications on real time series
forecasting datasets. The package makes it very easy to make predictions using the PSF
algorithm. The syntax is similar to that in R and is very easy to understand. The examples
shown above suggested that the results from the Python package were comparable to
those in R. The values of the window size and the number of clusters may differ in both
packages. The algorithm worked exceptionally well for the time series containing periodic
patterns. The forecasting error of the DPSF method, implemented in the proposed package,
was much smaller and better than the benchmark ARIMA model. The complexity of a
model is another critical aspect besides its accuracy. We compared the time and space
complexities of the models in case studies with the GuessCompx tool. The GuessCompx
tool [56,57] empirically estimates the computational complexity of a function in terms of
Big-O notations. It computes multiple samples of increasing sizes from the given dataset
and estimates the best-fit complexity according to the “leave-one-out mean squared error
(LOO-MSE)” approach. The “nottem” dataset was used to calculate the complexities. The
results of the tool are summarized in Table 13, and it shows that both PSF and DPSF models
are computationally efficient and consumes an optimum amount of memory to achieve a
better accuracy.

Table 13. Estimated complexities according to the GuessCompx tool [56].

Psf()(Python)/psf()(R) Dpsf( ) (Python) auto.arima( ) (R)

Time Complexity O(log n) O(log n) O(n3)

Space Complexity O(log n) O(log n) O(1)

It is worth to mention that this research proposed a reliable and robust computational
technique that can be implemented for online and offline forecasting for diverse hydrolog-
ical and climatological applications [58,59]. In future work, other hybrid models [33,60]
of the PSF method can be incorporated into the proposed Python package, with which
further improved accuracy in forecasting can be targeted. In addition, the application of
the proposed package could be extended to several new data-driven research domains.
Further, other hydrological processes dataset or other engineering time series data could be
investigated for the possibility to generalize the proposed package.

Author Contributions: Conceptualization, M.K.S., S.Q.S., M.S. and N.D.B.; methodology, M.K.S.,
S.Q.S., M.S. and N.D.B.; software, M.K.S., A.Y.O., Z.M.Y. and N.D.B.; validation, Z.M.Y., M.S., A.Y.O.
and N.D.B.; formal analysis, M.K.S., S.Q.S., Z.M.Y., M.S., A.Y.O. and N.D.B.; investigation, M.K.S.,
S.Q.S, Z.M.Y., M.S., A.Y.O. and N.D.B.; resources, S.Q.S., Z.M.Y., M.S., A.Y.O. and N.D.B.; data
curation, M.K.S., S.Q.S., Z.M.Y., A.Y.O. and N.D.B.; writing—original draft preparation, M.K.S., S.Q.S.,
Z.M.Y., M.S., A.Y.O. and N.D.B.; writing—review and editing, M.K.S., S.Q.S., Z.M.Y., M.S., A.Y.O.
and N.D.B.; visualization, M.K.S. and N.D.B.; supervision, Z.M.Y., M.S., A.Y.O. and N.D.B.; project
administration, Z.M.Y., M.S., A.Y.O. and N.D.B.; funding acquisition, Z.M.Y., N.D.B. and M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially predominantly supported by WATERAGRI (European Union
Horizon 2020 research and innovation program under Grant Agreement Number 858375).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 6194 17 of 19

Abbreviations
The following abbreviations are used in this manuscript:

1D One-dimensional
ARIMA Autoregressive integrated moving average
CO2 Carbon dioxide
DPSF Differenced pattern-sequence-based forecasting
MAE Mean absolute error
MAPE Mean absolute percentage error
Max Maximum value
Min Minimum value
NSE Nash–Sutcliffe efficiency
PSF Pattern-sequence-based forecasting
RMSE Root-mean-square error
SD Standard deviation
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