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Abstract: Multicasting of quantum states is an essential feature of quantum internet. Since the
noncloning theorem prohibits perfect cloning of an unknown quantum state, an appropriate protocol
may depend on the purpose of the multicast. In this paper, we treat the multicasting of a single copy
of an unknown state over a quantum network with free classical communication. We especially focus
on protocols exactly multicasting an asymmetric optimal universal clone. Hence, these protocols are
optimal and universal in terms of mean fidelity between input and output states, but the fidelities
can depend on target nodes. Among these protocols, a protocol spending smaller communication
resources is preferable. Here, we construct such a protocol attaining the min-cut of the network
described as follows. Two (three) asymmetric optimal clones of an input state are created at a source
node. Then, the state is divided into classical information and a compressed quantum state. The state
is sent to two (three) target nodes using the quantum network coding. Finally, the asymmetric clones
are reconstructed using LOCC with a small amount of entanglement shared among the target nodes
and the classical information sent from the source node.

Keywords: quantum information; quantum communication; quantum network; universal cloning;
network coding; entanglement

1. Introduction

In recent years, rapid progress has been made in the research and development of
standalone quantum computers [1], both in terms of software and hardware, to the point
where it is debated whether quantum computational supremacy has achieved [2–4]. In the
near future, standalone quantum computers are expected to show innovative performance
in various fields, such as machine learning [5–9] and computational chemistry [10–14]. On
the other hand, it is known that much quantum information processing, including various
different types of quantum cryptography such as quantum public-key cryptography [15],
quantum blind computation [16,17], and quantum money [18,19] cannot be realized on
standalone quantum computers but only on quantum networks [20], where a quantum
network of a large size is called quantum internet [21,22]. Thus, recently, quantum network
has been intensively studied both theoretically [23–29] and experimentally [30,31].

Theoretical research for improving the throughput of quantum networks started from
the study of quantum repeaters aiming to share a maximally entangled state between end
vertices of a quantum network represented by a path graph [32,33]. After an enormous
amount of research in this direction (see [20] and references therein), the ultimate limit for
sharing a maximally entangled state between a given pair of nodes on a quantum network
was finally derived by Pirandola et al. [24,26]. On the other hand, since multiple users
may simultaneously communicate with each other, it is also important to study multiparty
communication protocol on a quantum network. In general, the problem of finding a better
multiparty communication protocol on a quantum network is much more complicated
than a problem of a two-party communication protocol. First, even on the classical net-
work, there are many different types of multiparty communication. Simple examples of
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multiparty communication may be multiple-unicast communication and multicast com-
munication, where the definitions of these schemes are given later in this introduction.
However, in general, an arbitrary type of communication among multiple parties can be
considered [34], and we need to optimize the communication protocol depending on the
type. Furthermore, there is an additional problem with multiparty communication on quan-
tum networks. As is well known, “a class of maximally entangled states” is not unique [35]
in a multipartite system, which is represented by the incomparability of GHZ states and W
states under stochastic local operation and classical communication (SLOCC) [36]. This fact
suggests that depending on our purpose, we need to use a different multiparty protocol
to share a different type of states. In other words, we cannot discuss the optimality of the
multiparty protocol before we determine what type of states we want to share.

In classical information theory, a technique called network coding is known to be
useful to improve throughput of various different multiparty communication schemes
when there is a bottleneck on a network. Here, network coding is a technique of apply-
ing nontrivial operations to the bitstream at intermediate nodes [37–39]. The method of
network coding can be also applied to quantum networks, and quantum information
processing on a quantum network that utilizes methods of network coding is called “a
quantum network coding” [40]. There has been a considerable amount of research on
quantum network coding, which tries to improve the throughput of a quantum network in
various situations [41–57]. Recently, it has been presented that quantum network coding
can improve the security of a quantum network [58–61] and reduce decoherence effect [62].
Furthermore, it is useful for quantum repeater networks [63,64] as well as for distributed
quantum computation [65]. Moreover, a simple quantum network code has been experi-
mentally demonstrated [66,67]. Although many studies have considered network coding
on noisy classical networks in classical information theory, almost all the studies of quan-
tum network coding consider noise-free quantum networks. This is because quantum
network coding is regarded as a protocol implemented on a layer on which the errors have
been already corrected. Hence, in this study, we consider noise-free quantum networks.

In classical network coding, the majority of the studies have focused on multicast
communication, where a single source node transmits the same information to multiple
target nodes on a network [37,38]. The left-hand side of Figure 1 shows the network coding
for a the butterfly network. This is one of the simplest examples of classical multicast
network coding. Another type of network coding is called multiple-unicast network
coding. Here, there are k pairs of source and target nodes (s0, t0), . . . , (sk−1, tk−1) on the
network, and each source node si independently transmits a message to the corresponding
target node ti for all i [68]. The modified version of the butterfly network in the right-hand
side of Figure 1 is one of the simplest examples of classical multiple-unicast network coding.

Most of the research on quantum network coding considered multiple-unicast com-
munication, i.e., multiple-unicast quantum network coding, where each source node
transmits a quantum state (instead of a classical message) to the corresponding target
node [41,43,45,46,53,58–61,63,64]. The most important results are those of Kobayashi et al.
If classical information (or measurement results) can be freely sent among the nodes on a
quantum network, Kobayashi et al. gave a canonical procedure for constructing a quantum
multiple-unicast network code from a given classical multiple-unicast network code. Here,
the quantum network for the quantum code and the classical network for the classical code
must be represented by the same graph [43,46].
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Figure 1. The left-hand side is a multicast classical network coding on the butterfly network, where a
single source node s sends messages b0 and b1 on the finite field Fq := Z/Zq to both target nodes t1

and t2, where q is a prime power. The right-hand side is a multiple-unicast classical network coding
on the butterfly network, where a source node s0 sends message b0 ∈ Fq to target node t0, and source
node s1 sends message b1 ∈ Fq to target node t1.

Unlike quantum multiple-unicast network coding, there has been less research on
quantum network coding focusing on multicast communication [42,44,48–50,52,57]. This is
because in quantum information theory, the no-cloning theorem prohibits perfect multicast
communication [69], and, thus, it is not straightforward to construct a multicast quantum
network coding protocol as an extension of a classical multicast network coding protocol.

One paper by Shi et al. is the first to treat quantum multicast network coding [42].
They consider the problem of distributing N-identical copies of a state |ψ〉 from a single
source node to N target nodes. Since the number of copies of |ψ〉 is equal to the number of
target nodes, |ψ〉 can be distributed without cloning the quantum states. Shi et al. showed
that coding on intermediate nodes can increase the throughput of the quantum network.

The second work treating this topic is one paper by Kobayashi et al. [44]. In this paper,
a single copy of a state |ψ〉 = ∑d

i=1 αi|i〉 is given on the source node and the aim is to share
a Greenberger–Horne–Zeilinger (GHZ)-type state ∑d

i=1 αi|i〉1 ⊗ · · · ⊗ |i〉N among target
nodes, where the ith local system is on the ith target node. From this GHZ-type state shared
among the target nodes, the input state |Ψ〉 can be reconstructed at any target node by
local operations and classical communication (LOCC). Based on classical multicast network
coding, Kobayashi et al. developed a quantum protocol to achieve the above task under
the assumption of free classical communication among nodes on the quantum network.

The third work treating this topic is one paper by Xu et al. [52]. They proposed a
communication protocol on a quantum network called quantum cooperative multicast.
In their problem setting, there are multiple source nodes s1, · · · , sN and target nodes
t1, · · · , tM in a given quantum network. At the beginning, source node si has an unknown
state |ψi〉 = ∑d

k=1 αi,k|k〉, and their purpose is that for a given function fk : CN → C,
after quantum communication over the quantum network, each target node reconstructs a
quantum state |φ〉 defined by

|φ〉 =
d

∑
k=1

fk(α1,k, · · · , αN,k)|k〉. (1)
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They showed that this problem can be considered as a generalization of classical
multicast communication and presented protocols using network coding to probabilistically
achieve the above goal on the multiple-unicast butterfly network given in the right figure
of Figure 1. Although the protocols of Shi et al., Kobayashi et al., and Xu et al. can be
considered as generalizations of classical multicast network coding to quantum networks,
rigorously speaking, the goal of their protocols is not exactly to achieve a multicast of a
quantum state.

Recently, Pan et al. proposed a new multicast protocol using quantum network
coding [57]. The purpose of the protocol is to probabilistically send an exact copy or an
exact orthogonal complement of a known qubit state from a source node to multiple target
nodes on a quantum network. Because the sender knows the state, this protocol does not
contradict the no-cloning theorem [69]. On the other hand, this task is trivial when free
classical communication is allowed. Hence, they consider the situation where each channel
on the quantum network can send either one qubit or two classical bits in a single session
of the protocol; that is, classical communication is restricted in their problem setting. They
give an efficient protocol to achieve this goal on the multicast butterfly network given in
the left figure of Figure 1 and also on the extended butterfly network.

In this paper, we consider a yet different problem setting on multicast on the quantum
network. As we have already mentioned, perfect multicast of an unknown state is impossi-
ble. Nevertheless, imperfect multicast of an unknown quantum state is still possible. When
we restrict ourselves to imperfect multicast of a quantum state through noiseless quantum
channels, the problem of multicast of an unknown quantum state reduces to a problem
of cloning an unknown quantum state. This problem is called quantum approximate
cloning [70,71] and has been intensively studied both theoretically [72–85] and experimen-
tally [86–91].

The performance of a cloning protocol is normally measured in terms of the fidelity
between an unknown input state and an output clone. When this fidelity does not depend
on an input state, the protocol is called universal cloning. Among them, a protocol achieving
the maximum fidelity is called optimal universal cloning [70,71]. Here, we need to add the
following remark. When M output clones ρi (i = 1 · · ·M) of an input unknown state, |ψ〉
are created by a cloning protocol. We need to treat M independent fidelities Fi := 〈ψ|ρi|ψ〉
and cannot straightforwardly define an optimal protocol. One way to resolve this problem
is to add a constraint that all the clones are equivalent, that is, ρi = ρj for all i and j. This
immediately leads Fi = Fj for all i and j, and the optimal universal cloning satisfying this
condition is called symmetric optimal universal quantum cloning. On the other hand,
when we do not use the constraint of symmetry, we need to define a weight wi satisfying
wi ≥ 0 and ∑i wi = 1 and a weighted mean fidelity F := ∑i wiFi. The universal cloning
which is optimal in terms of F is called asymmetric optimal universal quantum cloning. By
the definition, symmetric optimal universal cloning is a special case of asymmetric optimal
universal quantum cloning such that the weight wi = 1/M for all i.

In the viewpoint of multiparty communication, optimal universal quantum cloning
is nothing but a multicast quantum channel that is optimal in terms of fidelity. Therefore,
when we consider a quantum network communication, sending an optimal universal
quantum clone (UQC) from a single source node to multiple target nodes is a multicast
network communication that is optimal in terms of fidelity. Furthermore, this problem may
be considered one of the most natural quantum extensions of classical multicast network
coding. Hence, our research problem to study in which condition this communication
task is achievable is information-theoretically important. Furthermore, it is known that
quantum approximate cloning is useful for several information processing tasks including
eavesdropping on quantum key distribution protocols [92–96], broadcasting quantum
coherence [97], and multiple-unicast quantum network coding over the butterfly network
without classical communication [40]. This fact strongly suggests that our research problem
is practically important as well.
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Based on this idea, Owari et al. constructed a protocol to exactly share a symmet-
ric optimal UQC of an input state on the target nodes under the conditions that clas-
sical information can be sent freely among nodes on a quantum network and that a
small amount of entanglement is shared on target nodes at the beginning of the pro-
tocol [49,50]. They also gave a protocol to approximately share a symmetric optimal UQC
without entanglement shared among target nodes [48]. We further note that although the
references [48–50] are written in Japanese, their English version is now planned to be
written [98].

In this paper, we focus on extending Owari et al.’s results [49,50] to asymmetric
optimal universal quantum cloning [75–85], which is a generalization of symmetric optimal
universal quantum cloning. Thus, we construct a protocol to efficiently and exactly multicast
an asymmetric optimal clone of a qr-dimensional input quantum state from one source
node to two (three) target nodes, where q is assumed to be a prime power.

Our problem setting is given by the following four assumptions, which are almost in
common with those used in [49,50]:

• The noise-free quantum network can be described by an undirected graph G with one
source node and two (three) target nodes.

• Each quantum channel on the quantum network can transmit one q-dimensional
quantum system in a single session.

• Measurement results (or classical information) can be sent freely from one node to
another node on the quantum network.

• A small amount of entanglement that does not scale with q, is shared among the target
nodes. The amount of entanglement is at most 2 ebit for two target nodes, and at most
(2 + 4 log2 3) ebit for the case of three target nodes.

Under these assumptions, we prove that multicasting of 1→ 2 (1→ 3) asymmetric
optimal UQCs of a qr-dimensional state is possible, if there exists a classical solvable linear
multicast network code with source rate r for a noise-free classical network described by
an acyclic directed graph G′, where G is an undirected underlying graph of G′. Using the
max-flow and min-cut theorem of multicast network coding [37,38], for sufficiently large q,
this sufficient condition for the existence of a classical network code on G′ can be replaced
by the condition that the minimum-cut between the source node s and a target node ti is no
less than r for all i.

An outline of our protocol is as follows:

• We create two (three) asymmetric optimal UQCs of an input state with an ancilla
system at a source node.

• We measure the ancilla system and send the measurement outcomes to the target
nodes.

• We compress the whole d2 (d3)-dimensional system into a d-dimensional system.
• We transmit the resulting state to two (three) target nodes using Kobayashi et al.’s

multicast quantum network coding [44]. As a result, a GHZ-type state is shared among
target nodes.

• We reconstruct the asymmetric optimal UQCs of the input state from the GHZ-type
state using LOCC with a small amount of entanglement among the target nodes and
the measurement outcomes sent from the source node.

Using the above protocol, we can multicast asymmetric optimal clones from one source
node to two (three) target nodes (Figure 2). Here, we note that although the above outline
of our protocol is almost the same as the protocol of Owari et al. of symmetric optimal
UQCs, the detail of each part is completely different.
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Figure 2. Schematic diagram of a protocol for multicasting asymmetric optimal UQCs from one
source node to two target nodes. The asymmetric optimal cloning protocol for the input state |ψ〉
is implemented at the source node. The resulting state is compressed into a d-dimensional system
and transmitted to the two target nodes using the quantum multicast network coding protocol of
Kobayashi et al. [44]. Finally, the asymmetric optimal clones of the input state are reconstructed by
LOCC on target nodes with the help of a small amount of entanglement.

To see the efficiency of our protocol, it is convenient to consider the multicast butterfly
network given on the left-hand side of Figure 1. When each edge corresponds to a q-
dimensional noiseless quantum channel and the target nodes t0 and t1 share 2 ebit, our
protocol distributes asymmetric optimal QCMs of q2-dimensional input states. On the other
hand, we can easily see that a conventional protocol without network coding based on
entanglement swapping (or quantum repeater) only distributes asymmetric optimal QCMs
of q-dimensional input states at most. Hence, the rate of our protocol is double that of the
conventional protocol. We further show that the above protocol can be used for efficient
preparation of quantum asymmetric telecloning [99,100] over a quantum network.

The rest of the paper is organized as follows: We explain the asymmetric optimal uni-
versal quantum cloning and the quantum multicast network coding protocol of Kobayashi
et al. in Section 2. We present all the results in Section 3, where a protocol for multicasting
1 → 2 asymmetric optimal clones is given in Section 3.1. We also present a protocol for
multicasting 1→ 3 asymmetric optimal clones in Section 3.2. Finally, we give a discussion
and summary in Section 4.

2. Materials and Methods

Asymmetric optimal universal quantum cloning, classical linear multicast network
coding, and the multicast quantum network coding protocol of Kobayashi et al. are
all important in our protocol. In this section, we explain optimal asymmetric universal
quantum cloning in Section 2.1. Then, classical linear multicast network coding and
the multicast quantum network coding protocol of Kobayashi et al. are presented in
Sections 2.2 and 2.3, respectively.

2.1. Optimal Asymmetric Quantum Universal Cloning Machine

The no-cloning theorem states that quantum mechanics prohibits a quantum operation
that makes perfect copies of an unknown quantum state [69]. That is, there is no quantum
channel (or a completely positive and trace preserving map) ε : B(H)→ B(H⊗2) satisfying
ε(ρ) = ρ⊗ ρ for all pure states ρ on a Hilbert spaceH, where B(H) is a space of all linear
operators on the Hilbert spaceH. This immediately leads to the impossibility of a perfect
multicast of an unknown quantum state. On the other hand, quantum mechanics does
not completely prohibit approximate cloning of a quantum state. Thus, there may exist
a quantum channel ε : B(H) → B(H⊗2) such that Tr2 ε(ρ) and Tr1 ε(ρ) are close to ρ for
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an arbitrary pure state ρ, where Tri is the partial trace of the ith subsystem. Hence, many
studies have focused on quantum protocols to make an approximate copy of unknown
states (so-called quantum cloning machines) [72–85].

In general, a quantum cloning machine (QCM) that produces N approximate clones
based on M copies of a given quantum state |ψ〉 ∈ H is a quantum channel ε from B

(
H⊗M)

to B
(
H⊗N). Suppose that ρi is a reduced density matrix of the output state on the ith

subsystem: ρi = Tr¬i ε
(
(|ψ〉〈ψ|)⊗M

)
, where Tr¬i is a partial trace of all subsystems except

the ith subsystem. Since the purpose of a QCM is to make ρi as closed as the input state
|ψ〉〈ψ|, the performance of a QCM can be described by the output fidelity Fi between ρi
and |ψ〉〈ψ|:

Fi = 〈ψ|ρi|ψ〉, (i = 1, ..., M). (2)

A QCM is called universal if Fi does not depend on the input state |ψ〉. Furthermore,
a universal QCM (UQCM) is called symmetric if the all clones are the same: ρi = ρj for
all i and j. A UQCM that is not symmetric is asymmetric. Since the output states of an
asymmetric UQCM satisfy ρi 6= ρj, the output fidelity Fi also depends on i. Thus, to discuss
the optimality of an asymmetric UQCM, we need to define a weight {wi}M

i=1 satisfying
wi ≥ 0 and ∑M

i wi = 1. Then, the mean output fidelity F of an asymmetric UQCM ε with
respect to the weight {wi}M

i=1 is defined by

F :=
M

∑
i

wiFi. (3)

For a given weight {wi}M
i=1, an asymmetric UQCM that attains the optimum of the

mean output fidelity F is called an asymmetric optimal UQCM w.r.t {wi}.
For existing results on asymmetric optimal UQCM, we refer to [71,84]. Here, we only

give known facts on asymmetric optimal UQCM that are necessary for our research. First,
we give an optimal asymmetric UQCM with M = 1 and N = 2 (we call this protocol a
1→ 2 optimal asymmetric UQCM). This protocol uses three systems: A, B, and M, whose
Hilbert spaces areHA,HB, andHM, respectively. Here,HA works as an input system and
the first output system,HB is the second output system, andHM is an ancilla system. The
dimensions of all three systems are the same, and we denote this dimension as d; that is,
dimHA = dimHB = dimHM =: d. Then, for an input state |ψ〉 on system A, a 1 → 2
optimal asymmetric UQCM is given by an isometry U(a,b)

1→2 from HA to HA ⊗HB ⊗HM
satisfying [78]:

U(a,b)
1→2 |ψ〉A = a|ψ〉A|Φ+

d 〉BM + b|ψ〉B|Φ+
d 〉AM. (4)

where
∣∣Φ+

d
〉

is a standard d-dimensional maximally entangled state:

|Φ+
d 〉 :=

1√
d

d−1

∑
k=0
|k〉|k〉, (5)

and a and b are positive real parameters satisfying

a2 + b2 +
2ab
d

= 1. (6)

Note that in order to simplify the formulas, the parameters a, b are often used instead
of the weight {wi}2

i=1 in the definition of the 1 → 2 optimal asymmetric UQCM. Using

U(a,b)
1→2 defined above, the optimal asymmetric UQCM ε

(a,b)
1→2 is

ε
(a,b)
1→2(|ψ〉〈ψ|) := TrM

(
U1→2|ψ〉〈ψ|AU†

1→2

)
. (7)
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The reduced density matrices of the output states can be written as

ρA := TrB ε
(a,b)
1→2(|ψ〉〈ψ|) = (1− b2)|ψ〉〈ψ|+ b2 I

d

ρB := TrA ε
(a,b)
1→2(|ψ〉〈ψ|) = (1− a2)|ψ〉〈ψ|+ a2 I

d
.

(8)

Thus, the fidelity of the reduced density matrices, which have been proved to be
optimum [78], is given by

FA := 〈ψ|TrB

(
ε
(a,b)
1→2(|ψ〉〈ψ|)

)
|ψ〉 = 1− b2 d− 1

d
,

FB := 〈ψ|TrA

(
ε
(a,b)
1→2(|ψ〉〈ψ|)

)
|ψ〉 = 1− a2 d− 1

d
,

(9)

where I is an identity operator on a d-dimensional system. The well-known formula
FA = FB = d+3

2(d+1) of the fidelity of an optimal symmetric UQCM is derived from the above
equations by substituting a = b [71].

Next, we give an optimal asymmetric UQCM with M = 1 and N = 3 (we call this
protocol the 1 → 3 optimal asymmetric UQCM). This protocol use five systems A, B, C,
R, and S whose Hilbert spaces are HA, HB, HC, HR, and HS, respectively. Here, HA is
an input system that is also the first output system. HB andHC are the second and third
output systems, respectively. HR andHS are ancilla systems. The dimensions of all systems
are the same, which we denote as d. For an input state |ψ〉 on system A, 1 → 3 optimal
asymmetric UQCM is given by an isometry U(α,β,γ)

1→3 fromHA toHA⊗HB⊗HC⊗HR⊗HS
satisfying the following equation:

U(α,β,γ)
1→3 |ψ〉 =

√
d

2d + 2
[α|ψ〉A(|Φ+

d 〉BR|Φ+
d 〉CS + |Φ+

d 〉BS|Φ+
d 〉CR)

+ β|ψ〉B(|Φ+
d 〉AR|Φ+

d 〉CS + |Φ+
d 〉AS|Φ+

d 〉CR)

+ γ|ψ〉C(|Φ+
d 〉AR|Φ+

d 〉BS + |Φ+
d 〉AS|Φ+

d 〉BR)].

(10)

Here, α, β, γ are non-negative real parameters which are used instead of the weight
{wi}3

i=1 and satisfy the following constraint [71,79,80]:

α2 + β2 + γ2 +
2
d
(αβ + βγ + αγ) = 1. (11)

In terms of UABCRS, a 1→ 3 optimal asymmetric UQCM ε
(α,β,γ)
1→3 can be written as:

ε
(α,β,γ)
1→3 (|ψ〉〈ψ|) := TrRS

(
U(α,β,γ)

1→3 |ψ〉〈ψ|AU(α,β,γ) †
1→3

)
. (12)

The fidelities between an input state and each reduced density matrix, which were
proved to be optimum [71,79,80], are given as follows:

FA = 1− d− 1
d

(
β2 + γ2 +

2βγ

d + 1

)
,

FB = 1− d− 1
d

(
α2 + γ2 +

2αγ

d + 1

)
, (13)

FC = 1− d− 1
d

(
α2 + β2 +

2αβ

d + 1

)
.

We refer [79] for the figure depicting behavior of FA, FB, and FC with respect to
α, β and γ.
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2.2. Classical Multicast Network Coding

Since our protocol uses the protocol of Kobayashi et al. as a subroutine and since
the protocol of Kobayashi et al. is based on a classical linear multicast network code,
we introduce classical linear multicast network coding in this subsection. A detailed
description of classical multicast network coding can be found in standard textbooks of
network coding [37,38].

A classical network is represented by a directed graph G′ = (V, E′), where a vertex
v ∈ V represents a node of the network and an edge e ∈ E′ represents a noiseless classical
channel. In this paper, we assume that G′ is acyclic. There exist a source node s ∈ V and N
target nodes t1, . . . , tN ∈ V on the network. A node that is neither a source node nor a target
node is called an intermediate node. In a single session of a classical multicast network
coding, an alphabet on the finite field Fq is sent from node u to node v if (u, v) ∈ E′, where
the order of Fq is a prime power q. Since G′ is an acyclic directed graph, a natural partial
ordering can be defined on E′. This partial ordering is generated by the condition that
(u, v), (v, w) ∈ E′ =⇒ (u, v) ≺ (v, w). The order of transmissions of classical information
can be determined by this partial ordering. That is, an edge e ∈ E′ transmits an alphabet
after all edges e′ ∈ E′ satisfying e′ ≺ e have transmitted alphabets. We assume that there is
no incoming edge to the source node s and that there is no outgoing edge from any target
node. Hence, all edges whose tail node is the source node s are a local minimum, and all
edges whose head node is a target node are a local maximum under the partial ordering.
We further assume that all edges whose tail node is not the source node s are not a local
minimum and that all edges whose head node is not a target node are not a local maximum.
This is because the edges that do not satisfy these conditions are useless for our purpose.

A classical linear multicast network code over Fq on G′ consists of a set of linear maps
{ fe}e∈E′ . At the beginning of a session, an input message ~x := (x1, . . . , xr) ∈ Fr

q is chosen
on the source node s, where r is the source rate of the classical multicast network code.
Suppose e is an outgoing edge of v. At the first step of the network coding, an alphabet
ye transmitted through the edge e is chosen as a linear combination of x1, . . . , xr. In other
words, in terms of a linear function fe : Fr

q → Fq, ye can be written as

ye := fe(~x) = fe(x1, · · · xr). (14)

After calculating ye, ye is transmitted through e. After all edges outgoing from the
source node s transmitted an alphabet, all intermediate nodes transmit alphabet in the
order determined by the partial ordering as follows: Suppose an intermediate node v on the
network has m incoming edges and e is an outgoing edge from v. After all transmissions
of m incoming edges to v have finished, the node v has m-alphabets yj ∈ Fq (j = 1, . . . , m),
where yj is an alphabet sent through the jth incoming edge. Then, an alphabet ye transmit-
ted through the edge e is chosen as a linear combination of y1, . . . , ym. In other words, there
exists a linear function fe : Fm

q → Fd such that

ye := fe(y1, · · · ym). (15)

After the calculation, ye is transmitted through e.
Suppose a target node ti has mi incoming edges. Then, after all edges have transmitted

an alphabet, the target node ti has mi-alphabets y(i)j ∈ Fq (j = 1, · · · , mi), where y(i)j is an
alphabet sent through the jth incoming edge to ti. A classical linear multicast network
code { fe}e∈E′ is called solvable if there exists a set of decoding operations {gi}N

i=1 such that
gi : Fmi

q → Fr
q satisfies the following equation for all i:

~x = gi

(
y(i)1 , · · · , y(i)mi

)
, (16)

where ~x ∈ Fr
q is the input message. If a classical linear multicast network code is solvable,

any decoding operation gi can be chosen as a linear map.
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There is a necessary and sufficient condition for the existence of a classical linear
multicast network code [37,38]. Suppose that Ci is the size of the minimum cut between s
and ti. Then, there exists a classical linear multicast code with source rate r on G′ over a
sufficiently large field Fq if and only if Ci ≥ r for all i. This is nothing but a generalization
of the famous max-flow min-cut theorem to a multicast network communication.

2.3. Quantum Multicast Network Coding

In this subsection, we review the protocol of Kobayashi et al. [44]. First, we give
a problem setting for multicast quantum network coding that is common between our
protocol and the protocol of Kobayashi et al. A quantum network is described by an
undirected graph G = (V, E), where V represents a set of nodes and E represents a set of
quantum channels. There exist a source node s ∈ V and N target nodes t1, . . . , tN ∈ V on
the network. In a single session, any quantum channel (u, v) ∈ E can send a q-dimensional
quantum systemHe just once either from u to v, or from v to u, where q is assumed to be
a prime power. Furthermore, any quantum operations can be implemented on any node
v ∈ V, and measurement outcomes (or classical information) can be freely sent among
nodes. At the beginning of a session, a single copy of input state |ψ〉 is given on the source
node s. Here, the reason a quantum channel is represented by an undirected edge is that
the direction of a quantum channel can be effectively reversed by quantum teleportation
under the condition of free classical communication [45].

The purpose of both protocols is to multicast an input state |ψ〉 from the source node to
all target nodes in a single session. Here, we should note that the meaning of “multicast” in
the protocol of Kobayashi et al. is different from that in our protocol. As we have explained
in the introduction, the purpose of our protocol is to construct optimal asymmetric universal
clones among target nodes for a given qr-dimensional input state |ψ〉 = ∑

qr−1
j=0 αj|j〉 ∈ Hs

on a source node, whereHs is a qr-dimensional input space. In other words, we consider
multicast quantum network coding with source rate r. On the other hand, the purpose of
the protocol of Kobayashi et al. is to construct a GHZ-type state ∑

qr−1
j=0 αj|j〉1 ⊗ · · · ⊗ |j〉N

among target nodes, where the ith local system is on the ith target node.
Both the protocol of Kobayashi et al. and our protocol are constructed under the

assumption that there exists a solvable classical linear multicast network code { fe}e∈E′

with source rate r on an acyclic directed graph G′ = (V, E′) over a finite field Fq, where G
is an undirected underlying graph of G′. In other words, G can be derived by replacing all
directed edges on G′ by undirected edges. Using this replacement, a directed edge e′ ∈ E′

is naturally mapped to an undirected e ∈ E, and this map is a bijection. Hence, in the
following part of this subsection, we will not distinguish e′ from e and will write e′ as e.

The protocol of Kobayashi et al. imitates a classical linear multicast network code
{ fe}e∈E′ and corresponding decoding operations {gi}N

i=1 by unitary operators. Each linear
map fe is imitated by a unitary operator Ue, and each recovery operator gi is imitated by
a unitary operator Vi, where Ue and Vi are defined as follows: Since dimHs = qr, due to
the bijection between {0, 1 . . . qr − 1} and Fr

q, an input state |ψ〉 ∈ Hs can be written as
|ψ〉 = ∑~x∈Fr

q
α~x|~x〉. For an outgoing edge e from the source node s, a unitary operator Ue

onHs ⊗He is defined by means of fe : Fr
q → Fq as

Ue := ∑
~x∈Fr

q ,y∈Fq

|~x〉〈~x|s ⊗ |y + fe(~x)〉〈y|e, (17)

whereHe is a Hilbert space transmitted through e. Suppose In(e) is a set of all incoming
edges of v, where v is a tail node of e, and suppose HIn(e) :=

⊗
e′∈In(e)He′ . Then, for an

outgoing edge e from an intermediate node v, a unitary operator Ue on HIn(e) ⊗He is

defined by means of fe : F|In(e)|
q → Fq as

Ue := ∑
~y∈F|In(e)|

q ,ye∈Fq

|~y〉〈~y|In(e) ⊗ |ye + fe(~y)〉〈ye|e. (18)
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Suppose Vi is a qr-dimensional output Hilbert space on a target node ti. A unitary oper-
ator Vi on HIn(ti)

⊗ Vi is defined by means of the decoding operation

gi : F|In(ti)|
q → Fr

q as

Vi := ∑
~y∈F|In(ti)|

q ,~x∈Fr
q

|~y〉〈~y|In(ti)
⊗ |~x + gi(~y)〉〈~x|i. (19)

The quantum multicast network coding protocol of Kobayashi et al. is shown in
Protocol 1.

Protocol 1 The quantum multicast network coding protocol of Kobayashi et al.

Step 1: Initialization
At the beginning, the source node s has an unknown initial state |ψ〉 onHs. Each node
v ∈ V prepares |0〉 on He for an edge e ∈ E whose tail node is v. For all i satisfying
1 ≤ i ≤ m, a target node ti prepares |0〉 on Vi.
Step 2: Transmission
First, for all edges e ∈ E′ whose tail node is the source node, the source node operates
the unitary operator Ue on Hs ⊗He and sends He to the head node of e. Second, all
intermediate nodes operate in the order defined by the natural partial ordering on E′ as
follows: After an intermediate node v has received Hilbert spaces from all edges whose
head node is v, for all edges e ∈ E′ whose tail node is v, node v operates the unitary
operator Ue on HIn(e) ⊗He and sends He to the head node of e. Finally, after all edges
have transmitted Hilbert spaces, for all i satisfying 1 ≤ i ≤ m, target node ti operates the
unitary operator Vi onHIn(ti)

⊗ Vi.
Step 3: Measurement on Fourier basis
The source node s measures the Hilbert space Hs in the Fourier basis and sends the
measurement outcome to all the terminal nodes ti. For all edges e ∈ E′, the head node of
e measures the Hilbert spaceHe in the Fourier basis and sends the measurement outcome
to all terminal nodes ti.
Step 4: Recovery
All terminal nodes ti operate Z(c1)⊗ · · · ⊗ Z(cr) on Vi. Here, {ck}r

k=1 is a set of natural
numbers that can be determined from the measurement outcomes received in step 3, the
classical linear multicast network code { fe}e∈E′ and the decoding operators {gi}N

i=1 [44].

In Step 3 of Protocol 1, the Fourier basis of {|z̃〉}z∈Fq
⊂ He of the computational basis

{|x〉}x∈Fq
⊂ He is defined as

|z̃〉 := ∑
x∈Fq

ωTr xz|x〉,

where ω := exp(−2πi/p). Here, Tr z represents the element Tr Mz ∈ Fp, where Mz is the
matrix representation of the multiplication map x 7→ zx. Here, we note that the finite
field Fq can be identified with the vector space Ft

p, where t is the degree of the algebraic
extension of Fq. For further details, see [101], Section 8.1.2 . We also define the generalized
Pauli operators Z(t) as Z(t) := ∑x∈Fq ωTr xt|x〉〈x|.

3. Results

In this section, we give all results of this paper. We give results for 1→ 2 and 1→ 3
asymmetric UQCs in the Sections 3.1 and 3.2, respectively.

3.1. 1→ 2 Asymmetric UQC Multicast Protocol

In this subsection, we present a new protocol that multicasts optimal asymmetric
UQCs from the source node s to two target nodes t1 and t2 on a quantum network. We
present the protocol in Section 3.1.1 and prove that the it creates optimal asymmetric UQCs
in Section 3.1.2.
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3.1.1. 1→ 2 Quantum Multicast Protocol

In this sub-subsection, we present the protocol for multicasting 1 → 2 asymmetric
optimal UQCs of an input quantum state from the source node s to two target nodes
t1 and t2.

As we have explained in Section 2.3, the problem settings for the protocol of
Kobayashi et al. and our protocol are essentially the same, and only their purposes are
different. Here, we summarize the problem setting of our quantum multicast network
coding: A quantum network is described by an undirected graph G = (V, E). There exist a
source node s ∈ V and N target nodes t1, . . . , tN ∈ V on the network. In this subsection,
since we consider multicasting 1→ 2 asymmetric UQCs, we set N = 2. In a single session,
any quantum channel (u, v) ∈ E can send a q-dimensional quantum systemHe just once,
either from u to v or from v to u, where q is assumed to be a prime power. Furthermore, any
quantum operations can be implemented on any node v ∈ V, and measurement outcomes
can be freely sent among nodes. At the beginning of a session, a single copy of input state
|ψ〉 is given on the source node s.

Under these problem settings, the purpose of our protocol is to construct optimal
asymmetric universal clones given by Equation (7) between target nodes t1 and t2 for a
given d-dimensional unknown input state |ψ〉 = ∑d

j=0 αj|j〉 ∈ Hs on a source node, where
Hs is a d-dimensional input space. In other words, we consider multicast communication
protocols that are optimal in terms of fidelity. Thus, our research problem is to construct a
protocol with a smaller communication cost under the above condition. We assume d = qr.
In other words, we consider multicast quantum network coding with source rate r. Here,
note that since we assumed q is a prime power, d is also a prime power.

For this purpose, we use two additional assumptions: The first assumption is the
same assumption that Kobayashi et al. used. That is, we assume that there exists a solvable
classical linear multicast network code { fe}e∈E′ with source rate r on an acyclic directed
graph G′ = (V, E′) over a finite field Fq, where G is an undirected underlying graph of
G′. Hence, we can use the quantum multicast network coding protocol of Kobayashi et al.
with source rate r on this quantum network G. We further assume that at most 2 ebits of
entanglement resource are shared between target node t1 and t2. Hence, the amount of this
entanglement resource is constant with respect to the dimension d of the input state and is
negligible for large d in comparison to d.

Before we present the protocol, we define the unitary operators used in it. Pauli
operators Xd and Zd are defined as

Xd :=
d−1

∑
k=0
|k⊕ 1〉〈k|, Zd :=

d−1

∑
k=0

ωk|k〉〈k|, (20)

where ω := e
2πi

d . In the following part of the paper, unitary operators defined on Cd ⊗Cd

and Cd ⊗Cd ⊗Cd are called bipartite and tripartite unitary operators, respectively. Υ(r) is
defined as a bipartite unitary operator satisfying

Υ(r)(cos η|jr〉+ sin η|rj〉) = |jr〉, Υ(r)|rr〉 = |rr〉,

Υ(r)(sin η|jr〉 − cos η|rj〉) = |rj〉 (21)

for all j ∈ {0, . . . , d− 1} satisfying j 6= r, and

Υ(r)|ij〉 = |ij〉 (22)

for all i, j ∈ {0, . . . , d− 1} satisfying i, j 6= r, where η is defined by

cos η =
a√

1− 2ab
d

and sin η =
b√

1− 2ab
d

. (23)
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The bipartite unitary operator V(r) is defined by

V(r) := ∑
j 6=r
|j〉〈j| ⊗Ur,j + |r〉〈r| ⊗ I (24)

where the unitary operator Ur,j is defined by

Ur,j = I − |j〉〈j| − |r− 1〉〈r− 1|+ |j〉〈r− 1|+ |r− 1〉〈j|.

The bipartite unitary operator ∆(r) is defined by

∆(r) := |r〉〈r| ⊗ X−(r−1)
d + ∑

j 6=r
|j〉〈j| ⊗ I. (25)

The unitary operator Γ(r) on Cd ⊗Cd ⊗C2 is defined by

Γ(r) := |r〉〈r| ⊗ swap+ ∑
j 6=r
|j〉〈j| ⊗ I, (26)

where swap is a unitary operator on Cd ⊗C2 defined by

swap :=
d−1

∑
i=2

∑
j=0,1
|ij〉〈ij|+ ∑

i,j=0,1
|ij〉〈ji|.

The unitary operator Θ on C2 ⊗C2 is defined by

Θ|jj〉 = |jj〉 (j = 0, 1)

Θ(cos η|01〉+ sin η|10〉) = |10〉
Θ(sin η|01〉 − cos η|10〉) = |01〉 (27)

The bipartite unitary operator Λ(r) is defined by

Λ(r) := ∑
j 6=r
|j〉〈j| ⊗ I + |r〉〈r| ⊗ Xr

d (28)

Before starting the protocol, we prepare three d-dimensional systems A, B, and M
at the source node s, d-dimensional systems C, E, and 2-dimensional systems G, T1 at
the target node t1. Similarly, we prepare d-dimensional systems D, F, and 2-dimensional
systems H, T2 at t2. The entanglement resource cos η|0〉E|1〉F + sin η|1〉E|0〉F is shared
between E and F, and the Bell state 1√

2
(|00〉T1T2 + |11〉T1T2) is shared between T1 and T2.

Thus, the amount of entanglement resources is at most 2 ebits.
The protocol for 1→ 2 is shown as Protocol 2. In Protocol 2 , first, asymmetric UQCs

of an qr-dimensional input state |ψ〉 is created on the source node s at Step 1. Then, by
measuring an ancilla, the whole state is splitted into classical information (measurement
result), which is sent to target nodes, and a bipartite quantum state at Step 2. The bipartite
quantum state is compressed into a qr-dimensional state at Step 3. The state is distributed
to the target nodes t1 and t2 by the protocol of Kobayashi et al. at Step 4. From the GHZ-
type state received in the previous step and the classical information received at Step 2,
target nodes t1 and t2 reconstruct asymmetric UQCs of |ψ〉 by LOCC and preshared small
entanglement resource; this process is completed from Step 5 to Step 12. As a result of
the protocol, 1 → 2 asymmetric UQCs given by Equation (7) are created in systems EF,
where E and F are on the target nodes t1 and t2, respectively. Note that as we explained in
the previous subsection, optimal asymmetric UQCs depend on the parameters a and b in
Equation (4).
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We can set these parameters in Step 2 of the protocol, when we apply U(a,b)
1→2 . As we

already explained,

Protocol 2 1→ 2 quantum multicast network coding protocol

Step 1: At the beginning, the source node s has an unknown input quantum state |ψ〉A
on system A and makes 1 → 2 asymmetric universal clones by applying an isometry
U(a,b)

1→2 defined by Equation (4) from the system A to the system ABM.
Step 2: The source node s measures system M in the computational basis and sends the
measurement outcome r to the two target nodes t1 and t2.
Step 3: The source node s applies the unitary operator ΥAB defined by
Equations (21) and (22) to the systems AB, then discards the system B.
Step 4: The state on system A is multicast to the target nodes t1 and t2 over the quantum
network G using the protocol of Kobayashi et al. The target nodes t1 and t2 put the
output GHZ-type state of the protocol of Kobayashi et al. on system CD.
Step 5: The target nodes t1 and t2 apply Xr−1

d ⊗ Xr−1
d to system EF using the measure-

ment outcome r sent from the source node s.
Step 6: The target node t1 applies V(r)

C,E defined by Equation (24) to system CE, and the

target node t2 applies V(r)
D,F to system DF . Then, the target node t1 applies ∆(r)

C,E defined

by Equation (25) to system CE, and the target node t2 applies ∆(r)
D,F to system DF.

Step 7: The target node t1 initializes G in |0〉 and applies Γ(r)
C,E,G defined by Equation (26)

on system CEG. The target node t2 initializes H in |0〉 and applies Γ(r)
C,E,G to system DFH.

Step 8: The target node t2 sends the state on system H to system T1 at the target node t1
using the Bell state on system T1T2 by the quantum teleportation.
Step 9: The target node t1 applies ΘGT1 defined by Equation (27) to systems G and T1
and discards T1.
Step 10: The target node t1 measures system G in{

|0̃〉 = |0〉+ |1〉√
2

, |1̃〉 = |0〉 − |1〉√
2

}
and derives the measurement outcome k. Then, t1 performs (I − 2|r〉〈r|)k on system C.
Step 11: The target node t1 applies Λ(r)

CE defined by Equation (28) on the system CE, and

the target node t2 applies Λ(r)
DF the system DF.

Step 12: The target nodes t1 and t2 measure system C and D in the Fourier basis{
d−1

∑
x=0

ωpx
√

d
|x〉
}

p∈Zd

,

respectively, and derive the measurement outcomes p1 and p2, respectively. Then, t1

applies Zp1+p2
d to system E, and t2 applies Zp1+p2

d to system F.

3.1.2. Proof of 1→ 2 Quantum Multicast Protocol

In this sub-subsection, we present the proof that Protocol 2 creates 1→ 2 asymmetric
UQCs given by Equation (7) in system EF shared by target nodes t1 and t2.

Proof. As we explained in the previous subsection, an input state at the source node s can
be written as

|ψ〉 =
d−1

∑
j=0

αj|j〉 ∈ Hs.

Then, from Equation (4), the state on system ABM after step 1 can be written as:

a|ψ〉A|Φ+〉BM + b|ψ〉B|Φ+〉AM (29)
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The unnormalized state
∣∣∣Ψ(r)

2

〉
AB

on system AB after deriving measurement outcome
r in Step 2 can be written as:∣∣∣Ψ(r)

2

〉
AB

:= βr|rr〉AB + ∑
j 6=r

β j(cos η|jr〉AB + sin η|rj〉AB), (30)

where η is defined by Equation (23), and
{

β j
}d−1

j=0 is defined by

βr =
αr√

d
(a + b)

β j =
αj√

d

√
1− 2ab

d
(∀j 6= r). (31)

here,
∥∥∥∣∣∣Ψ(r)

2

〉
AB

∥∥∥2
= ∑j |β j|2 is a probability in which outcome r is derived in Step 2. Since

measuring system M without seeing the outcome is mathematically equivalent to tracing
out system M, {

∣∣∣Ψ(r)
2

〉
}d−1

r=0 satisfies

ε1→2(|ψ〉〈ψ|) =
d−1

∑
r=0

∣∣∣Ψ(r)
2

〉〈
Ψ(r)

2

∣∣∣, (32)

where ε1→2 is a 1 → 2 optimal asymmetric UQCM defined by Equation (7). Hence, the
purpose of the remaining part of the protocol is to transfer

∣∣∣Ψ(r)
2

〉
to the target nodes.

However, in our problem settings, the throughput of the quantum network is too small
to send

∣∣∣Ψ(r)
2

〉
directly to the target nodes. Hence, first, we compress the state on the

d-dimensional system in Step 3. Then, the unnormalized state of system AB after Step 3
can be written as

|Ψ3〉A =
d−1

∑
j=0

β j|j〉A. (33)

In Step 4, the protocol of Kobayashi et al. successfully works based on the assumption
for the existence of a classical linear multicast network code. Since the (unnormalized)
input state for the protocol of Kobayashi et al. is |Ψ3〉A, the unnormalized state on the
system C at the target node t1 and on system D at the target node t2 can be written as

∑d−1
j=0 β j|j〉C|j〉D. The purpose of the remaining part of the protocol is to reconstruct

∣∣∣Ψ(r)
2

〉
from this state.

Since system EF is initially on cos η|0〉E|1〉E + sin η|1〉E|0〉F, the unnormalized state
on system CDEF can be written as

d−1

∑
j=0

β j|jj〉CD ⊗ (cos η|0〉E|1〉F + sin η|1〉E|0〉F) (34)

Then, the unnormalized state on CDEF after Step 5 can be written as

d−1

∑
j=0

β j|jj〉CD ⊗ (cos η|r− 1〉E|r〉F + sin η|r〉E|r− 1〉F). (35)

The unnormalized state on CDEF after Step 6 is

∑
j 6=r

β j|jj〉CD ⊗ (cos η|j〉E|r〉F + sin η|r〉E|j〉F)

+βr|rr〉CD ⊗ (cos η|0〉E|1〉F + sin η|1〉E|0〉F).
(36)



Appl. Sci. 2022, 12, 6163 16 of 32

Then, the unnormalized state on CDEFGH after Step 7 can be written as

∑
j 6=r

β j|jj〉CD ⊗ (cos η|j〉E|r〉F + sin η|r〉E|j〉F)⊗ |00〉GH

+βr|rr〉CD ⊗ |00〉EF ⊗ (cos η|0〉G|1〉H + sin η|1〉G|0〉H).
(37)

Next, in Step 8, the state on the system H is transferred to system T1 by quantum
teleportation [102]. Thus, the unnormalized state on CDEFG after Step 9 can be written as

∑
j 6=r

β j|jj〉CD ⊗ (cos η|j〉E|r〉F + sin η|r〉E|j〉F)⊗ |0〉G

+βr|rr〉CD ⊗ |00〉EF ⊗ |1〉G.
(38)

Since system G is effectively removed in Step 10, the unnormalized state on system
CDEF after Step 10 can be written as

∑
j 6=r

β j|jj〉CD ⊗ (cos η|j〉E|r〉F + sin η|r〉E|j〉F)

+βr|rr〉CD ⊗ |00〉EF.
(39)

Then, the unnormalized state on CDEF after Step 11 can be written as

∑
j 6=r

β j|jj〉CD ⊗ (cos η|j〉E|r〉F + sin η|r〉E|j〉F)

+βr|rr〉CD ⊗ |rr〉EF.
(40)

In Step 12, after system CD is measured in the Fourier basis {d−1/2 ·∑d−1
x=0 ωpx|x〉}p∈Zd

and is discarded, the unnormalized state on EF for the measurement outcomes p1 and p2
can be written as

∑
j 6=r

β jω
−j(p1+p2)(cos η|j〉E|r〉F + sin η|r〉E|j〉F)

+βrω−r(p1+p2)|rr〉EF

(41)

Hence, after applying Zp1+p2 ⊗ Zp1+p2 on system EF, the unnormalized state on EF
becomes

ωr(p1+p2) ·
d−1

∑
j=0,j 6=r

β j(cos η|j〉E|r〉F + sin η|r〉E|j〉F) + βr|rr〉EF. (42)

This unnormalized state coincides with
∣∣∣Ψ(r)

2

〉
defined by Equation (42) except a global

phase. Since Equation (42) is the unnormalized state corresponding to the outcome r in Step
2, the final state of this protocol can be written as ∑r

∣∣∣Ψ(r)
2

〉〈
Ψ(r)

2

∣∣∣. Hence, by Equation (32),
the final states of protocol 2 on the target nodes t1 and t2 are 1 → 2 optimal asymmetric
UQCs of the input state |ψ〉.

3.2. 1→ 3 Optimal Asymmetric Quantum Universal Clones Multicast Protocol

In this subsection, we present a protocol that multicasts optimal asymmetric UQCs
from the source node s to three target nodes t1, t2, and t3 on a quantum network. We present
the protocol in Sections 3.2.1 and 3.2.2, we prove that creates optimal
asymmetric UQCs.

3.2.1. 1→ 3 Quantum Multicast Protocol

In this sub-subsection, we present a protocol that multicasts 1→ 3 optimal asymmetric
UQCs of an unknown input quantum state from the source node s to two target nodes t1,
t2, and t3.
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The problem setting for the 1 → 3 quantum multicast protocol is almost the same
as that of the 1 → 2 protocol given in the last subsection. Hence, we consider only the
difference between these two problem settings. First, the number of target nodes is different.
That is, in this subsection, a quantum network G has three target nodes t1, t2, and t3. The
purpose of the protocol is to construct 1→ 3 optimal asymmetric universal clones given by
Equation (12) among target nodes t1, t2, and t3 for a unknown d-dimensional input state
|ψ〉 = ∑d

j=0 αj|j〉 ∈ Hs on a source node, where Hs is a d-dimensional input space. We
again assume d = qr. In other words, we consider a mulcast quantum network code with
source rate r. The assumption for the existence of a classical linear multicast network code
is also similar. That is, a classical linear multicast network code is a code on Fq used to
multicast from the node s to the nodes t1, t2, t3 on G′ with source rate r. The amount of
entanglement shared among the target nodes is also different. In 1→ 3 case, we assume
that at most 2 + 4 log2 3 ebits are shared among the target nodes t1, t2, and t3. Hence, the
amount of this entanglement resource is constant with respect to the dimension d of the
input state.

Before we present the protocol, we define the unitary operators used in the protocol.
In the following definitions, a subscript of an unitary operator denotes the step of the
protocol where it is used. Thus, for example, we do not define U2 since we will not use any
unitary operation at Step 2 of the protocol. U(r,s)

3 is a tripartite unitary operator satisfying
the following conditions:

U(r,s)
3 · α|jrs〉+ β|rjs〉+ γ|rsj〉+ α|jsr〉+ β|sjr〉+ γ|srj〉√

2α2 + 2β2 + 2γ2
= |j00〉, (∀j 6= r, s)

U(r,s)
3 · (α + β)|rrs〉+ (β + γ)|srr〉+ (γ + α)|rsr〉√

(α + β)2 + (β + γ)2 + (γ + α)2
= |r00〉,

U(r,s)
3 · (α + β)|ssr〉+ (β + γ)|rss〉+ (γ + α)|srs〉√

(α + β)2 + (β + γ)2 + (γ + α)2
= |s00〉.

(43)

U(r,s)
5 is a bipartite unitary operator defined by

U(r,s)
5 := |r〉〈r| ⊗ I + |s〉〈s| ⊗ I +

d−1

∑
j 6=r,s
|j〉〈j| ⊗ (

d−1

∑
x=0
|πjrs(x)〉〈x|), (44)

where πjrs is a permutation satisfying the following conditions:

πjrs(0) = j, πjrs(1) = r, πjrs(2) = s (45)

U(r,s)
6 is a tripartite unitary operator defined by

U(r,s)
6 := |r〉〈r| ⊗ swap + |s〉〈s| ⊗ swap + ∑

j 6=r,s
|j〉〈j| ⊗ I ⊗ I, (46)

where swap is a swap operator defined by

swap: =
d−1

∑
i,j=0
|ij〉〈ji|. (47)

U(r,s)
7 is a bipartite unitary operator defined by

U(r,s)
7 := ∑

i 6=r,s
|i〉〈i| ⊗ I + |r〉〈r| ⊗

d−1

∑
j=0
|π′′rs(j)〉〈j|+ |s〉〈s| ⊗

d−1

∑
k=0
|π′′sr(k)〉〈k|, (48)
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where π′′xy is a permutation satisfying π′′xy(0) = x and π′′xy(1) = y. U8 is a unitary operator
on C3 ⊗C3 ⊗C3 satisfying

U8(α
′′
1 |001〉+ β′′1 |100〉+ γ′′1 |010〉) = |000〉

U8(α
′
1(|012〉+ |021〉) + β′1(|102〉+ |201〉) + γ′1(|120〉+ |210〉)) = |100〉,

(49)

where α′1, β′1, γ′1, α′′1 , β′′1 , and γ′′1 are defined by

α′1 =
α√

2α2 + 2β2 + 2γ2
, β′1 =

β√
2α2 + 2β2 + 2γ2

, γ′1 =
γ√

2α2 + 2β2 + 2γ2

α′′1 =
α + β√

(α + β)2 + (β + γ)2 + (γ + α)2
, β′′1 =

β + γ√
(α + β)2 + (β + γ)2 + (γ + α)2

, (50)

γ′′1 =
γ + α√

(α + β)2 + (β + γ)2 + (γ + α)2
.

U(r,s,k)
9 is a unitary operator on Cd defined by

U(r,s,k)
9 := ∑

j 6=r,s
|j〉〈j|+ (−1)k|r〉〈r|+ (−1)k|s〉〈s|. (51)

U′(r)2 is a tripartite unitary operator satisfying

U′(r)2 · α|jrr〉+ β|rjr〉+ γ|rrj〉√
α2 + β2 + γ2

= |j00〉, (∀j 6= r)

U′(r)2 |rrr〉 = |r00〉 (52)

U′(r)5 is a bipartite unitary operator defined by

U′(r)5 := |r〉〈r| ⊗ I + ∑
j 6=r
|j〉〈j| ⊗

(
d−1

∑
x=0
|πjr(x)〉〈x|

)
, (53)

where πjr is a permutation satisfying

πjr(1) = r, πjr(0) = j (54)

U′(r)6 is a tripartite unitary operator defined by

U′(r)6 := |r〉〈r| ⊗ swap+
d−1

∑
j 6=r
|j〉〈j| ⊗ I ⊗ I, (55)

where swap is an operator defined by Equation (47). U′(r)7 is a tripartite unitary operator
defined by

U′(r)7 := ∑
i 6=r
|i〉〈i| ⊗ I + |r〉〈r| ⊗ Xr

d, (56)

where Xd is the Pauli X operator defined by Equation (20). U′8 is a unitary operator on
C2 ⊗C2 ⊗C2 defined by

U′8|000〉 = |000〉
U′8(α

′
2|011〉+ β′2|101〉+ γ′2|110〉) = |100〉

(57)
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Finally, U′(r,k)
9 is a unitary operator on Cd defined by

U′(r,k)
9 := ∑

j 6=r
|j〉〈j|+ (−1)k|r〉〈r|. (58)

We will also use in the protocol the projective measurement {Pk}2
k=0 defined by the

following equations:

P0 :=
∣∣0̃〉〈0̃∣∣, P1 :=

∣∣1̃〉〈1̃∣∣, P2 := I −
∣∣0̃〉〈0̃∣∣− ∣∣1̃〉〈1̃∣∣, (59)

where
∣∣0̃〉 := |0〉+|1〉√

2
,
∣∣1̃〉 := |0〉−|1〉√

2
.

At the beginning of the protocol, the source node s has five d-dimensional systems
A, B, C, R, and S. The target node t1 has three d-dimensional systems D, M1, and N1.
The target node t2 has three d-dimensional systems E, M2, and N2. The target node
t3 has three d-dimensional systems F, M3, and N3. Furthermore, the target nodes t1
and t2 share 1 + 2 log2 3 ebits of entanglement, and the target nodes t1 and t2 share 1 +
2 log2 3 ebits of entanglement in the form of maximally entangled states. Hence, the amount
of entanglement resources are 2 + 4 log2 3 ebits in total.

The beginning of the protocol for 1 → 3 is given in Protocol 3 . In Protocol 3 , first,
asymmetric UQCs of an qr-dimensional input state |ψ〉 is created on the source node s
at Step 1. Then, by measuring ancillary systems R and S, the whole state is splitted into
classical information (measurement results r and s), which is sent to target nodes and a
tripartite quantum state at Step 2. The continuation of the protocol branches depending
on whether r 6= s or r = s. The continuation for r 6= s is given in Protocol 4 , and for
r = s is given in Protocol 5 . In both Protocols 4 and 5 , the tripartite quantum state is
compressed into a qr-dimensional state at Step 3. The state is distributed to the target nodes
t1, t2, and t3 by the protocol of Kobayashi et al. at Step 4. From the GHZ-type state received
in the previous step and the classical information received at Step 2, target nodes t1, t2,
and t3 reconstruct asymmetric UQCs of |ψ〉 by LOCC and preshared small entanglement
resource; this process is completed in the remaining part of the protocols. As the result of
the protocol, 1→ 3 asymmetric UQCs given by Equation (12) are created system M1M2M3,
where M1, M2, and M3 are on the target nodes t1, t2, and t3, respectively. Note that as we
explained in the previous subsection, asymmetric UQCs depends on the parameters α, β,
and γ in Equation (10). We can set these parameters in step 1 of the protocol, when we
apply U(α,β,γ)

1→3 .

Protocol 3 1→ 3 quantum multicast network coding protocol (beginning)

Step 1: At the beginning, the source node s has an unknown input quantum state |ψ〉A
on system A, and makes 1 → 3 asymmetric universal clones by applying an isometry
U(α,β,γ)

1→3 defined by Equation (10) from system A to system ABCRS.
Step 2: The source node s measures the systems R and S in the computational basis,
where the measurement outcomes of R and S are called r and s, respectively. The source
node s sends the measurement outcomes r and s to the target nodes t1, t2, and t3. The
following steps of the protocol depend on whether r 6= s or r = s.
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Protocol 4 Continuation of Protocol 3 for 1 → 3 quantum multicast network coding (for
r 6= s)

[r 6= s]
Step 3: The source node s applies unitary operator U(r,s)

2 defined by Equation (43) to
system ABC, and then, discards systems B and C.
Step 4: The state on system A is multicast to the target nodes t1, t2, and t3 over the
quantum network G using the protocol of Kobayashi et al. The target nodes t1, t2,
and t3 put the output of the protocol of Kobayashi et al. on system DEF. Then, using
2 log2 3 ebits of entanglement, the targets nodes share the following state on system
M1M2M3:(

α′1(|012〉+ |021〉) + β′1(|102〉+ |201〉) + γ′1(|120〉+ |210〉)
)

M1,M2,M3
,

where α′1, β′1, and γ′1 are defined by Equation (50). Furthermore, by using 2 ebits of
entanglement, the target nodes share the following state on system N1N2N3:

(α′′1 |001〉+ β′′1 |100〉+ γ′′1 |010〉)N1,N2,N3 , (60)

where α′′1 , β′′1 and γ′′1 are defined by Equation (50).

Step 5: The target nodes apply U(r,s)
5,DM1

⊗ U(r,s)
5,EM2

⊗ U(r,s)
5,FM3

to system DM1EM2FM3,

where U(r,s)
5 is defined by Equation (44).

Step 6: The target nodes apply U(r,s)
6,DM1 N1

⊗ U(r,s)
6,EM2 N2

⊗ U(r,s)
6,FM3 N3

to system

DM1N1EM2N2FM3N3, where U(r,s)
6 is defined by Equation (46).

Step 7: The target nodes apply U(r,s)
7,DM1

⊗ U(r,s)
7,EM2

⊗ U(r,s)
7,FM3

to system DM1EM2FM3,

where U(r,s)
7 is defined by Equation (48).

Step 8: Using 2 log2 3 ebits of entanglement resource, subspaces spanned by {|0〉, |1〉, |2〉}
of the systems N2 and N3 are sent from the target nodes t2 and t3 to the target node
t1, respectively. The target node t1 applies U8,N1 N2 N3 to system N1N2N3 and discards
systems N2 and N3.
Step 9: The target node t1 applies the projective measurement {Pk}2

k=0 defined by
Equation (59) on system N1 in the basis and discards the quantum system N1. Then,
depending on the measurement outcome k, the target node t1 applies U(r,s,k)

9 defined by
Equation (51) on system D.
Step 10: The target nodes t1, t2, and t3 measure system D, E, and F in the Fourier basis
{d−1/2 ·∑d−1

x=0 ωpx|x〉}p∈Zd
, respectively. Then, they apply Z(p1+p2+p3) ⊗ Z(p1+p2+p3) ⊗

Z(p1+p2+p3) to system M1M2M3, where p1, p2, and p3 are the measurement outcomes on
the target nodes t1, t2, and t3, respectively.
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Protocol 5 Continuation of Protocol 3 for 1 → 3 quantum multicast network coding (for
r = s)

[r = s]
Step 3: The source node s applies unitary operator U′(r)3 defined by Equation (52) to
system ABC and then discards the systems B and C.
Step 4: The state on system A is multicast to the target nodes t1, t2, and t3 over the
quantum network G using the protocol of Kobayashi et al. The target nodes t1, t2, and t3
put the output of the protocol of Kobayashi et al. on system DEF. Then, using 2 ebits of
entanglement, the target nodes share the following state on system M1M2M3:(

α′2|011〉+ β′2|101〉+ γ′2|110〉
)

M1 M2 M3
, (61)

where α′2 = 2α√
(2α)2+(2β)2+(2γ)2

, β′2 = 2β√
(2α)2+(2β)2+(2γ)2

and γ′2 = 2γ√
(2α)2+(2β)2+(2γ)2

.

Furthermore, they initialize all the systems N1, N2, and N3 in |0〉.
Step 5: The target nodes apply U′(r)5,DM1

⊗ U′(r)5,EM2
⊗ U′(r)5,FM3

to system DM1EM2FM3,

where U′(r)5 is defined by Equation (53).

Step 6: The target nodes apply U′(r)6,DM1 N1
⊗ U′(r)6,EM2 N2

⊗ U′(r)6,FM3 N3
to system

DM1N1EM2N2FM3N3, where U′(r)6 is defined by Equation (55).

Step 7: The target nodes apply U′(r)7,DM1
⊗ U′(r)7,EM2

⊗ U′(r)7,FM3
to system DM1EM2FM3,

where U′(r)7 is defined by Equation (56).
Step 8: By using 2 ebits of entanglement resource, subspaces spanned by {|0〉, |1〉} of
the systems N2 and N3 are sent from the target nodes t2 and t3 to the target node t1,
respectively. The target node t1 applies U′8,N1 N2 N3

as defined by Equation (57) to system
N1N2N3 and discards system N2 and N3.
Step 9: The target node t1 applies the projective measurement {Pk}2

k=0 defined by
Equation (59) on system N1 in the basis and discards the quantum system N1. Then,
depending on the measurement outcome k, the target node t1 applies U(r,k)

9 defined by
Equation (58) on the system D.
Step 10: The target nodes t1, t2, and t3 measure system D, E, and F in the Fourier basis
{d−1/2 ·∑d−1

x=0 ωpx|x〉}p∈Zd
, respectively. Then, they apply Z(p1+p2+p3)

d ⊗ Z(p1+p2+p3)
d ⊗

Z(p1+p2+p3)
d to system M1M2M3, where p1, p2, and p3 are the measurement outcomes on

the target nodes t1, t2, and t3, respectively.

3.2.2. Proof of 1→ 3 Quantum Multicast Protocol

In this sub-subsection, we prove that Protocols 3–5 create 1 → 3 asymmetric UQCs
given by Equation (12) in system M1M2M3.

Proof. Let the input state at the source node be |ψ〉 = ∑d−1
j=0 δj|j〉. Then, from Equation (10),

the state on system ABCRS after Step 1 can be written as√
d

2d + 2
[α|ψ〉A(|Φ+〉BR|Φ+〉CS + |Φ+〉BS|Φ+〉CR)

+β|ψ〉B(|Φ+〉AR|Φ+〉CS + |Φ+〉AS|Φ+〉CR)

+γ|ψ〉C(|Φ+〉AR|Φ+〉BS + |Φ+〉AS|Φ+〉BR)]

(62)

After Step 2, the protocol branches depending on whether r 6= s or r = s, where r and
s are the measurement outcomes of system R and S, respectively.
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The unnormalized state
∣∣∣Ψ(r,s)

2

〉
after Step 2 for r 6= s can be written as∣∣∣Ψ(r,s)

2

〉
=

1√
2d(d + 1)

[
α(|ψ〉A|r〉B|s〉C + |ψ〉A|s〉B|r〉C) + β(|r〉A|ψ〉B|s〉C + |s〉A|ψ〉B|r〉C)

+ γ(|r〉A|s〉B|ψ〉C + |s〉A|r〉B|ψ〉C)
]

=
1√

2d(d + 1)

[
δr
(
(α + β)|rrs〉+ (β + γ)|srr〉+ (γ + α)|rsr〉

)
ABC

+ δs
(
(α + β)|ssr〉+ (β + γ)|rss〉+ (γ + α)|srs〉

)
ABC

+ ∑
j 6=r,s

δj
(
α|jrs〉+ β|rjs〉+ γ|rsj〉+ α|jsr〉+ β|sjr〉+ γ|srj〉

)
ABC

]
.

(63)

The unnormalized state
∣∣∣Ψ(r,r)

2

〉
after Step 2 for r = s can be written∣∣∣Ψ(r,r)

2

〉
=

√
2

d(d + 1)
[α|ψ〉A|r〉B|r〉C + β|r〉A|ψ〉B|r〉C + γ|r〉A|r〉B|ψ〉C]

=

√
2

d(d + 1)

[
δr(α + β + γ)|rrr〉+ ∑

j 6=r
δj(α|jrr〉+ β|rjr〉+ γ|rrj〉)

]
.

(64)

As for the 1→ 2 quantum multicast network coding protocol,
{∣∣∣Ψ(r,s)

2

〉}d−1

r,s=0
satisfies

ε
α,β,γ
1→3 (|ψ〉〈ψ|) =

d−1

∑
r,s=0

∣∣∣Ψ(r,s)
2

〉〈
Ψ(r,s)

2

∣∣∣, (65)

where ε
α,β,γ
1→3 is a 1→ 3 optimal asymmetric UQCM defined by Equation (12). Hence, the

purpose of the remaining part of the protocol is to transfer
∣∣∣Ψ(r,s)

2

〉
to the target nodes.

First, we give the continuation of the proof for r 6= s (Protocol 4). We compress the
state on a d-dimensional system on step 3. The unnormalized state on system A after Step
3 can be written as

d−1

∑
j=0

κj|j〉, (66)

where {κj}d−1
j=0 is defined as

κj =

√
d

2d + 2
δj

d

√
2α2 + 2β2 + 2γ2 (j 6= r, s),

κr =

√
d

2d + 2
δr

d

√
(α + β)2 + (β + γ)2 + (γ + α)2,

κs =

√
d

2d + 2
δs

d

√
(α + β)2 + (β + γ)2 + (γ + α)2.

(67)
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In Step 4, the protocol of Kobayashi et al. successfully works based on the assumption
for the existence of a classical linear multicast network code. The unnormalized state on
systems DEF shared by the target nodes t1, t2, and t3 can be written as

d−1

∑
j=0

κj|j〉D|j〉E|j〉F.

Hence, the unnormalized state after Step 4 can be written as

d−1

∑
j=0

κj|jjj〉DEF ⊗
(

α′1|012〉+ β′1|102〉+ γ′1|120〉+ α′1|021〉+ β′1|201〉+ γ′1|210〉
)

M1 M2 M3

⊗ (α′′1 |001〉+ β′′1 |100〉+ γ′′1 |010〉)N1 N2 N3

(68)

The purpose of the remaining part of the protocol is to reconstruct
∣∣∣Ψ(r,s)

2

〉
from the

above state. The unnormalized state after Step 5 can be written as

( d−1

∑
j 6=r,s

κj|jjj〉DEF ⊗ (α′1|jrs〉+ β′1|rjs〉+ γ′1|rsj〉+ α′1|jsr〉+ β′1|sjr〉+ γ′1|srj〉)M1 M2 M3

+ (κr|rrr〉DEF + κs|sss〉DEF)

⊗ (α′1|012〉+ β′1|102〉+ γ′1|120〉+ α′1|021〉+ β′1|201〉+ γ′1|210〉)M1 M2 M3

)
⊗ (α′′1 |001〉+ β′′1 |100〉+ γ′′1 |010〉)N1 N2 N3

(69)

The unnormalized state after Step 6 can be written as

d−1

∑
j 6=r,s

κj|jjj〉DEF ⊗ (α′1|jrs〉+ β′1|rjs〉+ γ′1|rsj〉+ α′1|jsr〉+ β′1|sjr〉+ γ′1|srj〉)M1 M2 M3

⊗ (α′′1 |001〉+ β′′1 |100〉+ γ′′1 |010〉)N1 N2 N3

+ (κr|rrr〉+ κs|sss〉)DEF ⊗ (α′′1 |001〉+ β′′1 |100〉+ γ′′1 |010〉)M1 M2 M3

⊗ (α′1|012〉+ β′1|102〉+ γ′1|120〉+ α′1|021〉+ β′1|201〉+ γ′1|210〉)N1 N2 N3

(70)

Then, the unnormalized state after Step 7 can be written as

d−1

∑
j 6=r,s

κj|jjj〉DEF ⊗ (α′1|jrs〉+ β′1|rjs〉+ γ′1|rsj〉+ α′1|jsr〉+ β′1|sjr〉+ γ′1|srj〉)M1 M2 M3

⊗ (α′′1 |001〉+ β′′1 |100〉+ γ′′1 |010〉)N1 N2 N3

+κr|rrr〉DEF ⊗ (α′′1 |rrs〉+ β′′1 |srr〉+ γ′′1 |rsr〉)M1 M2 M3

⊗ (α′1|012〉+ β′1|102〉+ γ′1|120〉+ α′1|021〉+ β′1|201〉+ γ′1|210〉)N1 N2 N3

+κs|sss〉DEF ⊗ (α′′1 |ssr〉+ β′′1 |rss〉+ γ′′1 |srs〉)M1 M2 M3

⊗ (α′1|012〉+ β′1|102〉+ γ′1|120〉+ α′1|021〉+ β′1|201〉+ γ′1|210〉)N1 N2 N3

(71)

The unnormalized state after Step 8 can be written as

d−1

∑
j 6=r,s

κj|jjj〉DEF ⊗ (α′1|jrs〉+ β′1|rjs〉+ γ′1|rsj〉+ α′1|jsr〉+ β′1|sjr〉+ γ′1|srj〉)M1 M2 M3 ⊗ |0〉N1

+ κr|rrr〉DEF ⊗ (α′′1 |rrs〉+ β′′1 |srr〉+ γ′′1 |rsr〉)M1 M2 M3 ⊗ |1〉N1

+ κs|sss〉DEF ⊗ (α′′1 |ssr〉+ β′′1 |rss〉+ γ′′1 |srs〉)M1 M2 M3 ⊗ |1〉N1

(72)
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The unnormalized state after Step 9 can be written as

d−1

∑
j 6=r,s

κj|jjj〉DEF ⊗ (α′1|jrs〉+ β′1|rjs〉+ γ′1|rsj〉+ α′1|jsr〉+ β′1|sjr〉+ γ′1|srj〉)M1 M2 M3

+ κr|rrr〉DEF ⊗ (α′′1 |rrs〉+ β′′1 |srr〉+ γ′′1 |rsr〉)M1 M2 M3

+ κs|sss〉DEF ⊗ (α′′1 |ssr〉+ β′′1 |rss〉+ γ′′1 |srs〉)M1 M2 M3

(73)

The unnormalized state after Step 10 can be written as

ω(p1+p2+p3)(r+s)
{ d−1

∑
j 6=r,s

κj(α
′
1|jrs〉+ β′1|rjs〉+ γ′1|rsj〉+ α′1|jsr〉+ β′1|sjr〉+ γ′1|srj〉)M1 M2 M3

+ κr(α
′′
1 |rrs〉+ β′′1 |srr〉+ γ′′1 |rsr〉)M1 M2 M3

+ κs(α
′′
1 |ssr〉+ β′′1 |rss〉+ γ′′1 |srs〉)M1 M2 M3

} (74)

We can easily see that the above state is equivalent to
∣∣∣Ψ(r,s)

2

〉
as defined by

Equation (63) except for a global phase. Hence, the proof is complete for r 6= s.
Next, we give the continuation of the proof for r = s (Protocol 5) . Equation (64)

guarantees that the unnormalized state on system A after Step 3 can be written as

d−1

∑
j=0

κ′j|j〉, (75)

where {κj}d−1
j=0 is defined as

κ′j =

√
2

d(d + 1)
δj

√
α2 + β2 + γ2 (j 6= r), κ′r =

√
2

d(d + 1)
δr(α + β + γ). (76)

In Step 4, the protocol of Kobayashi et al. successfully works, and the unnormalized
state at the target nodes can be written as ∑d−1

j=0 κj|j〉D|j〉E|j〉F. Hence, the unnormalized
state after Step 4 can be written as

d−1

∑
j=0

κ′j|jjj〉DEF ⊗ (α′2|011〉+ β′2|101〉+ γ′2|110〉)M1 M2 M3 ⊗ |000〉N1 N2 N3 (77)

Then, the unnormalized state after Step 5 can be written as

d−1

∑
j 6=r

κ′j|jjj〉DEF ⊗ (α′2|jrr〉+ β′2|rjr〉+ γ′2|rrj〉)M1 M2 M3 ⊗ |000〉N1 N2 N3

+κ′r|rrr〉DEF ⊗ (α′2|011〉+ β′2|101〉+ γ′2|110〉)M1 M2 M3 ⊗ |000〉N1 N2 N3 (78)

The unnormalized state after Step 6 can be written as

d−1

∑
j 6=r

κ′j|jjj〉DEF ⊗ (α′2|jrr〉+ β′2|rjr〉+ γ′2|rrj〉)M1 M2 M3 ⊗ |000〉N1 N2 N3

+κ′r|rrr〉DEF ⊗ |000〉M1 M2 M3(α
′
2|011〉+ β′2|101〉+ γ′2|110〉)N1 N2 N3

(79)
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The unnormalized state after Step 7 can be written as

d−1

∑
j 6=r

κ′j|jjj〉DEF ⊗ (α′2|jrr〉+ β′2|rjr〉+ γ′2|rrj〉)M1 M2 M3 ⊗ |000〉N1 N2 N3

+κ′j|rrr〉DEF ⊗ |rrr〉M1 M2 M3(α
′
2|011〉+ β′2|101〉+ γ′2|110〉)N1 N2 N3

(80)

Then, the unnormalized state after Step 8 can be written as

d−1

∑
j 6=r

κ′j|jjj〉DEF ⊗
(

α′2|jrr〉+ β′2|rjr〉+ γ′2|rrj〉)M1 M2 M3 ⊗ |0〉N1

+ κ′r|rrr〉DEF ⊗ |rrr〉M1 M2 M3 |1〉N1

(81)

The unnormalized state after Step 9 can be written as

d−1

∑
j 6=r

κ′j|jjj〉DEF ⊗ (α′2|jrr〉+ β′2|rjr〉+ γ′2|rrj〉)M1 M2 M3 + κ′r|rrr〉DEF ⊗ |rrr〉M1 M2 M3 (82)

Finally, the unnormalized state after Step 10 can be written as

ω(p′1+p′2+p′3)2r
{ d−1

∑
j=0,j 6=r

κ′j(α
′
2|jrr〉+ β′2|rjr〉+ γ′2|rrj〉)M1 M2 M3 + κ′r|rrr〉M1 M2 M3

}
(83)

We can easily see that the above state is equivalent to
∣∣∣Ψ(r,r)

2

〉
as defined by Equation (64)

except for a global phase. Hence, the proof is complete for r = s. Thus, we have achieved
multicasting of asymmetric optimal clones for the systems M1, M2, and M3 to the three
target nodes.

4. Discussion

In this section, we discuss the results derived in the previous section. We give a
discussion about the comparison with a conventional scheme in the Section 4.1, the
relationship with our protocol and quantum telecloning in Section 4.2, the possibility of
the extension of the results in the subsection Section 4.3, and a summary of the results in
the Section 4.4.

4.1. Comparison with a Conventional Schemes

In this subsection, we compare our protocol with a conventional protocol without
network coding based on entanglement swapping (or quantum repeater [25,26,28,32]),
where maximally entangled states are distilled between a source node and a target node;
then, asymmetric optimal UQCs are sent by teleportation. For simplicity, we concentrate
on the multicast butterfly network, which is given as an undirected underlying graph of
the directed graph on the left-hand side of Figure 1. Suppose each channel on the quantum
network can transmit a q-dimensional quantum system in a single session, where q is a
prime power, and the target nodes share 2 ebit of entanglement. Then, since the rate of
the linear solvable network code given on the left-hand side of Figure 1 is 2, our protocol
can multicast an asymmetric optimal UQC of a q2-dimensional unknown input state from
source node s to target nodes t0 and t1.

When we do not use the network coding scheme, a conventional scheme may be
given as follows: First, maximally entangled states are distilled between source node s and
target nodes t0 and t1. Then, quantum teleportation is implemented to send an asymmetric
optimal UQC from source node s to target nodes t0 and t1. Since there are only two channels
connected to the source node, there is no way to share more than 2 log2 q ebit between the
source node and the other nodes of the networks [25,26,28].
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Hence, the best strategy in the first step is that log2 q ebit is shared between the source
node share and target node t0, and other log2 q ebit is also shared between the source node
share and target node t1. Thus, the source node can only teleport an asymmetric optimal
UQC of a q-dimensional unknown input state to the target nodes. Therefore, the rate of
the conventional scheme is just a half of our scheme. We note that 2 ebit of entanglement
shared between the target nodes is not used in this conventional scheme.

4.2. Relation to Quantum Telecloning

In this subsection, we discuss the relationship with our protocol and quantum tele-
cloning [99,100,103–105]. We first give a short review of quantum telecloning. Quantum
telecloning is a protocol to multicast an optimal UQC from a sender to multiple receivers
by local operation and classical communication with help of a preshared entangled state.
There are various different variations of telecloning protocols [99,100,103–105]. Among
them, the one that is strongly related to our problem is Ghiu’s protocol to multicast 1→ 2
asymmetric optimal UQCs [99]. In Ghiu’s protocol, the state |Υ〉RABM defined by

|Υ〉RABM := IR ⊗U(a,b)
1→2

∣∣Φ+
d
〉

RA, (84)

is shared among a sender and the first and second receivers, where U(a,b)
1→2 is defined by

Equation (4) and
∣∣Φ+

d
〉

is a standard maximally entangled state. The sender, the first
receiver, and the second receiver possess the system R, A, and B, respectively. The system
M can be possessed by anyone since we do not need to apply any operation on M. The
sender further possesses an unknown state |ψ〉 on the additional system S. At the first
step of Ghiu’s protocol, the sender applies a generalized Bell measurement on RS, and
sends the measurement outcome to the receivers. Then, the resulted state on ABM is
an asymmetric optimal UQCs given by Equation (4) with an error depending on the
measurement outcomes. Ghiu proved that there exist local unitary operations on ABM that
corrects this error [99]. As a result of the local unitary operations, the asymmetric optimal
UQCs are shared between the target nodes. Note that since M is just an ancillary system,
we do not necessarily correct the error.

If we consider a way to use Ghiu’s protocol for our problem on the multicast butterfly
network, the problem reduces to finding an efficient way to share |Υ〉RABM among the
source node and the two target nodes. A conventional strategy to share this state may
be as follows: First, maximally entangled states are shared among the source node and
target nodes by using quantum channels on the network. Second, |Υ〉RABM is prepared
on the source node. Finally, the system A and B are teleported to the target nodes by
using the maximally entangled states. However, this protocol is almost the same as the
conventional protocol presented in the previous subsection, which is the protocol just
teleporting asymmetric optimal QCMs using shared maximally entangled states. Thus, the
rate of this protocol is also half of the rate of our protocol using network coding.

We can easily see that the system M does not need to be used on Ghiu’s protocol, and
his telecloning protocol works just using the state ρRAB defined by

ρRAB := TrM|Υ〉〈Υ|RABM. (85)

Our protocol can be used to share the state ρRAB among the source node and the two
target nodes as follows. Suppose that there is a quantum network satisfying the assumption
used in our 1→ 2 protocol. That is, it has a source node and two target nodes, the target
nodes share 2 ebit, and the corresponding classical network has a classical solvable linear
network code with rate r. Suppose each quantum channel on the quantum network can
transmit q-dimensional system in a single session. Then, first, the source node prepares∣∣∣Φ+

qr

〉
on the system RA. Second, the source node applies our protocol using the system A

as an input system. Then, we can easily see that as a result of our protocol, ρRAB defined
by Equation (85) is shared among the source node and the two target nodes. Here, we
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emphasize that the dimension of R ( as well as A and B) is qr. That is, the rate of this
protocol is again r. For example, in the case of the multicast butterfly network, the rate is 2,
which is double the conventional scheme that is explained above. Hence, our protocol can
be used as an efficient preparation for asymmetric telecloning over quantum networks.

4.3. Possibility of the Extension of Our Protocol for More than 3 Receivers

In this subsection, we consider a possible extension of our protocol for more than
3 receivers. As a result, we suggest that there might not exist a straightforward extension of
the protocol for an arbitrary number of terminal nodes using existing asymmetric optimal
UQC schemes. In other words, we estimate that if we use an existing scheme, in order
to multicast a d-dimensional unknown state, target nodes need to share O(log d) ebit of
entanglement.

At first, we note that there are not so many existing works about asymmetric optimal
UQCs outputting more than 3 copies. That is, Ren et al. and Ćwikliński et al. studied 1→ 4
asymmetric optimal UQCs [82,83], and Key et al. studied 1 → N asymmetric optimal
UQCs [81,84]. Since only existing 1→ N asymmetric optimal UQC scheme is one given by
Key et al., we focus on applying their scheme for multicast communication on quantum
networks in this subsection.

Suppose HI and HO are a d-dimensional input space and a dN dimensional output
space, respectively, and N satisfies N ≥ 3. Then, the 1→ N asymmetric optimal UQC of
Key et al. [84] is given by the following isometry UI→O fromHI toHO:

UI→O :=
d−1

∑
i,j=0

β1|ji · · · ii〉〈j|+ β2|ij · · · ii〉〈j|+ · · ·+ βN |ii · · · ij〉〈j|, (86)

where {βn}N
n=1 is an eigenvector corresponding to the maximum eigenvalue of matrix A

defined by

A :=
N

∑
n,m=1

αn|n〉〈m|+ (d− 1)
N

∑
n=1

αn|n〉〈n|, (87)

and satisfies the following normalization condition:(
N

∑
n=1

βn

)2

+ (d− 1)
N

∑
n=1

β2
n = d. (88)

In the above equation, non-negative real parameters {αn}N
n=1 represent an asymmetry

of the UQC and satisfy ∑N
n=1 αn = 1. Equation (86) leads that an output state |ΨO〉 of this

UQC protocol corresponding to a given input state |ψI〉 := ∑d−1
i=0 ai|i〉 can be written as

|ΨO〉 =
d−1

∑
i,j=0

aj(β1|ji · · · i〉+ β2|ij · · · i〉+ · · ·+ βN |ii · · · j〉). (89)

We should note that even if N = 3, UI→O defined by Equation (86) does not coincide
the cloning map given by Equation (10); that is, the UQC protocol of Key et al. is not a
straightforward extension of the UQC protocol used in this paper.

Let us assume d >> N, that is, the dimension d of the input spaceHI is much larger
than the number of clones N, and give a rough estimation of the communication cost
that is necessary to multicast |ΨO〉 to N distinct terminal nodes on quantum networks.
Here, we also assume α1 > αn for all n ≥ 2 for simplicity. Under this condition, A can be
approximated the diagonal matrix as

A ≈ (d− 1)
N

∑
n=1

αn|n〉〈n|. (90)
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Then, the maximum eigenvector {βn}N
n=1 of A satisfying Equation (88) can be approx-

imately given by β1 = 1 and βn = 0 for all n ≥ 2. Hence, for a given input state |ψI〉 ∈ HI ,
the output state |ΨO〉 ∈ HO can be approximated as

|ΨO〉 ≈ |ψI〉 ⊗ |GHZN−1〉, (91)

where |GHZN−1〉 is the N − 1 partite GHZ state on
(
Cd
)⊗N−1

defined as

|GHZN−1〉 :=
1√
d

d−1

∑
i=0
|ii · · · i〉.

Let us consider a quantum network described by an undirected graph G with one
source node s and N target nodes t1, · · · tN , and assume that the protocol can multicast
a GHZ-type state ∑d−1

i=0 ai|ii · · · i〉 from the source node to the N target nodes for a given
input state |ψI〉 = ∑d−1

i=0 ai|i〉. Now, we consider the similar type of multicast protocol used
in this paper. Thus, the protocol consists of the following three steps:

Step 1 A quantum operation possibly including measurements are applied to |ψI〉 on s,
where the measurement result (if they exist) is sent to t1, · · · tN .

Step 2 The output of the quantum operation, which should be d-dimensional system, is
multicasted to the target nodes t1, · · · tN by the protocol of Kobayashi et al.

Step 3 The state |ΨO〉 defined by Equation (89) is constructed by LOCC with an additional
entanglement resource on t1, · · · tN .

Now, we give a rough discussion that strongly suggests that the necessary entangle-
ment resource on the target node is O(log d) ebit: In order to make the state |ΨO〉 given
by Equation (89) on the target nodes, the protocol of Kobayashi et al. may be necessary
to multicast the whole d-dimensional output space of the quantum operation on s in Step
2. In other words, any quantum state ∑d−1

i=0 a′i|i〉 on Cd is necessary to multicast by the
protocol of Kobayashi et al. from s to t1, · · · tN , where a′i is not equal to ai in general. Then,
when a′0 = 1 and a′i = 0 for all i ≥ 1, the output state of the protocol of Kobayashi et al.is a
product state |00 · · · 0〉. On the other hand, Equation (91) guarantees that when d >> N,
the entanglement of the target state |ΨO〉 is O(log d) ebit for any bipartition on {1, · · · , N}
except 1|2, · · ·N. Therefore, we need an additional entanglement resource with an amount
of at least O(log d) ebit for any bipartite except 1|2, · · ·N.

This conclusion is completely different from the results in Sections 3.1 and 3.2, where
1→ 2 and 1→ 3 asymmetric optimal UQCs are constructed with one use of the protocol
of Kobayashi et al. and an entanglement resource, which is a constant with respect to the
dimension d. Hence, we conclude that by using existing asymmetric optimal UQC protocol,
there might not exist a straightforward extension of our protocol for an arbitrary large
number of terminal nodes.

4.4. Summary

In this paper, we considered quantum multicast network coding as the multicasting of
optimal UQCs over a quantum network. By extending the results of Owari et al. [48–50] for
a multicast of symmetric optimal UQCs, we developed a protocol to multicast asymmetric
optimal UQCs over a quantum network. Our results can be summarized as follows.
Suppose a quantum network is described by an undirected graph G with one source node
and two (three) target nodes, and each quantum channel on the quantum network G can
transmit one q-dimensional quantum system in a single session. Furthermore, suppose
that there exists a classical solvable multicast network code with source rate r for a classical
network described by an acyclic directed graph G′, where G is an undirected underlying
graph of G′. We showed that under the above assumptions, our protocol can multicast
1→ 2 (1→ 3) asymmetric optimal UQCs of a qr-dimensional state from the source node to



Appl. Sci. 2022, 12, 6163 29 of 32

the target nodes by consuming a small amount of entanglement that does not scale with q,
which is shared among the target nodes. We further showed that our protocol can be used
for efficient preparation of quantum telecloning over a quantum network.

As we have discussed in the previous subsection, when we use a known scheme of
a 1→ N asymmetric optimal UQC for N ≥ 4, a protocol which derived straightforward
extension of our scheme need O(log d) ebits shared among target nodes. Thus, the extension
of our protocol for 1→ n asymmetric optimal UQCs for n ≤ 4 is not so straightforward.
Hence, we leave this study as our future work.

In this paper, we assumed that all quantum channels on a quantum network are
noiseless. This assumption can be justified by considering our protocol as a protocol on the
layer on which error correction has been already implemented. However, as is well known,
such complete error correction of a quantum channel is beyond the present technology.
For example, the long-distance distribution of GHZ-type states, which is nothing but the
purpose of the protocol of Kobayashi et al., is a huge challenge in quantum networks.
We note that as a practical protocol for this purpose, recently, a protocol to distribute the
postselected GHZ state by using entanglement swapping is proposed [106].

As we have mentioned above, in this paper, we assume that error correction of quan-
tum channels has been applied on a quantum network before our protocol is implemented.
In other words, we assume that optimization is applied separately on these two layers. On
the other hand, if we optimize these two layers simultaneously, we may derive a better
protocol. We leave this study as future work.

The protocol of Kobayashi et al., which is one of the main subroutines of our protocol,
gives an efficient protocol to share GHZ states. On the other hand, as we have explained
in Section 1, except GHZ-states, there are many classes of multipartite entangled states
that are incomparable to the class of GHZ states under SLOCC-like W states, Dicke states
(generalized W states), etc. It may be desirable to find an efficient quantum network
protocol to share these classes of states. This may be also our future work.
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