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Abstract: The pH value of liquid fertilizer is a key factor affecting crop growth, so it is necessary
to regulate its pH value. However, the pH regulation system has the characteristics of nonlinearity
and time lag, which makes it difficult for the conventional controller to achieve accurate pH control.
By analyzing the regulation process, this paper designs a BP-PID-Smith prediction compensator,
which compensates for the error between the actual model and the theoretical model and improves
the control accuracy. The pH regulation system with STM32F103ZET6 as the control core was also
developed, and the performance tests were carried out under different flow rates to compare with
the regulation system of PID-Smith and Smith algorithms. The experimental results showed that
the maximum overshoot of the BP-PID-Smith prediction compensator was 0.27% on average, and
the average adjustment time for pH value reduction from 7.5 to 6.8 was 71.39 s, which had good
practicality and robustness to meet the actual control demand.

Keywords: water and fertilizer integration; pH adjustment; BP-PID-Smith algorithm; estimated
compensation

1. Introduction

In China, the use of traditional methods to irrigate crops is prone to the problem of
water abuse and China’s fertilizer use rate ranks first in the world all the year round, but
the utilization rate of chemical fertilizers is not high. The integrated water and fertilizer
technology is a new technology that combines irrigation and fertilization. According to the
nutritional needs of crops, the pH value of liquid fertilizers is precisely regulated so that
the roots of crops can fully absorb nutrients [1]. This technology can effectively reduce the
pollution of fertilizers to soil and groundwater, and protect the ecological environment [2].

However, there is often a time lag in the process of pH adjustment, and the change
in pH value of liquid fertilizer is also nonlinear. Therefore, how to quickly and accurately
adjust the pH value of fertilizer to an appropriate range in the process of fertilization is the
key research field of water fertilizer integration technology [3]. E. Ali et al. [4] proposed
an adaptive PI algorithm that uses a simple process model to predict the pH closed-loop
response and its sensitivity to PI parameter settings, and finally, the obtained information
was directly used to adjust the PI controller parameters on-line. G.Balasubramanian et al. [5]
proposed an adaptive control scheme based on Recurrent Neural Network (RNN). The
scheme included an on-line adaptive RNN estimator and RNN controller, and the estimator
weights were updated recursively by back-propagation algorithm. The controller weights
were corrected by the steepest descent method. The proposed scheme was compared with
the model-based IMC controller, and the results showed that the RNN-based controller had
better performance in the nonlinear pH neutralization process.
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Homero J. Sena et al. [6] used a real-time adaptive algorithm based on the Extended
Kalman Filter (EKF) to correct the artificial neural network predictions at process runtime,
which reduced the sum of squared errors in pH by 64.3% compared to the MPC of the arti-
ficial neural network without model adaptation. Douglas Alves Goulart and Renato Dutra
Pereira [7] developed a Continuous Stirred-Tank Reactor (CSTR) neutralization simulator
and an adaptive Particle Swarm Optimization (PSO) algorithm for automatic selection of
Reinforcement Learning hyperparameters. During regulation and servo operation, the con-
troller stabilized the effluent pH in the neutral range better than the PID controller. Shahin
Salehi et al. [8] proposed an adaptive control scheme for pH value based on a fuzzy logic
system and verified the effectiveness of the controller through simulation and experimental
research. The results showed that the controller performed well in setpoint tracking and
was much better than the PI controller. Hui Wu et al. [9] proposed a predictive control
method based on Decentralized Fuzzy Inference (DFIPC), which locally linearized the
nonlinear object model and predicted the future output of the control object according to its
step response model. The method was applied to the pH neutralization process. The results
showed that the method had better robustness than traditional model predictive control.

In the industrial field, Smith prediction compensation is mainly used to solve the pure
lag of the system [10]. Guangda Chen [11] proposed a Smith predictor combined with
Linear Active Disturbance Rejection Control (LADRC) and analyzed the stability of the
Smith + LADRC time-delay control system from a theoretical point of view. Simulation and
experimental results showed that the algorithm was superior to the traditional method in
terms of overshoot and response time. Mahmoud Gamal et al. [12] combined the classical
Smith predictor and the adaptive Smith predictor in a networked control system and
compared it with other delay compensation schemes. The results showed that the scheme
significantly improved the performance of the networked control system and reduced the
impact of delay on the system. Chenkun Qi et al. [13] proposed a hybrid Smith predictor
and phase lead compensation method. This method can achieve higher simulation fidelity
with less convergence. The effectiveness of the compensation method was verified by
the simulation of the undamped elastic contact process. Yonghui Nie et al. [14] proposed
an optimal wide-area damping controller considering delay, using the Smith predictor to
provide delay compensation and using particle swarm optimization to further improve the
controller. The simulation results showed that the method improved the delay tolerance of
the closed-loop system and improved the dynamic stability of the power system.

In this paper, according to the characteristics of pH value regulation of liquid fertilizers,
the prediction compensation controllers based on Smith, PID-Smith and BP-PID-Smith
were designed respectively. They were simulated and analyzed under the conditions of
model matching and mismatching, and step response curves were obtained respectively.
The performance of the three controllers was evaluated from four aspects: rise time, peak
time, maximum overshoot, and adjustment time [15]. The results showed that the control
effect of the BP-PID-Smith controller was the best. On this basis, an experimental platform
was built to verify the practicability of the algorithm. The results showed that the BP-PID-
Smith predictor compensator can effectively solve the adverse effects of the time delay and
nonlinearity of the system in the fertilization process, and meet the control requirements
for precise regulation of the pH value of liquid fertilizers.

The purpose of this paper is to design a BP-PID-Smith predictive compensation control
algorithm, which can quickly adjust the pH value of water and fertilizer to the set value,
and effectively solve the problems caused by factors such as time lag and nonlinearity in
the pH adjustment process.

The contents of this paper are as follows: The first part introduces the research status
of precise pH control and Smith prediction compensation. The second part explains the
working principle of the pH regulation system, establishes the dynamic and static model of
the pH regulation process, and reveals the nonlinear and time-delay characteristics of the
pH regulation process. In the third part, the formulas of the Smith predictor compensator
algorithm and BP neural network algorithm are derived, and the simulation models based
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on Smith, PID-Smith, and BP-PID-Smith predictor compensation are established by using
the Simulink module in MATLAB. In the fourth part, the above three models are simulated
and analyzed, respectively, and the models are evaluated according to the results. In the
fifth part, experiments are carried out to verify the practicability of the controller. The sixth
part gives the conclusion.

2. Introduction of pH Value Regulation System and Analysis of Regulation Process
2.1. pH Control System Structure Composition

Figure 1 is the structural block diagram of the pH value regulation system of liquid
fertilizer. The regulation system includes a water storage tank, solenoid valve, fertilizer
tank, regulating liquid tank, flowmeter, pH value sensor, hose pump, mixing tank, and
other main devices. The liquid in the water storage tank, fertilizer tank, and regulating
liquid tank finally flows into the mixing tank and is stirred inside. A pH sensor is installed
inside the mixing tank to monitor the pH value. The outlet of the mixing tank is connected
with the field drip irrigation belt to transport the adjusted fertilizer to the field. The dilution
ratio of liquid fertilizer is set to 1:8, the pH value of fertilizer before dilution is 7.5, and
dilute hydrochloric acid with a concentration of 0.2 mol/L is used as the regulating liquid.
Flowmeter and pressure gauge are installed at the inlet and outlet of the mixing tank. The
hose pump is used as the conveying device of the regulating system. The three-phase
asynchronous motor is connected with the pump body of the hose pump. The pressure
formed by squeezing the hose by the roller is used to transport the materials. The system
adjusts the outlet flow of the hose pump by changing the frequency of the frequency
converter connected with the hose pump, to accurately adjust the pH value.
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Figure 1. Structural block diagram of pH value regulation system of liquid fertilizer: 1, regulating
liquid tank; 2, fertilizer tank; 3, water storage tank; 4, check valve; 5, solenoid valve; 6, hose pump;
7, flowmeter; 8, pressure gauge; 9, mixing tank; 10, liquid level gauge; 11, Y-type filter; 12, pressure
holding valve; 13, drip irrigation belt; 14, pH sensor; 15, mixing pump.

In this paper, the STM32F103ZET6 microcontroller is used as the control core, and
the BP-PID-Smith prediction compensation algorithm is written in it. The set pH value is
used as the input value, and the pH value of the liquid fertilizer collected by the pH sensor
is used as the actual feedback value for calculation. The required regulating liquid flow
is calculated, and the flow is converted into the working frequency of the hose pump, to
achieve the purpose of efficiently regulating the pH value of liquid fertilizer.

When the pH value regulation system of liquid fertilizer is working, the monitoring
end will input the set pH value of liquid fertilizer and fertilization flow into the system,
the hose pump at the fertilizer tank and the hose pump at the water storage tank will
pump liquid fertilizer and water to the mixing tank in corresponding proportion for mixing.
When the regulation system monitors the pH value in the mixing tank and the set value,
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the solenoid valve opens and the hose pump at the regulating liquid tank starts to run to
extract the regulating liquid into the mixing tank, and the stirring pump stirs the liquid in
the mixing tank, and when the regulation system monitors the pH value of liquid fertilizer
in the mixing tank reaches the set value, the system maintains a stable state.

2.2. Analysis of Liquid Fertilizer pH Regulation Process

Usually, water and liquid fertilizer are weakly basic, while the regulating liquid
generally uses dilute hydrochloric acid. Therefore, the mixing of fertilizer, regulating liquid,
and water can be considered a neutralization process of a strong acid and a weak base [16],
which can be represented by a static pH equation describing the neutralization titration
curve and a dynamic equation describing the state variables.

2.2.1. Objective Function and Design Variables

The ionization process of m-membered acid is described below.
First level ionization

Hm A 
 Hm−1 A− + H+

Ka1 =
[H+][Hm−1 A−]

[Hm A]
(1)

Secondary ionization

Hm−1 A− 
 Hm−2 A2− + H+

Ka2 =
[H+]

[
Hm−2 A2−]

[Hm−1 A−]
(2)

m-level ionization
HA(m−1)− 
 Am− + H+

Kam =
[H+][Am−][
HA(m−1)−] (3)

The ionization process of n-membered bases in liquid fertilizer can be expressed as:
First level ionization

B(OH)n 
 B(OH)n−1
+ + OH−

Kb1 =

[
B(OH)n−1

+
]
[OH−]

[B(OH)n]
(4)

Secondary ionization

B(OH)n−1
+ 
 B(OH)n−2

2+ + OH−

Kb2 =

[
B(OH)n−2

2+][OH−]
[B(OH)n−1

+]
(5)

n-level ionization
B(OH)(n−1)+ 
 Bn+ + OH−

Kbn =
[Bn+][OH−]

[B(OH)(n−1)+]
(6)

where Kb1, Kb2, . . . , Kbn are the ionization equilibrium constants.
The ionization equilibrium of water can be expressed as:

H2O 
 H+ + OH−

Kw =
[
H+
][

OH−
]

(7)
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where Kw= 10−14.
Let xi be the total ionic concentration of the acid or the total ionic concentration of the

base in the fertilizer mixture, then
When i is an acid:

xi = [Hm A] +
[
Hm−1 A−

]
+ · · ·+

[
Am−] (8)

When i is a base:

xi = [B(OH)n]+[B(OH)n−1
+
]
+ · · ·+

[
Bn+] (9)

Since the solution must always remain electrically neutral, the charge balance equation yields:

∑
i=acid

{
[
Hpi−1 A−

]
+ 2[Hpi−2 A2−]+ · · ·+ pi[Api−]}+ [OH−]

= ∑
i=base

{[
B(OH)+ni−1

]
+ 2
[

B(OH)2+
ni−2

]
+ · · ·+ ni[Bni+]

}
+ [H+]

(10)

The pH equation can be derived from Equations (1)–(10) as:

n

∑
i=1

ai
([

H+
])

xi +
[
H+
]
− Kw

[H+]
= 0 (11)

When i is an acid:

ai
([

H+
])

= −
mi + (mi − 1) [

H+]
Kami

+ · · ·+ [H+]
mi−1

Ka2i Ka3i ···Kami

1 + [H+ ]
Kami

+ · · ·+ [H+ ]mi−1

Ka2i Ka3i ···Kami
+ [H+ ]mi

Ka1i
Ka2i ···Kami

(12)

When i is a base:

ai
([

H+
])

=
ni[H+]

ni + (ni − 1) Kw
Kbni

[H+]
ni−1

+ · · ·+ K
ni−1
w [H+]

Kb2i
Kb3i
···Kbni

[H+]ni + Kw
Kbni

[H+]ni−1 + · · ·+ K
ni−1
w [H+ ]

Kb2i
Kb3i
···Kbni

+ K
ni
w

Kb1i
Kb2i
···Kbni

(13)

Since the whole pH neutralization process can be considered as the neutralization of a
strong acid and a weak base, thus

a1
([

H+
])

= −1 (14)

a2
([

H+
])

=
[H+]

[H+] + Kw
Kb

=
1

1 + [OH− ]
Kb

(15)

The above analysis leads to the fact that the pH equation can be rewritten as:

− x1 +
1

1 + 10pKb+pH−14 x2 + 10−pH − 10pH−14 = 0 (16)

where pKb = − log Kb, x1, x2 are the total ionic concentrations of acid and base in the
fertilizer mix, respectively.

This equation is the static model of pH neutralization.
As can be determined from Equation (16), the control process of pH described by this

static equation is strongly nonlinear.

2.2.2. Dynamic Model

Assuming that the liquid volume in the mixing tank is constant and uniformly mixed,
ignoring the influence of liquid temperature on pH, the dynamic process of pH neutral-
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ization reaction can be represented by a CSTR process [17–19]. The dynamic process of
acid-base neutralization is shown in Figure 2.
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In the figure, V is the mixing tank volume; Fw is the irrigation water flow rate; Cw is
the irrigation water input concentration; Fa is the acid flow rate input into the mixing tank;
Ca is the regulating liquid input concentration; Ff is the liquid fertilizer flow rate input into
the mixing tank; C f is the liquid fertilizer input concentration; Fm is the fertilizer mixture
flow rate output from the mixing tank; x1, x2 are the acid and alkali concentrations in the
output fertilizer mixture, respectively.

According to the principle of material conservation, the dynamic equation of each
state variable is obtained when the fertilizer mixing process reaches equilibrium.{

V dx1
dt = FaCa − Fmx1

V dx2
dt = Ff C f + FwCw − Fmx2

(17)

The input and output flows should be dynamically balanced, then:

Fm = Fa + Fw + Ff (18)

Equations (16)–(18) together form a mathematical model of the pH neutralization
process. 

−x1 +
1

1+10pKb+pH−14 x2 + 10−pH − 10pH−14 = 0

V dx1
dt = FaCa − Fmx1

V dx2
dt = Ff C f + FwCw − Fmx2

Fm = Fa + Fw + Ff

(19)

From Equation (19), it can be seen that the mathematical model of the pH neutralization
process consists of a static model and a dynamic model, and the dynamic process exhibits
a slight nonlinearity, which is negligible when it is assumed that the input flow rate of
the liquid fertilizer in the mixing tank is much larger than the input flow rate of the
conditioning fluid.

However, Equation (16) expresses the inherent nonlinearity of the pH neutralization
process. And in the actual fertilizer mixing process, besides the stirring and mixing process,
the delay factors such as the slow flow of liquid in the pipeline and the time lag in the
measurement link also have an impact on the pH regulation process.

Therefore, the pH regulation process is characterized by nonlinearity and time lag,
which place higher demands on the performance of the controller.

2.2.3. Determination of the System Transfer Function

In this paper, the pH regulation system of liquid fertilizer is studied to analyze the
process of pH regulation when mixing fertilizers.
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The pH regulation characteristics and the complexity of the model are taken into
account, and the mathematical model of the pH regulation system is described using a
first-order system transfer function with a delay link [20].

G(s) =
Ke−τs

Ts + 1
(20)

A step response with a pH value of 6.8 was used as the input of the open-loop system.
The sampling time interval of the system was set to 1 s. The initial pH value of the liquid in
the mixing tank was 7.5, and the data of pH value changing with time was obtained. The
first-order approximation method was used to input data into the computer and fit the step
response curve of the system. The gain coefficient K of the system is 1.02, the delay time is
obtained τ is 7.5 and the time constant T is 1.78. Therefore, the pH control process of liquid
fertilizer has a time lag.

3. Design and Simulation of BP-PID-Smith Based Controller for pH
Regulation System
3.1. Design of Time Lag Compensation for Smith’s Prognosticator Model

PID control can adjust the size of the control quantity in time according to the error be-
tween the actual value and the desired value so that the actual value gradually approaches
the desired value, which is a kind of closed-loop control with high reliability and robustness
and is widely used in industry [21]. The PID closed-loop control system consists of two
parts, the PID controller and the controlled object, as shown in Figure 3.
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The error value e(t) between the expected value r(t) and the actual output value y(t)
is obtained; in the second step, the error values obtained are subjected to proportional,
integral, and differential operations, and the closed-loop control quantity u(t) is obtained
after linear combination; in the third step, the controlled object receives the control quantity
u(t), and the output value y(t) approaches the expected value r(t) to complete the control
of the controlled object within the error allowance. The mathematical expression of the
control principle is:

u(t) = Kp

[
e(t) +

1
Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

]
(21)

where Kp is the proportionality constant, Ti is the integration time constant, and Td is the
differential time constant.

To discretize Equation (21), let T be the sampling period, perform k consecutive
samples, and replace the continuous time t with the discrete sampling time point kT

t ≈ kT∫ t
0 e(t)dt ≈ T ∑k

j=0 e(jT) = T ∑k
j=0 e(j)

de(t)
dt ≈

e(kT)−e[(k−1)T]
T

(22)
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Bringing Equation (22) into Equation (21) and assuming that T is sufficiently short,
Equation (21) can be simplified to:

u(k) = Kpe(k) + Ki ∑k
j=0 e(j) + Kd[e(k)− e(k− 1)] (23)

where Kp, Ki, and Kd are proportional, integral, and differential coefficients, Ki = Kp
T
Ti

,

Kd = Kp
Td
T .

In the actual design of the controller, there are inevitably delays, including control
delays and sensor delays, which may cause controller instability when the delays are
relatively large. Therefore, the effect of delay needs to be considered when designing a
controller. Smith predictor, as a classical solution, can offset and compensate for the delay
effect of the system, significantly improve the control performance of the time-lag system,
and reduce the instability of the system [22].

Smith’s predictive compensation control structure is shown in Figure 4.
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Where G∗p(s)e−τ2s is the introduced Smith’s prediction compensation transfer function,
Gp(s)e−τ1s is the system with delay model, and Gc(s) is the main controller transfer function,
when the model matches exactly, G∗p(s) = Gp(s) and τ1 = τ2 = τ. The overall closed-loop
transfer function of the system at this point is:

Y(s)
X(s)

=
Gc(s)Gp(s)e−τs

1 + Gc(s)Gp(s)
(24)

The characteristic equation of the system is:

D(s) = 1 + Gc(s)Gp(s) = 0 (25)

In this paper, the Ziegler–Nichols parameter rectification method is used for the initial
rectification of the proportional, integral, and differential constants of the PID, as shown in
Equation (26). 

KP = 1.2 T
K×τ

Ti = 2.2τ

Td = 0.5τ

(26)

The controlled object model in this paper is shown in Equation (20), where K = 1.02,
T = 1.78, τ = 7.5, and the parameters are brought into Equation (26) to obtain the preliminary
rectified values of the proportional, integral, and differential constants calculated by the
Ziegler–Nichols method as KP= 0.28, Ki= 0.02, Kd = 1.05, respectively.

The simulation model of the pH regulation system based on Smith’s prediction com-
pensation is shown in Figure 5.
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3.2. Design of PID-Smith Prediction Compensator

When the model cannot be matched exactly, at this time G∗p(s) 6= Gp(s), τ1 6= τ2, the
overall closed-loop transfer function of the system is:

Y(s)
X(s)

=
Gc(s)Gp(s)e−τ1s

1 + Gc(s)
[

G∗p(s) + Gp(s)e−τ1s − G∗p(s)e−τ2s
] (27)

From the above equation, it can be seen that when the deviation between the actual
model and the theoretical model is large, there is a lag term in the characteristic equation of
the system, which makes the Smith controller unable to correct the error between the actual
model and the theoretical model even though, which may eventually cause the output
signal of the system to oscillate and diverge. Therefore, Smith’s prediction compensation
is not suitable for the case where the theoretical model has a large deviation from the
actual model.

The PID-Smith prediction control adds a suitable PID compensation controller to avoid
the time lag term in the closed-loop characteristic equation and the model mismatch, which
eventually leads to the oscillation and divergence of the output signal, thus reducing the
effect of the time lag term on the system, and the structure of the PID-Smith prediction
compensator is shown in Figure 6.
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Where Gc2(s) and G∗p(s) together form the compensation controller, Gp(s)e−τs is the
system with delay model, and Gc1(s) is the main controller model.

From Figure 6, the closed-loop transfer function of the system is:

Y(s)
X(s)

=
Gc1(s)Gp(s)e−τs

1 + Gc1(s)G∗p(s)
1+Gp(s)Gc2(s)e−τs

1+Gc2(s)e−τsG∗p(s)

(28)
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The characteristic equation of the system is:

D(s) = 1 + Gc1(s)G∗p(s)
1 + Gp(s)Gc2(s)e−τs

1 + Gc2(s)e−τsG∗p(s)
= 0 (29)

If the mode of Gc2(s) is chosen to be small enough, then:

1 + Gp(s)Gc2(s)e−τs ≈ 1 (30)

1 + Gc2(s)e−τsG∗p(s) ≈ 1 (31)

At this point the system characteristic equation simplifies to

D(s) = 1 + Gc1(s)G∗p(s) = 0 (32)

From the above equation, it can be seen that the system stability is not affected by
the time lag of the compensating controller and the controlled object, and the system
characteristic equation does not contain the time lag term.

The simulation model of the pH regulation system based on PID-Smith prediction
compensation is shown in Figure 7.
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3.3. Design of BP-PID-Smith Prediction Compensator

Because the pH control system in this paper is a large time-delay system, and the
traditional PID control is easily affected by time-delay, it cannot be optimized and ad-
justed according to the overall changes of the system. Therefore, this paper combines
BP neural network with traditional PID control, designs a predictive compensator based
on BP-PID-Smith, reduces the impact of time delay on the system, improves its learning
efficiency by optimizing PID controller parameters, and realizes the parameter tuning of
the control system.

The structure of the PID control system based on the BP neural network is shown
in Figure 8.
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Figure 8. Structure of PID control system based on BP neural network.

The structure consists of a conventional PID and a BP neural network. The conven-
tional PID realizes the closed-loop feedback control of the controlled object, and the BP
neural network finally obtains the optimal PID control parameters of the system by con-
tinuously updating iterations according to the system state and learning algorithm. The
neural network structure in Figure 8 is shown in Figure 9 below.
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The neural network consists of an input layer, an implicit layer, and an output layer,
in which the input layer contains three neurons, and the inputs are r(k), y(k), and e(k); to
reduce the complexity of the system and improve the learning efficiency, the number of neu-
rons in the implicit layer is set to five; the output layer contains three neurons, and the out-
puts correspond to the three parameters of the PID controller, Kp, Ki, and Kd, respectively.

A neural network structure based on 3-5-3, where the input layer inputs are:

Oj
(1) = x(j) (j = 1, 2, . . . , M) (33)

M is the number of neurons in the input layer.
The implicit layer inputs and outputs are:

neti
(2) = ∑M

j=0 wij
(2)Oj

(1) (34)

O(2)
i (k) = f

(
net(2)i (k)

)
(i = 1, 2, . . . , Q) (35)
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where Q is the number of neurons in the hidden layer and w(2)
ij is the hidden layer connec-

tion weight, f (x) = tanh(x) = ex−e−x

ex+e−x .
The output layer inputs and outputs are:

netl
(3)(k) = ∑Q

i=0 wli
(3)Oi

(2)(k) (36)

O(3)
l (k) = g

(
net(3)l (k)

)
(l = 1, 2, . . . , N) (37)

where N is the number of neurons in the output layer and w(3)
li is the output layer connection

weight, g(x) = 1
2 [1 + tanh(x)] = ex

ex+e−x .
The control quantity u(t) of the PID controller is calculated according to Equation (23),

Kp, Ki, and Kd are O(3)
1 (k), O(3)

2 (k), and O(3)
3 (k) as found in Equation (37). The selected

performance metrics have the following functional form:

E(k) =
1
2
[r(k)− y(k)]2 (38)

The gradient descent method is used to continuously and iteratively update the
connection weights between the neurons in the neural network so that the error signal
decreases in the negative gradient direction. In addition, to speed up the convergence of
the BP neural network algorithm and to obtain better dynamic properties, an inertia term
is added to obtain a new update of the output layer connection weights when the learning
rate is η.

∆w(3)
li (k) = −η

∂E(k)

∂w(3)
li

+ α∆w(3)
li (k− 1) (39)

where α is the inertia factor.
∂E(k)

∂w(3)
li

can be split into:

∂E(k)

∂w(3)
li

=
∂E(k)
∂y(k)

× ∂y(k)
∂∆u(k)

× ∂∆u(k)

∂O(3)
l (k)

×
∂O(3)

l (k)

∂net(3)l (k)
×

∂net(3)l (k)

∂w(3)
li (k)

(40)

After performing a series of simplifications, the updated output layer connection
weights after learning by the neural network are obtained as:

∆w(3)
li (k) = α∆w(3)

li (k− 1) + ηδ
(3)
l O(2)

i (k) (41)

δ
(3)
l = e(k)sgn

(
∂y(k)

∂∆u(k)

)
∂∆u(k)

∂O(3)
l (k)

g′
(

net(3)l (k)
)

(l = 1, 2, . . . , N) (42)

Similarly, the update of the connection weights of the hidden layer after learning can
be obtained as:

∆w(2)
ij (k) = α∆w(2)

ij (k− 1) + ηδ
(2)
i O(1)

j (k) (43)

δ
(2)
i = f ′

(
net(2)i (k)

)
∑3

l=1 δ
(3)
l w(3)

li (k) (i = 1, 2, . . . Q) (44)

The mathematical model for adding BP neural network is established above.
The PID main controller parameters are fine-tuned and the compensation controller

is written using the BP-PID algorithm with the S-Function in the Simulink module, and
the error between the actual model and the theoretical model is used as the input to the
BP-PID algorithm.

The simulation model of the pH regulation system based on BP-PID-Smith prediction
compensation is shown in Figure 10.
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4. Analysis of Simulation Results
4.1. Model Match

In this paper, based on BP neural network algorithm and Smith prediction compensa-
tion principle, the liquid fertilizer pH adjustment system based on the Smith prediction
compensator, PID-Smith prediction compensator, and BP-PID-Smith prediction compen-
sator were designed, respectively, and the final obtained simulation results were compared
and analyzed. According to the actual situation, the initial pH value of liquid fertilizer was
7.5, the pH value of adjusted liquid fertilizer was set to 6.8, and the simulation time was set
to 500 s. The focus of this paper is on the dynamic process of the system, and this process
is described by the dynamic performance metrics, which are composed of rise time, peak
time, regulation time, and overshoot of the controller. The rise time is the time required for
the response to rise from zero to the final value for the first time; the peak time is the time
required for the response to exceeding its final value to reach the first peak; the regulation
time is the minimum time required for the response to reach and remain within ±5% (or
±2%) of the final value; and the overshoot is the percentage of the ratio of the maximum

deviation of the response c(tp) to the final value c(∞), i.e., σ% =
C(tp)−C(∞)

C(∞)
× 100%. The

rise time, peak time and regulation time are important indicators to evaluate the response
speed of the system, and the overshoot reflects the stability of the system control process.
The response curves of the three controllers when the models are matched are shown in
Figure 11, the training error curves of the BP-PID-Smith controller are shown in Figure 12,
and the dynamic performance comparisons are shown in Table 1.

Table 1. Comparison of the dynamic performance of the three controllers for model match.

Controller Type Rise Time(s) Peak Time(s) Regulation
Time (s)

Maximum
Overshoot

Smith 397.541 397.541 178.197 0

PID-Smith 115.902 163.947 83.770 0.13%

BP-PID-Smith 56.712 66.891 36.230 0.03%
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According to the data in Table 1, the dynamic performance index of the BP-PID-
Smith controller is significantly better than the other two controllers, so the BP-PID-Smith
controller has a faster response and better steady-state performance compared with the
PID-Smith controller and Smith controller. The Smith controller has a slow regulation time
and rise time, reflecting its slow response time. The rise time and regulation time of the
modified PID-Smith controller become shorter compared with the Smith controller, but at
the same time, a certain amount of overshoot is generated, and the overall control effect is
not as good as that of the BP-PID-Smith controller.

4.2. Model Mismatch

The above prediction compensator is based on the accurate mathematical model of
the controlled object, however, in the actual process of pH regulation of liquid fertilizer,
the accurate mathematical model of the system was difficult to obtain because of the
complexity inside the system, which led to the actual model’s inability to completely match
with the theoretical controlled object model, thus seriously affecting the control effect of the
controller and making the controller unable to operate stably. In this paper, three controllers
were simulated under the conditions of model mismatch to examine the performance of
the controllers.
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In this paper, the actual model was set to K = 1.5, T = 1.5, τ = 12, and a perturbation of
amplitude 0.1 was added. The step response curves of the three controllers under the model
mismatch condition are shown in Figure 13, the training error curves of the BP-PID-Smith
controller are shown in Figure 14, and the dynamic performance comparison is shown
in Table 2.
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Table 2. Comparison of the dynamic performance of the three controllers for the model mismatch.

Controller Type Rise Time(s) Peak Time(s) Regulation
Time (s)

Maximum
Overshoot

Smith 232.228 449.377 170.216 0.28%

PID-Smith 96.494 141.383 84.043 0.53%

BP-PID-Smith 73.231 91.354 57.831 0.13%

According to the data in Table 2, even though the Smith controller had a smaller
maximum overshoot of 0.28%, its response speed was the slowest, the PID-Smith controller
had a great improvement in response speed and stability compared to the Smith controller
but there was still a higher overshoot, and the BP-PID-Smith controller had a better per-
formance than the other two controllers both in terms of response speed and stability.
The performance of the BP-PID-Smith controller was better than the other two controllers
in terms of response speed and stability, and it had a smaller overshoot. Therefore, the
BP-PID-Smith controller can meet the control requirements in the actual regulation process.

5. pH Regulation Experiment
5.1. Construction of the Experimental Platform for pH Regulation

In this paper, a pH regulation platform was built according to the system structure to
further test the practicality of the BP-PID-Smith control algorithm. The STM32F103ZET6
microcontroller was used as the control core to receive the signal from the pH sensor using
the I/O port, and the microcontroller adjusted the output frequency of the inverter by
changing the magnitude of the analog voltage, thus changing the flow rate at the hose
pump of the regulating liquid tank. The delivery flow rate of the hose pump was 1 m3/h,
rated power was 1.5 kW, and rated voltage was 380 V. The inverter’s rated power was
2.2 kW, the output frequency can be adjusted from 0 to 400 Hz, rated voltage was 380 V. A
pH sensor of RMD-ISSF-5 was used, with an accuracy of 0.01. The volume of the fertilizer
mixture was kept at 40 L during the experiment. The pH adjustment experiment platform
is shown in Figure 15.
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Figure 15. pH regulation experimental platform.

The regulation platform used USB-1252A to collect the data needed for the regulation
process. The collector was equipped with an advanced measurement and control system
with 16 analog input channels, 12-bit vertical resolution, and up to 500 kSa/s analog
acquisition capability. The schematic diagram of the data acquisition and control system is
shown in Figure 16.
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5.2. Analysis of Experimental Results

The fertilizer was diluted using dilute hydrochloric acid to maintain the pH of the
fertilizer mixture at 7.5, and the flow rate of the hose pump at the fertilizer tank was
adjusted to 0.35 m3/h, 0.58 m3/h, and 0.73 m3/h. The performance of the three controllers
was tested. The experimental results are shown in Figures 17–19, and the performance
indexes of the three controllers are shown in Tables 3–5.
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Table 3. Comparison of the dynamic performance of the three controllers at a fertilizer flow rate of
0.35 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation
Time (s)

Maximum
Overshoot

Smith 285.395 333.145 178.644 0.06%

PID-Smith 176.957 218.060 131.623 0.25%

BP-PID-Smith 111.479 179.137 80.893 0.13%
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Table 4. Comparison of the dynamic performance of the three controllers at a fertilizer flow rate of
0.58 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation
Time (s)

Maximum
Overshoot

Smith 235.547 288.110 174.819 0.05%

PID-Smith 139.638 178.810 110.445 0.37%

BP-PID-Smith 94.403 121.180 70.695 0.31%

Table 5. Comparison of the dynamic performance of the three controllers at a fertilizer flow rate of
0.73 m3/h.

Controller Type Rise Time(s) Peak Time(s) Regulation
Time (s)

Maximum
Overshoot

Smith 178.436 235.560 111.320 0.02%

PID-Smith 107.892 156.370 80.897 0.46%

BP-PID-Smith 80.949 111.602 62.578 0.38%

From Tables 3–5, it can be found that the performance of all three controllers improved
as the flow rate of fertilizer increased. Although the Smith controller had the smallest
overshoot, its rise time was slow and it could not respond quickly to the input pH setting
value; the PID-Smith controller was a significant improvement in terms of rise time, peak
time, and adjustment time compared with the Smith controller, but with the increase of
flow rate, the overshoot amount also increased gradually. The BP-PID-Smith controller had
the advantages of the other two controllers: it can reach the set pH value in a short time
and the overshoot was also reduced compared with the PID-Smith controller; therefore, it
can meet the control demand well even in the case of high flow rate.

6. Conclusions

For the liquid fertilizer pH regulation system, this paper fitted its mathematical
model, got the transfer function of the pH regulation system, combined BP neural network
algorithm with the Smith prognosticator, designed a BP-PID-Smith prognostication com-
pensation controller, and compared the performance of three controllers, BP-PID-Smith,
PID-Smith, and Smith, in both simulation and practical application. The results showed
that the BP-PID-Smith predictive compensation controller was able to bring the pH to
the set value at a faster rate in both cases with a smaller overshoot compared to the other
two controllers.

According to the experiments, the BP-PID-Smith controller showed excellent dynamic
performance at different fertilizer application flow rates and was able to respond to the
input signal at a faster rate and achieve the desired target pH value. The average maximum
overshoot was 0.27% and the average regulation time was 71.39 s, which was significantly
better than the PID-Smith and Smith controllers.

The BP-PID-Smith predictive compensator can reduce the adverse effects of the system
in the fertilization process due to time lag and nonlinearity in practical applications while
possessing excellent dynamic performance and robustness to meet the control requirements
in practical applications.
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