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Abstract: The development of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) has
influenced Cyber-Physical Manufacturing Systems (CPMS). Collaborative manufacturing among
organizations with geographically distributed operations using Nanomanufacturing (NM) requires
integrated networking for enhanced productivity. The present research provides a unique cyber
nanomanufacturing framework by combining digital design with various artificial neural networks
(ANN) approaches to predict the optimal nano/micro-manufacturing process. It enables the visu-
alization tool for real-time allocation of nano/micro-manufacturing resources to simulate machine
availability for five types of NM processes in real-time for a dynamic machine identification system.
This research establishes a foundation for a smart agent system with predictive capabilities for cyber
nanomanufacturing in real-time.

Keywords: artificial neural network (ANN); cyber-physical systems (CPS); Industry 4.0; Internet of
Things (IoT); nanomanufacturing; smart expert system

1. Introduction

In recent years, the need to automate nanomanufacturing processes has increased with
the demand for more choices in commercial products. There is also a growing diversity of
products that manufacturers seek to transform into different types of nanoscales. Quality
control is an important challenge faced by nanomanufacturing experts. Implementations of
the Internet of Things (IoT), such as cyber-physical systems (CPSs), have positively affected
nanoscale processing [1]. To obtain satisfactory nanoscale products, the proper processes or
techniques need to be accurately chosen. Precise analysis plays a crucial role in production
lines, at least as important as material considerations. When it comes to selecting facilities
for the optimum workplace, nanomanufacturing costs must be factored in, as they need
a perfect configuration or system. It needs a perfect place to have adequate production.
In other words, handling dynamics, time, and simultaneousness in heterogeneous (in-
terconnected) arrangements is a primary engineering issue. However, the quantity and
difficulty of intelligence are developing so quickly that programming executions are the
central part of system design, effectiveness, and eventual confirmation. CPSs are essential
for the future of the system industry worldwide, and the ability to interface at all levels is
required from application engineers to outcome designers, from device manufacturers to
technology suppliers, and from service to research.

CPSs have been contributing greatly to leading advancements in critical areas of
systems control and research [2]. The integration of computer-embedded systems with
physical processes calls for higher precision levels. CPSs have made it possible for notable
advancements to be made in areas such as distributed robotics, systems of defense, and
electric power infrastructure control that need a high level of security, reliability, and
accuracy owing to the unpredictable nature of the physical world [3].
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Nanoscale manufacturing has seen recent advancements in the design of control
processes and systems [4,5]. Consequently, the cyber systems in use within these scales have
been the recent focus for designers [6]. For instance, a nano-robot with sizes ranging within
the nanoscale would be preferred as a system that would achieve most of the programmed
functions at the nanoscale [7]. Such systems would have the desired advantages of flexibility
and access to very small areas [8]. Moreover, the systems would be less costly, more
distributed, adaptive, and more robust [9]. The current motivation of designers is to
improve on this miniaturization even further to enhance the integration capabilities for
communication, sources of power and strategies, and tools of computation [10]. So, it
becomes an opportunity and a key priority for designers to overcome the associated
challenges and prototype such system requirements in real life during design scenarios
since the process is typically a series of trials with varied conditions until the desired
result can be achieved [3]. Before the actual design, it is judicious to use system models to
represent the required scenario. Thus, it is important to focus on the general concept of
manufacturing cyber-products with the use of a nano-manufacturing approach [11].

In a cyber-nano manufacturing system, several issues may arise that are different
from those of traditional cyber manufacturing [7]. Some of these issues include the need
for multiple-scale design, simulation, and modeling of nano-systems. This entails the
development of the techniques and tools necessary for making scalable processes used in
nano-manufacturing. Cyber nano-manufacturing must meet a set validation, certification,
and verification procedures since the level of expected precision is higher. These issues have
been raised and have been the key focus of modern nanoscale systems [12]. Compared
to traditional cyber manufacturing, there is more adaptability, complexity, and multi-
functionality expected of the nano-manufacturing process. The response of the cyber
nano-manufacturing systems must have an elastic response to external stimulus, better
intelligence, greater autonomy, and smartness than the traditional systems [13]. These
expectations of the cyber process of nano-manufacturing can be achieved by identifying
a suitable solution for the realization of CPSs that are miniaturized with all physical
components integrated and automated using computer-aided approaches. This way, the
computation ability would be boosted, as well as the integration capacity. So, high yields
of output would be realized [14].

The main challenge for achieving nanometer-scale products will be the ability to
interconnect and interface with the macroscale world [15]. Thus, a fully scalable nanoman-
ufacturing platform is required to ease the multiscale integration from the nanoscale to the
microscale in addition to the macroscale [16]. It is necessary for these nanoscale intercon-
nects to be fast, reliable, cost-effective, consume little power, and be able to link structures
of different types, materials, and sizes [17]. Metrology is essential to guarantee that the
nano-devices are suitable before and after connection [18].

Different manufacturing segments are going cyber because the rapid expansion of
internet connections to machines has provided accessibility to a lot of different equipment
and manufacturing technologies [19]. In the past, finding solutions might be limited to the
expertise of a few people or specific industries. However, technological advancements have
now made it possible to have a nanomanufacturing service hub where everybody can access
equipment connected to the specialties [20]. Nevertheless, this abundance of available
information and systems behooves users to identify the most suitable techniques for specific
jobs based on input requirements such as throughput, accuracy, etc. The proliferation of
internet connections includes equipment at the nanoscale, creating great potential for cyber
manufacturing. Each of the nanomanufacturing techniques offers valuable technology,
specialization, and expertise, but their availability varies widely. On reviewing the literature
on the evaluation of machine availability using IoT, API, and Node-Red, little research
is available in the area of machine availability in real-time. Hence, there is a need to
design and develop a system for accurately identifying and efficiently meeting machine
availability requirements.
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For this reason, we are developing a system designed to efficiently put everything
together [21]. Thus, when an input requirement comes, the system analysis using Artificial
Intelligence (AI) can readily adapt to the needs. Then, the results are sent to the next part
of the framework. Thus, we have built an entire framework that has a cyber nanoman-
ufacturing architecture. It can draw from the knowledge base that has been generated
based on literature reviews, experts’ opinions, and original equipment manufacturers’
(OEMs) data [22]. We also included CAD designs and the information coming from both
the Node-Red and the IoT center connected to this equipment, resulting in a combination of
all this information. So, based on the input provided and what equipment should be used,
the equipment has the problem. Thus, we must determine (state?) the resource requirement
and Node-Red brings this information, and all of these are interfaced to produce the needed
output [23].

The feasibility of gathering and handling data is becoming easier with the advance-
ment of Message Queuing Telemetry Transport (MQTT) and Node-Red. Furthermore,
the ongoing advancement and integration of the IoT have led to the Industrial IoT (IIoT)
for industrial advantages [24]. Badii et al. [24] developed a framework for controlling
and supervising operations using MicroService Industry 4.0 scenarios. Various internet-
based technologies related to cyber-physical systems, the IoT, cloud computing, Industrial
Integration, and Industrial Information Integration are employed in Industry 4.0 [25].
Ferreira et al. [26] provided the framework for linking simulation and design with simu-
lation classification for Industry 4.0. Cadavid et al. [27] modeled the complexity of using
IoT in collecting data to adapt to manufacturing system changes. Dolgui et al. [28] sur-
veyed customized assembly systems for Industry 4.0. There is a bright future for various
nano-machining techniques in the electronic industries, biomedical industries, etc. [29].
An open-source IoT and blockchain-based peer-to-peer energy trading platform using
ESP32-S2, Node-Red, and MQTT protocol was developed [30,31]. Taking account of the
advancement in nano/micro-machining, the machine identification in real-time for various
nanomachining processes is yet to be developed to help various industries. This paper
describes the development of a cyber nanomanufacturing framework to integrate the
design and manufacturing of nanoscale components and devices over cyberspace. The
framework consists of three sub-systems which include: (1) Artificial Neural Network
(ANN)-based Expert System, (2) a Cyber Interface Simulator, and (3) a Dynamic Nano-M/C
Identification System.

2. Methodology

In the present research, a computer-integrated, manufacturing-system-based integra-
tion approach has been employed, where various internet-based techniques such as CPS,
IoT simulator, Node-Red, and API have been integrated to find the machine availability in
real-time. The system integration in the present research is depicted in Figure 1.

Cloud manufacturing enables the sharing of manufacturing resources with a wider
customer base [32]. The implementation of CPSs in nanomanufacturing has been limited
due to the complexity of high-end nano- and micro-manufacturing processes. This is based
on the fact that each input part design with nano/micro-components has variations in
topological features, process throughput, and resolution requirements. Moreover, the part
design and user requirements need to be complemented with the process capability data of
the machines. Thus, the selection of the optimal nano/micro-manufacturing process for
each input part design is a complex, multicriteria decision-making problem with no readily
applicable system available for cloud-based NM [33].

Figure 2 shows a schematic of the cyber nanomanufacturing framework. It consists of
input part designs, a knowledge base, an IoT device interface, a smart cyber agent, and a
dynamic machine identification system [34]. The input part characteristics were extracted
from the nano-designs and user specifications. A knowledge base was populated based
on NM literature review [35–37], subject matter feedback [38,39], and best practices from
NM OEMs [40–42]. The CAD designs, user requirements, and knowledge base inputs were
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preprocessed into a datasheet to be fed to the smart cyber agent. Three different ANN algo-
rithms, which include the general regression neural network (GRNN), probabilistic neural
network (PNN), and the backpropagation neural network (BPNN), were implemented to
classify each part design with their respective nano/micro-manufacturing processes. An
IoT simulator was modeled using Node-Red for the acquisition of machine availability and
process capability data in cyberspace [43]. An application program interface (API) was
developed to dynamically allocate resources over the cyber network by integrating inputs
from the ANN model and the IoT simulator.

Figure 1. Research Methodology (Authors’ work).

Figure 2. Framework for cyber nanomanufacturing (Authors’ work).
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2.1. ANN-Based Expert System

Figure 3 shows the procedure for extracting requisite information from the CAD nano
designs, user inputs, and knowledge base to populate data sets for ANN. The data sets are
further divided into training and test sets to be evaluated by three different ANNs. After ex-
ecuting the algorithms for a certain number of epochs the results were analyzed to fine-tune
the ANN models for higher fidelity predictions of optimal nanomanufacturing processes.

Figure 3. Flowchart to determine optimal NM processes (Authors’ work).

2.1.1. Digital Designs and Feature Extraction

Digital designs of nano/micro-parts were retrieved using online resources, journal ar-
ticles, and laboratory experiments [44–46]. Figure 4 shows the different types of nanoscale
designs with varying levels of complexity. Materialize/Magics software package was
used to extract geometric and topographical information from the CAD models. A total
of 6 input variables were selected to evaluate the nanoscale designs for optimal process
selection as shown in Tables 1 and 2. Three input variables, which include pattern com-
plexity, aspect ratio, and feature resolution were evaluated using the CAD package. The
material type and process throughput inputs were based on user preferences, whereas
the fabrication and material costs were based on literature review and OEM specification
sheets [47]. Figure 5 depicts the dimensional feature extraction procedure for a nanopillar
array design in the Magics software package. These include volume, surface area, and
specific dimensions of the features. Furthermore, a thickness analysis was conducted to
determine the feature resolution.

2.1.2. Knowledge Base

A knowledge base was generated using literature reviews and best practices in the
field [48]. In addition, process capability data were obtained from OEMs [49]. Table 1
shows the input variables with their respective keys. Table 2 shows the ranges of all the six
input variables for five different nano/micro-manufacturing processes. These processes
were chosen based on differences in their process capabilities such as feature resolution,
throughput, processing cost, and applicability to manufacturing a variety of nano/micro-
scale design components. Dip pen nanolithography (DPN) is a scanning-probe-based
direct-write tool for generating surface-patterned chemical functionality on the sub-100
nm length scale [50]. It harnesses the power of an atomic force microscope (AFM) to
deliver different ink formulations on substrates [51]. Nanoimprint lithography (NIL) is
a high-production patterning tool for polymeric nanostructures with high precision and
low cost. NIL achieves resolutions beyond the limitations set by light diffraction or beam
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scattering that are encountered in conventional techniques [52]. Photolithography utilizes
CAD-developed masks and ultraviolet light curing of polymers, which is a production
tool for the semiconductor industry [53]. Pulsed laser deposition (PLD) is a bottom-up
thin-film deposition technique that utilizes a plasma plume to deposit high-temperature
superconductors, compound semiconductors, dielectrics, ferroelectrics, electro-optic and
giant magnetoresistance oxides, polymers, and various types of heterostructures [54]. Self-
assembly (SA) refers to the process by which nanoparticles or other discrete components
spontaneously organize based on chemi-adsorption phenomena. Self-assembly is typically
associated with thermodynamic equilibrium, and the organized structures are characterized
by a minimum in the system’s free energy [55].

Figure 4. Nanoscale designs with varying levels of complexity: (a) Low magnification, (b) high
magnification images of the pattern, and (c) silver lines after evaporation of 15 nm Ag and lift-off [44].

Figure 5. Dimensional and topological data extraction for datasheet (Authors’ work).



Appl. Sci. 2022, 12, 6143 7 of 20

Table 1. Keys for the input and output variables.

Input/Output Variables

Input

Cost

Low 1

Medium 2

High 3

Pattern Complexity

Low 1

Medium 2

High 3

Process Throughput Key

Low 1

Medium 2

High 3

Material Key

Polymer 1

Metal 2

Ceramic 3

Semiconductor 4

Composite 5

Output

Nano-Process

Dip Pen Nanolithography (DPN) 1

Nanoimprint Lithography (NIL) 2

Photolithography (PHO) 3

Pulsed Laser Deposition (PLD) 4

Self-Assembly (SA) 5

Table 2. Features Ranges for the Nano-Processes.

Input Variable DPN NIL PHO PLD SA

Cost [2, 3] [1–3] [1, 2] [2, 3] [1, 2]

Pattern Complexity 2 [2, 3] [2, 3] [1, 2] [1, 2]

Aspect Ratio [0.3–2] [3–10] [1–5] [1–5] [1, 2]

Feature Resolution (nm) [5–20] [5–20] [500–800] [5–20] [10–50]

Process Throughput [1, 2] [2, 3] 3 [1, 2] [1–3]

Material [1–5] [1–5] [1–5] [1–5] [1–5]

2.1.3. Data Organization

Based on inputs from the CAD feature extraction and user inputs, a data sheet was
generated (Table 3). Expert opinion and inputs from the knowledge base were used to
determine the appropriate nano/micro-manufacturing process for each part design.
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Table 3. Data Sheet for the input dataset for ANN.

Set Cost Pattern
Complexity

Aspect
Ratio

Feature
Resolution

Process
Throughput Material Nano-

Process
Nano-Process

Code

1 1 2 8 12 2 4 NIL 2

2 1 2 8 6 3 1 NIL 2

3 1 1 2 34 1 4 SA 5

4 2 2 2 7 1 5 PLD 4

5 2 2 2 511 3 4 PHO 3

6 3 2 2 10 1 3 PLD 4

7 1 2 2 567 3 4 PHO 3

8 2 2 9 6 2 3 NIL 2

9 2 2 10 20 2 2 NIL 2

10 2 2 2 14 1 3 PLD 4

11 3 2 1 5 1 2 DPN 1

12 1 2 3 591 3 1 PHO 3

13 2 3 8 15 2 3 NIL 2

14 1 2 3 516 3 2 PHO 3

15 1 1 1 30 1 2 SA 5

2.1.4. ANN Algorithm Development

Due to the variety of nanomanufacturing techniques with similar properties, the
decision to choose the appropriate one is complicated for manufacturers [56]. So, the
classification of NM processes through the neural network under various criteria influ-
ences the decision by narrowing down the selection with high accuracy. In this research,
the integration of an ANN with an expert system for nanomanufacturing classification
was explored.

ANNs are very useful in a wide range of applications, including Data Mining, Text
Mining, Signal Filtering, and Robust Pattern Detection, significantly improving their perfor-
mances compared to the conventional techniques [57]. This system is versatile in operation,
performs a broader range of functions compared to a linear program, and is robustly
resistant to failure due to its parallel structure. This extremely reduces the processing
time, unlike other kinds of algorithms, yet it achieves analogous results. Therefore, the
application of ANN can be used successfully to support nanoscale manufacturing. It lowers
costs and saves time. It can deal with issues that have a significant amount of data.

BPNN is one of the most common classes of training algorithms for Feed-Forward
Neural Networks (FFNNs), also called Back Propagation (BP). It is one of the most popular
NN methods and has four steps [58]. The BPNN corrects the randomly chosen weights. The
four steps are the feed-forward computation, BP to the output layer, BP to the hidden layer,
and weight updates. Once the error function becomes very small, the BPNN stops. The
BPNN algorithm comes from a relatively simple idea: the output of the NN is evaluated
against the expected output. The process is continuously repeated by modifying the
connection (weights) between layers until the smallest possible error is obtained [59]. The
output is computed by Equations (1)–(4):

Od
i = f

(
netd

i

)
= f (

n

∑
j=1

WijVd
j ) = f (

n

∑
j=1

(Wij. f

(
m

∑
k=1

wjkxd
k

)
)) (1)

netd
j =

m

∑
k=1

wjkxd
k (2)
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Vd
j = f

(
netd

j

)
= f

(
m

∑
k=1

wjkxd
k

)
(3)

netd
i =

n

∑
j=1

WijVd
j =

n

∑
j=1

(Wij. f

(
m

∑
k=1

wjkxd
k

)
) (4)

where n is the number of inputs, m is the number of hidden layer neurons, d is the dimen-
sional space, and Wjk is the weight between neurons j and k.

Probabilistic Neural Networks (PNNs) are the second algorithm that consist of 3 layers
of neurons (nodes). The input layer consists of nodes (features). The hidden layer receives
the features from the input layer. The third one is the output layer. PNN requires no time
to train, and it is sensitive to outliers, so it can generate probability scores and approach
Bayes optimal [48]. PNNs are generally considered classifier methods that represent any
input pattern into several categories. They use a controlled training set to obtain the
probability density functions improved in a pattern layer. The output layer is represented
by Equation (5):

f (x) =
1

(2π)
p
2 nσp

∑n
i=1 exp(−‖ x− xi ‖2

2σ2 ) (5)

where n is the total number of training patterns, d is the dimension of the input space, σ is an
arbitrary smoothing parameter (0 to 1), and p is the dimensionality of measurement space.

Generalized Regression Neural Network (GRNN) is the third algorithm used, and
it is a particular case of Radial Basis Networks (RBN). The GRNN architecture has two
layers, which are the pattern and summation. Specht (1991) has claimed that the GRNN
estimation is always able to converge to a global solution without being trapped by a local
minimum [60]. GRNN is a neural network algorithm that uses input data to predict the
output while requiring data for training. The predicted result or output is achieved by
training the network with the data set, while also providing a new testing data set. The
output is calculated as a function of the weighted average of the training data set [61],
where (Y(x)) is the prediction value of input x as shown in Equations (6) and (7):

Y(x) = ∑n
k=1(yk ∗ K ∗ exp

−dk
2σ2 )/(∑n

k=1 K ∗ e
−dk
2σ2 ) (6)

dk = (x− xk)
T(x− xk) (7)

where yk is the activation weight for the pattern layer neuron at k, dk is the squared
Euclidean distance between the training samples xk and the input x, and T is a threshold or
bias value.

MATLAB is supposed to be the best computing engine concerning its ease of use and
fast speed for GRNN implementation [62]. MATLAB develops GRNN and identifies an
optimal value of Sigma using split-sample cross-validation [63]. As a result, MATLAB
was used for classification, and the Levenberg–Marquardt training algorithm was applied
for training the feed-forward network. The validation of the output was compared with
the target based on desired NM processes. MATLAB codes helped in developing ANN
models for the prediction of nano-processes. Scripts can be developed to build commands
and functions to customize training algorithms and test the performance of the ANN
models [18]. Therefore, all the inputs and outputs were fed into the datasheet, and MATLAB
software was used to build neural network codes for three different algorithms (GRNN,
BPNN, and PNN).

2.2. Cyber Interface Simulator Using the IoT

The IoT has been used in this research to simulate machine availability for each NM
process based on the ANN outputs. Node-Red is a web-based tool that connects hardware
devices and an Application Program Interface (API). An API represents the interaction of
software components. It provides a browser-based flow editor as well. It is a powerful
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tool for building IoT applications with a focus on simplifying the ‘wiring together’ of code
blocks that carry out the tasks [24]. Node-Red adopts a visual programming method that
allows developers to connect already defined code blocks, known as ‘nodes,’ together to
perform a task. When wired together, input nodes, processing nodes, and output nodes
combine to make up ‘flows’, which are deployed to the runtime in a single click. With
JavaScript, functions can be created within the editor using a rich text editor; a built-in
library also makes it possible to save useful functions, templates, or flows for reuse [64].
Therefore, the Node-Red IoT simulator was chosen to create a Cyber Interface Simulator
as in Figure 6. The input was provided to initiate time for 2 h to check the availability of
nanomachines on the cyber network. A function generator was coded using JavaScript.
A dashboard interface was established which received input from the function generator
to present useful data using different graphical tools. It momentarily provides the actual
number of available machines, including their kinds, in cyberspace. Machine availability
arrays were automatically created and saved for all simulation periods.

Figure 6. Framework for Cyber Interface Simulator using Node-Red.

2.3. Dynamic Nano-M/C Identification System

The ANN provided the predicted NM processes, whereas the Cyber Interface Sim-
ulation (Figure 7) provided the availability of nanomachines. However, to check the
compatibility of the two outputs, they need to be handled and controlled, requiring time
and expenses to check the two expert systems and identify the final assignment. Therefore,
a dynamic system is appropriate and suited to perform this task. It finds out what the right
allocation of the machine availability is and the accuracy of the assignment. A dynamic
system is an integration method providing the percentage of assignment and the machine
allocation details. In the received the predicted nano processes from the ANN and the
machine availability from the Node-Red. Then, it compared them to compute the final
machine availability assignment in addition to the ANN’s accuracies. Therefore, it provided
a chart of their accuracy percentages.

The Java programming language was used to code this system. The input part consists
of the ANN and Node-Red machine availability arrays. The system analyzed the input
and produced the percentage accuracy of the assignment. Since the PNN algorithm has
the highest average prediction accuracy of 96%, it was run 14 more times. Therefore, the
PNN had 24 accuracies including the correct classification processes. The machine type
availability of 24 periods was provided by the Node-Red in array format. A Java-based
code was developed to compare every period separately. Each period had the correct
classification processes from the ANN and the type of available machines. It compared
every process with its available machines and chose the one with fewer. Similarly, it did



Appl. Sci. 2022, 12, 6143 11 of 20

it for the rest of the processes and their machines to obtain a final column of one period.
Then, it shows the percentages of the final assignment and the ANN output.

Figure 7. Dynamic Nano-M/C Identification System (Authors’ work).

3. Result and Discussion

The input consisted of different designs (nano/micro) and user inputs. ANN algo-
rithms were implemented to select the optimal nano/micro-manufacturing process. A
cyber interface was modeled using the Node-Red IoT simulator, which identified machine
capability and availability on the network. A dynamic machine identification code was
developed using the Java programming language to predict real-time machine assignment.

3.1. ANN-Based Expert System
3.1.1. First Stage

One hundred designs were used with only four inputs (features). These inputs were
pattern complexity, feature resolution, process throughput, and material type. Thus, it is
considered to be the first stage of improvement (Table 4). These input variables were chosen
as they represented important aspects while selecting a suitable nano/micro-manufacturing
process for the given design input. The neural network models were configured in MATLAB
software, that provides a platform for the simulation application. The dataset was divided
into input vectors and target vectors as follows: 75% were used for training, and 25% were
used as an entirely independent test of network generalization. The Levenberg–Marquardt
(LM) algorithm is an algorithm that trains a neural network. The network training function
updates weight and bias values according to the LM algorithm. Although LM requires
more memory than other algorithms, it is the fastest supervised algorithm [65]. LM is a
variation of Newton’s method that was designed for minimizing functions that are sums of
squares of other nonlinear functions. This is very well suited to neural network training,
where the performance index is the mean squared error. Three neural network algorithms
were implemented, which include GRNN, PNN, and BPNN. The data were set up for a
neural network by organizing the data into two matrices: the input matrix and the target
one. The input matrix had elements in columns representing selected features for the
collected nano-designs in rows. The output (target) part was a column that included the
number of designs for five different processes (20% of all designs are related to one process).
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Table 4. ANN stages.

Stage Designs Input Variables

First 100

Pattern Complexity

Feature Resolution

Process Throughput

Material

Second 200

Pattern Complexity

Feature Resolution

Process Throughput

Material

Cost

Aspect Ratio

The network architecture has an input layer with several features, one hidden layer
with four nodes, and five output layers. The numbers of nodes in the hidden and output
layers were chosen after performing a sensitivity analysis for different combinations of
hidden and output layer networks. The number of input neurons was set to the number of
the design features, whereas the hidden neurons were set to four. The number of output
neurons was set to five, which is equal to the number of (processes) targets. The neurons’
connection strength is based on their weights.

Figure 8 shows the best run in the first stage, which is related to the PNN since the
overall progress of ANN is different where the training stopped on reaching the maximum
validation check of 6 at iteration 10. The performance (MSE) was 0.0560, the gradient
descent value was 0.0069, and the mu value was 1.00 × 10−7. The training continued
through 10 epochs but the best validation performance was reached at epoch 4 with a value
of 0.082469. The regression plot of training, test, validation, and the training R-value was
0.73684, the validation R-value 0.69892, the test R-value 0.73742, and the overall R-value
equal to 0.73107. This proves the developed model and the network procedure of training,
testing, and validation are acceptable but not satisfactory.

Figure 8. The First Stage best run PNN (Authors’ work).
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The output class was our PNN prediction values, and the target class was our original
output values, as in the confusion matrix (Figure 8). Out of nine DPN predictions, 55.6%
were correct and 44.4% were wrong. Out of six NIL predictions, 83.3% were correct and
16.7% were wrong. Six PHO predictions were 100% correct. Out of three PLD predictions,
66.7% were correct and 33.3% were wrong. One SA prediction was 100% correct. Overall,
76% of the predictions are correct and 24% are wrong classifications, but the average
accuracy of the 10 runs is 64%.

The ANN computed the prediction accuracy by dividing the total corrected outputs
by the total of the test input (target). Table 5 shows the prediction accuracies of the 10 runs
for the first stage. PNN has the highest average accuracy of the first stage, which is 65.20%,
whereas the GRNN and BPNN have 64% and 62.80%, respectively. However, the maximum
PNN accuracy is 76%, whereas the minimum is 48%.

Table 5. First Stage Result.

First Stage

GRNN PNN BPNN

1 64% 48% 60%

2 72% 64% 68%

3 60% 64% 56%

4 64% 72% 56%

5 72% 64% 56%

6 64% 64% 64%

7 68% 76% 64%

8 68% 64% 68%

9 44% 76% 68%

10 64% 60% 68%

Average 64% 65.20% 62.80%

3.1.2. Second Stage

In the second stage, the accuracy of the ANN was improved by adding two more input
variables, which included the cost and aspect ratio. In addition, the dataset was doubled to
input 200 designs. Thus, there were a total of six input features to evaluate the 200 designs
(Table 4), giving the network a higher discriminating ability to distinguish between the
input requirements and map them to accurate output processes. The enhanced ANN model
gave significantly higher prediction accuracies for each of the algorithms (Figure 9).

After running the ANN 10 times, 10 results were shown for GRNN, PNN, and BNN.
The PNN prediction accuracy average is the highest at 96%. The three averages are better
than the ones in the first stage. However, the results of the best runs for PNN had a high
correlation coefficient (R-value = 0. 9817) between the measured and predicted output
variables, as shown in Figure 9. In addition, the PNN confusion matrix in Figure 10 shows
that the overall accuracy is 98%, where there is only one misclassification, in which the
ANN wrongly assigned a NIL process as a PLD.
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Figure 9. Second-stage ANN model with input variables, hidden layers, and output configuration
(Authors’ work).

Figure 10. The second stage’s PNN best run result (Authors’ work).
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Table 6 shows the 10 run results of the second stage. The testing part shows that
the highest average accuracy is the PNN one (96%), while the GRNN and BPNN have
accuracies of 95% and 94.20%, respectively.

Table 6. Second Stage Result.

Second Stage

Run
Training Testing

MSE Gradient Validation
Performance R-Value GRNN PNN BPNN

1 4.12 × 10−7 0.00015 0.01455 0.9800 98% 96% 96%

2 3.84 × 10−7 0.00012 0.01421 0.9820 98% 96% 98%

3 3.51 × 10−7 0.00014 0.01475 0.9817 96% 98% 96%

4 3.63 × 10−7 0.00012 0.01460 0.9811 96% 98% 96%

5 3.86 × 10−7 0.00022 0.01399 0.9700 96% 98% 90%

6 3.75 × 10−7 0.00018 0.01400 0.9788 94% 96% 96%

7 3.72 × 10−7 0.00020 0.01414 0.9786 96% 94% 96%

8 3.88 × 10−7 0.00019 0.01512 0.9814 94% 96% 94%

9 3.98 × 10−7 0.000276 0.01537 0.9686 90% 94% 90%

10 3.87 × 10−7 0.000250 0.01477 0.9733 92% 94% 90%

Average 95.00% 96.00% 94.20%

3.2. Cyber Interface Simulator Using IoT

After implementing the ANN expert system for evaluating appropriate nano/micro-
manufacturing processes for each part’s design, it is important to next seek the availability
of machines on the cyber network. The Node-Red IoT simulator was implemented to
accomplish this task. As per the framework for Cyber Interface Simulator using Node-
Red discussed in Figure 5, the Node-Red program was developed to execute the machine
availability function [66].

Different nodes, as shown in Figure 11, were used to simulate the cyber interface
flow. First, the inject node was added as an input by dragging it onto the workspace from
the palette. The input node initiates the flow for a given interval of time depending on
the application intent. The timestamp was triggered every 3 s to simulate each period of
machine availability. In practice, this would relate to pinging different machines that are
configured on a central hub for an interval of time (e.g., every 2 or 3 h).

Second, the function node was used and fed by the correct code to find the available
number of machines and their classifications. The function node activated messages
through a JavaScript function. It is called a machine availability generator and was coded
to generate a random number between 30 and 50. The output debugs node, the total
number of M/C available, shows the machine’s available number during a specific time on
the debug tab. In addition, the M/C availability status node, output debug, was used to
provide an array of the available machines related to the total number of M/C available
nodes. However, dashboard nodes were used to provide the needed output. Thus, the
gauge node, which controls the number of machines available, was modified so that the
range was from 30 to 50. Therefore, a file of any period can be usefully used since it has
arrays of machines’ availability. So, a file node, machine file, has been added to provide a
file of 24 times (time ranges? time intervals?) of the available machines, and this can be
modified. This was formed as 24 arrays, where each array included the machine’s number
every 3 s.
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Figure 11. Node-Red cyber interface flow (Authors’ work).

The machine availability array, text node, has been used to classify the machines. Then,
the nodes were wired together by dragging between them. The debug console outputted
the total number of machines available and the machine available status. The number
of machines available (gauge) provides the last available number on the dashboard. In
addition, the chart shows the time history of machine available status where the y-axis
represents the number of machines, and the x-axis is the time. Finally, the dashboard shows
up with the gauge and the chart (Figure 12). The machine file nodes create the final file of
machine type’s arrays that the machine-type array node performs every period of time.

Figure 12. Cyber nanomanufacturing dashboard interface (Authors’ work).

3.3. Dynamic Nano-M/C Identification System

The Dynamic Nano-M/C Identification System was used to integrate the ANN-Based
Expert System and the Cyber Interface Simulation to compute the final accuracy of the
assignment. The ANN results are the predicted nano-processes, whereas the Node-Red
result is the machines’ availability. The Java programming language was the tool used
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in this system. The proper code has been developed to perform the needed assignment.
First, it classified the Node-Red arrays one by one based on Figure 13 to provide a new file
having arrays of five different machines. Then, it compared the new file with the ANN
file row by row. It compared the number of processes and their machines and chose the
minimum one so that the final assignment could be computed.

Figure 13. Steady-state ANN vs. Dynamic (Authors’ work).

Next, it calculated the total for every row and divided it by the maximum number
of machines available, i.e., 50. Therefore, 24 columns of percentages were computed to
represent the final assignment (dynamic). On the other hand, the ANN file has been used
to maintain a steady state. This was performed by computing the total for every row and
dividing it by 50. Since the new two columns of percentages are ready, the chart has been
created to show the dynamic and the steady-state flow as in Figure 13.

4. Conclusions

The revolution in digital technology, IoT, and nano/micro-manufacturing technologies
offer added advantages if they are interfaced in real-time over a cyber network. Many
industries operating on nano/micro-manufacturing technologies work in standalone con-
figurations, which prevents the system integration benefits. The present research focuses on
developing a smart agent system with predictive capabilities for cyber nanomanufacturing
in real-time. The developed framework helps in translating nano/micro-scale digital design
to appropriate process selection and machine availability using smart algorithms. Various
AI-based technologies (GRNN, BPNN, and PNN), along with IoT-based technologies (API,
Cyber Interface Simulator, and Node-Red), have been integrated. The developed smart
agent system was successfully tested on various nano/micro-manufacturing technolo-
gies such as DPN, NIL, PHO, PLD, and SA. Thus, the developed dynamic nano-M/C
identification system helps in identifying machine availability over the cyber network
in real-time.

In the present research setup, a maximum of 50 machines are made available. The
ANN output and dynamic machine availability were determined. A maximum prediction
accuracy of 99% was obtained for the ANN base output, while a 95% prediction efficiency
was obtained for dynamic machine availability. Future research may explore the parametric
optimization of various nano/micro-manufacturing equipment while selecting machine
availability to optimize the production efficiency and reduce machine idleness.
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