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Abstract: Eating an appropriate food volume, maintaining the required calorie count, and making
good nutritional choices are key factors for reducing the risk of obesity, which has many consequences
such as Osteoarthritis (OA) that affects the patient’s knee. In this paper, we present a wearable sensor
in the form of a necklace embedded with a piezoelectric sensor, that detects skin movement from
the lower trachea while eating. In contrast to the previous state-of-the-art piezoelectric sensor-based
system that used spectral features, our system fully exploits temporal amplitude-varying signals for
optimal features, and thus classifies foods more accurately. Through evaluation of the frame length
and the position of swallowing in the frame, we found the best performance was with a frame length
of 30 samples (1.5 s), with swallowing located towards the end of the frame. This demonstrates that
the chewing sequence carries important information for classification. Additionally, we present a new
approach in which the weight of solid food can be estimated from the swallow count, and the calorie
count of food can be calculated from their estimated weight. Our system based on a smartphone app
helps users live healthily by providing them with real-time feedback about their ingested food types,
volume, and calorie count.

Keywords: machine learning; calorie monitoring; food recognition; piezoelectric sensor; OA; wear-
able necklace

1. Introduction

Healthy eating and calorie balancing are key factors for living a healthy life with a
reduced risk of chronic diseases such as Knee Osteoarthritis (OA), cancers, heart disease,
cirrhosis, and diabetes [1]. In OA, the pressure coming from the increased weight causes
degradation of joint cartilage and the underlying bone. This, OA consequently causes
stiffness and severe pain to the patient.

There have been attempts to design an automated food monitoring system that mea-
sures caloric intake by classifying types of food and estimating ingested amounts. Differ-
ent sensors such as piezoelectric sensors, microphone, accelerometer, gyroscope, camera,
weight scale, electromyograph, and textile pressure sensor have been employed to auto-
matically monitor food intake.

Among these sensors, microphones have been widely used because they are more
accurate than other sensors [2–9]. Microphone-based wearables collect acoustic signals non-
invasively while the wearer is eating; however, surrounding noise affects the performance
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and decreases the accuracy of food classification in real environments. Furthermore, these
wearables have the disadvantages of low user acceptance for long-term usage [4] and low
comfortability because they exert a large force against the neck [2,3]. On the other hand, the
necklace-embedded piezoelectric sensor, also known as vibration sensor, generates distinct
patterns for the chewing sequence and swallowing activity by detecting skin motion of the
neck and jaw. The employed sensors are not only less sensitive to surrounding noise but
also provide better user comfortability than microphone-based wearables.

Nowadays, the severity of chronic diseases has increased such that they become
difficult to cure with traditional medicine. Medicine may cause several severe side effects
while curing a disease. Thus, several other diseases attack the human body when using
medicine for cure. Chronic diseases can be prevented if timely preventive steps are taken.
Automated wearable monitoring systems are essential for assisting users in following
preventive measures. Thus, it motivated us to design a novel food-intake monitoring
system that can enable users to control their food intake and avoid deadly chronic diseases.

In this work, we present a smartphone application-based nutrition monitoring wear-
able system that classifies food categories and estimates caloric intake by taking advantage
of the robust features of a piezoelectric embedded necklace. Our system classifies foods into
different categories based on chewing and swallowing patterns and estimates the volume
and calories of food ingested based on the number of swallows. As shown in Figure 1, our
smartphone application sends statistics about caloric intake, suggests the next mealtime,
and recommends physical exercise. The users can develop good healthy dietary behavior
by following the recommended suggestions.

Figure 1. An overview of food intake monitoring system.

There are three components of our proposed food intake system. parts. First, we have
achieved a higher classification accuracy than previous nutrition monitoring systems [2–7,9–28].
We have demonstrated that accurately processed raw temporal data along with an important
set of optimal feature selection, enables the proposed system to outperform other state-of-the-
art necklace systems [10,11] that use spectral features to recognize foods. We have observed
that a temporal frame of 30 samples (1.5 s) containing a sequence of chewing events combined
with a successive swallowing event forms a distinct pattern. The distinct temporal patterns in
the frames generate essential effective features to associate the pattern with a relevant food
category. Our proposed system has attained f-measures of 94.2%, 93.7%, and 95.1% using
the k-nearest neighbor, support vector machine, and random forest, respectively. The second
important aspect of this algorithm is its high estimation rate for the weight of solid foods, the
main contributors to caloric intake. To our knowledge, this is first time that the weight of
consumed food has been estimated from the number of swallows. This method has achieved
comparatively better recognition accuracy than existing systems, with the additional advantage
of avoiding restrictive or immovable models such as tables [26,27]. The estimated weight of
food is converted into caloric intake with sufficient accuracy to make users aware of their
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excessive caloric intake. Third, we built a smartphone application that provides a real-time
notification about the number of swallows, estimated food volume, and number of calories
during each meal.

This paper is organized as follows. Section 2 describes related work, focusing on food
intake monitoring with piezoelectric sensors. Section 3 presents the raw data acquisition
using our necklace embedded with the piezoelectric sensor and the data processing required
to extract the discriminating features. Statistical feature extraction, selection, and food
intake classification are described in Section 4. In Section 5, the experimental setup is
discussed. We evaluate the system for its food recognition, weight approximation, and
calorie estimation in Section 6, and provide a conclusion in the last section.

2. Literature Review

There has been significant effort by various researchers in the wearable healthcare field to
design a wearable sensor to monitor and measure dietary intake. Researchers have designed
various automated non-invasive food intake recognition systems using different sensors such
as microphones [2,4–9,17], accelerometers [14], cameras [18], gyroscopes [21–24], textile pressure
sensors [27], strain gauges [28], piezoelectric sensors [3,10,11,13,19], and orientation sensors [15,29].

Recently, to estimate food quantity for the purpose of health monitoring, smart-
watches [4], bite counters [21–24], video recordings [18], and smart dining tables [26,27]
have been used. Smartwatch-based eating-behavior evaluation [4] has been proposed as a
new modality for food intake monitoring. This system uses the microphone of the smart-
watch, and has been used by many researchers in different configurations [2,4–9,17]. The
smartwatch-based system has limitations such as the effects of surrounding environmental
noise and the inability to estimate the quantity of food. In addition to microphone-based
systems, other sensor-based systems have many limitations compared to piezoelectric
sensor-based systems, such as their fixed environmental settings [26,27] or the limited
scope of bite counters [21–24].

We have used a necklace embedded with a piezoelectric sensor to track or transform
the movement of neck skin into a suitable voltage. As each class of food is different to
another, so bites of different foods cause different amounts of movement in the neck skin.
Hence, the piezoelectric-sensor embedded necklace was chosen to accurately represent
different skin movements with distinct patterns of voltages. The dietary intake recognition
systems based on piezoelectric sensors are summarized in Table 1. N. Alshurafa et al.
developed a wearable sensor system that consisted of a necklace to monitor nutrition
intake [10,11]. The necklace was embedded with a piezoelectric sensor to detect skin
motion in the lower trachea during ingestion. The authors’ method of food classification
was applied on a limited number of binary categories such as liquid and solid, cold and hot,
and soft and hard. They developed a classification model using statistical features extracted
from a spectrogram. The authors used a long sample window and an improper swallowing
position that obscured the swallowing characteristics. Accordingly, their spectrogram
did not exhibit salient statistical features over time. Thus, this model performed only
moderately at the cost of high complexity and extra computation of the spectrogram.

H. Kalantarian et al. investigated the concept of food intake monitoring using a
low-cost piezoelectric-sensor embedded in a necklace [13,19]. The sensor generated a
signal with a distinct pattern that enabled the system to recognize water, sandwiches, and
potato chips. They reported food classification accuracies of 81.4%, 84.5%, and 85.3% for
water, sandwiches, and chips, respectively. The authors’ methodology obtained a better
performance than [10,11] by processing the temporal data and avoiding the computationally
complex short-time Fourier transform (STFT).
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Table 1. A summary of necklace-based intake monitoring systems.

Sensor Type Description Sensor Form Food Classes
(Number of Subjects) Accuracy (%)

Piezoelectric

Refs. [10,11] presented a unique wearable
system to detect neck skin movement
caused by ingestion.

Necklace. Water, hot tea, patty, chocolate,
and nuts (20).

87% [10] and 90% [11] for
solid and liquid. 90% for hot
and cold. 80% for solids.

A smartphone application-based
nutrition-intake monitoring system [19]
consisting of a necklace similar to [10,11]
estimated meal volumes.

Necklace. Water, sandwich, and chips (10).
85.3% for chips, 84.5% for
sandwich and 81.4% for
water.

Piezoelectric and
Accelerometers

The wearable system of [10,11,19] was
improved by the addition of an
accelerometer in [13] to decrease
detection of false positive swallows.

Necklace. Sandwich, chips, and water (30).
85.3% for chips, 84.5% for
sandwich and 81.4% for
water.

Piezoelectric or
Microphones

The performance of microphone and
piezoelectric for swallow detection were
compared in [3], when used separately.

Necklace and throat
microphone.

Chips, sandwich, and water (10).
Mixed nuts, patty, and two small
chocolates (20).

91.3% and 88.5%
(microphone). 75.3% and
79.4% (necklace).

H. Kalantarian et al. compared a piezoelectric sensor and a microphone, the two most
promising intake measuring sensors for automated dietary intake monitoring systems [3].
They obtained better food classification with the microphone than with the piezoelectric
sensor. They applied a long sample window that failed to accurately process the data and
chose an unsuitable position for the swallowing event. The authors obtained features from
a spectrogram as they were inspired by [10,11]. The spectrogram-based signal-processing
technique was better than matching pursuit and scalogram-based Gabor wavelets.

However, as mentioned earlier, efficient features can be obtained from the temporal
signal without the use of a spectrogram if a proper frame length and a suitable swallowing
position are selected. In our work, we processed data and extracted features from the
time–domain signal as reported in [13,19].

3. Acquisition of Raw Data

A necklace embedded with a piezoelectric sensor is deployed to sense and record
ingestion patterns comprised of chewing sequences and swallow events. The smartphone
application (App) establishes coordination between the Simblee microcontroller and the
necklace. The sampling frequency of the App is 20 samples/second. The users manually
insert the per-gram caloric value for each specific food category, as displayed in Figure 2.

3.1. A Piezoelectric-Sensor Embedded Necklace

Piezoelectric-sensor embedded necklaces are designed in two different configurations:
pendants and sports bands [13]. Unlike [4,10,11,19], we selected the stretchable sports-
band design. The sports-band design can easily be stretched to the users’ neck, so people
of different body structures can wear them without any extra effort, and hence it has
better usability. As stated in [13], the stretchable necklace has the enormous advantages of
comfortability and stability. The sports band is highly preferred in data collection, clinical
environments, and algorithm evolution. The pendant [10,11,19], the second necklace design,
has the problem of leaving the neck-skin position during motions such as vigorous head-
turning, walking, or running. Therefore, a piezoelectric sensor embedded in a stretchable
sports-band necklace is selected as shown in Figure 3. The necklace collects accurate
experimental data by translating throat skin motion into unique voltage pattens using a
single vibration sensor.
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Figure 2. Smartphone application for food intake monitoring: (a) Caloric intake statistics; (b) Calorie
method selection; (c) Swallow detection for each food category; (d) Health feedback for friendly suggestions.

Figure 3. Necklace-type wearable system: (a) Subject wearing a necklace; (b) Necklace connected
to Simblee.
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The piezoelectric sensor generates a distinct pattern of output voltages according
to the amount of pressure the neck skin applies against the sensor. During eating, neck
muscles contract and relax in a way that they apply force on the vibration sensor. Hence,
the sensor generates a distinct temporal pattern of voltages that represents chewing and
swallowing events, as depicted in Figure 4. The piezoelectric-sensor embedded necklace is
attached with the general-purpose input/output (GPIO) pin of the Simblee microcontroller,
which has built-in analogue to digital converters (ADCs) convert the analogue signal into
the digital signal. The sensor without an additional mass carries a sensitivity of 50 mV/g
and resonates with magnitude of 1.4 V/g [29]. The smartphone application is the center of
coordination between the sensor and the Simblee [30]. The smartphone application enables
the sensor to monitor the user’s skin movement with the coordination of the Simblee.
Thereafter, the sensor continuously measures skin motion until the intake activity is ended.

Figure 4. Food ingestion pattern waveform: (a) The eating pattern of all the ingested food categories;
(b) Extracted frames from the ingestion pattern of foods are enclosed by rectangles.

Thus, the hardware system receives a temporal amplitude-varying voltage-signal,
representing the ingestion pattern collected at 20 samples per second. The Simblee, a
microcontroller, is more compact and smaller in size than the food monitoring system in [2];
thus, it can be carried easily in real-life settings, as depicted in Figure 3.

The smartphone application played an essential role in the implementation of the
food intake monitoring system. The application acts as an interface between the intake
monitoring system and the user. The application facilitates the experiment by providing
different daily meal options, calorie calculation methods, food types, and caloric intake for
each meal, and makes suggestions to the user based on their hydration level and caloric
intake (see screenshots of the application in Figure 2). In contrast to [11,13], the user can
extend the battery power of the intake monitoring system by switching the active mode of
the Simblee microcontroller to ultra-low power (sleep) [31].

The weight of each food is estimated separately, based on the swallow count. The
calories for each meal of the day are calculated by Equation (1), which aggregates the
calories of all the ingested food types. The calories for each food type are calculated as
the 1-g caloric weight, ci (coefficient), multiplied by the estimated food weight, f oodi
(swallow counts). Thereafter, the calculated calories for all ingested foods are aggregated
to yield the calories for a particular meal of the day. There are two methods of caloric
coefficient insertion: user-defined and application-default. User-defined caloric coefficients
are entered by the user, while application-default caloric coefficients are pre-defined or
pre-programmed based on average values in order to generalize varieties of the same food.
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The calorie estimation performance of these two methods are compared in Section 6.2. The
caloric intake is simply estimated with Equation (1).

caloric intake = ∑i ci f oodi (1)

In this work, we considered five food types: chips, cookies, nuts, pizza, and water.
As water was consumed in our experiment and does not contain any calories, the caloric
coefficient for water is 0. For other foods, coefficients are entered by the user or left as
the application default. Default values are calculated as the average number of calories
from different varieties of the same food. Though the default values estimate calories
less accurately for some foods, as discussed in Section 6.2, they also generalize the calorie
equation well over different varieties of foods. In our experiment, foods were consumed
in sequences of bites weighing about 1 g, corresponding to 3.01 calories for pizza, 5.67
for nuts, 5.2 for chips, and 5.125 for cookies for the estimated 1-g bolus ingested during
each swallow.

3.2. Data Processing

The signal generated by the necklace is denoised to remove noisy data and to retain
important ingestion events. It is important to clean the sensor signal prior to feature extrac-
tion and the development of the statistical model. Prior researchers [9,14,17] segmented the
ingestion activity into three sequential phases: oral food preparation phase (food is chewed
and turned into a viscous bolus), pharyngeal phase (bolus traveling through the pharynx
and upper esophageal sphincter), and the esophageal phase (bolus enters the stomach via
the esophagus). We combined the esophageal and pharyngeal phases to denote swallowing,
and the oral preparation phase to represent chewing. The main objective is to obtain the
signals representing the users’ eating patterns for different foods. When food enters the
mouth, different oral receptors are activated and carry sensory information about material
properties to the brain. The most important stimuli are related to food texture (crispness,
hardness, dryness, size, and shape) and flavor. The users continuously adjust these stimuli
to efficiently break food into a bolus that can easily be swallowed. We have applied an
equal weight to both actions: chewing and swallowing. As shown in Figure 4, the series
of minor peaks represent chewing patterns and the major peaks with large amplitude
represent swallowing patterns.

It is observed while ingesting different foods that users exert different amounts of
force during each attempt at food breakdown because foods vary in hardness, crispiness,
and texture. Thus, the forces exerted to breakdown foods with different levels of hardness
generate distinct chewing patterns prior to each swallow. By exploiting the distinct inges-
tion patterns for foods with different textures, a series of chewing events are combined
with a swallowing event, which forms data of ingestion patterns. In contrast to [10,11], we
employ frames to borderline the desired ingestion pattern, ultimately enabling the efficient
extraction of the efficient discriminating features. The frames enclosed in rectangular
boxes are shown in Figure 4b. The proper window length for the samples and a suitable
swallowing position in the frame should be chosen for each frame representation of the
raw data, so that the features can be extracted successfully, and an efficient and accurate
model can be built.

The raw signals represent the chewing and swallowing patterns for different foods.
The acquired sensor signal is preprocessed to capture useful information from an event
and thus to classify it correctly. Similar to the naive window selection method of [10], our
method employs different non-overlapping window lengths to process the raw sensor
signals and divide the signals into frames. An optimal window length was selected based
on the performance of the classifier. As shown in Figure 5, window lengths of 20 samples
(1 s) and 30 samples (1.5 s) are most suitable, based on an accuracy comparison of the
models over different windows of samples. Previous research [13] has also indicated that a
window length of 1 s (corresponding to 20 samples) is suitable for the correct classification
of eating patterns from a piezoelectric sensor. However, we have selected a window length
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of 1.5 s (30 samples) because of its slightly higher classifier performance. Four to five
samples are used to represent a swallowing event, but a suitable count of samples are
required to denote the chewing sequence; as the number of samples is important for the
representation of the ingestion events and can affect the performance of the model if the
number of samples in a window is too large or too small.

Figure 5. This figure demonstrates the impact of the window length over the classifiers’ performance.
The 30-sample (1.5-s) window is most suitable as evaluated on the performance of the classifiers.

The window of 30 samples (1.5 s) almost agrees with published data indicating that
500 ms is a sufficient window length to represent chewing strokes [32], and that 20 samples
are adequate to represent chewing and swallowing [3,13] for food classification. The result-
ing frame for the signal after multiplication is shown in Figure 6a. The frame boundaries
are indicated by two adjacent dashed red vertical lines. We then apply drop-out technique
over all the frames or segments of the signal to search for informative frames containing
the swallowing peak and to remove the noisy frames. Frames are selected or dropped out
based on the swallowing peak. Frames containing the swallowing event peak are moved
backward or forward to capture the preceding sequence of chewing events through which
the food was transformed into a bolus. Food in the form of a viscous bolus is the final
state prior to swallow stage. It has been observed that users do not enter extra food into
mouth until swallowing the bolus; thus, chewing and swallowing events of the same intake
cycle are associated with same food category. Thus, the frames contain 23 chewing samples
(pre-swallow samples) and six post-swallow samples in order to cover the complete intake
cycle. The noisy and uninformative frames are discarded, as depicted by the dropped-out
section in Figure 6a.

N. Alshurafa et al. used a long sample window for data representation and spectro-
gram generation [11], but failed to extract distinct statistical features for food classification.
The data processing technique of our algorithm is compared with theirs in Figure 6. As
discussed in Section 6.1, their algorithm is much less accurate than ours for food clas-
sification because the authors selected a long pattern of chewing, which obscured solid
swallows, especially. Moreover, they applied STFT to the collected data, which further
complicated the data and led to the extraction of indistinct statistical features. The authors
built a predictive model based on those inefficient features. However, they did capture
swallowing peaks well, which may be advantageous to people with eating disorders.
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Figure 6. Comparison of data processing techniques: (a) Proposed data processing technique;
(b) Previous work data processing technique [4,7].

We have positioned the swallow at the 4/5 of the frame length because this allows
the window to cover the prior chewing pattern along with each succeeding swallow, in
contrast to other positions of swallowing in the window. When swallowing is positioned
elsewhere in the window, the waveforms of other processes are included, such as breathing,
which always follows swallowing [33].

For both 20- and 30-sample frames, the best classification performance is achieved
when swallowing is positioned towards the end of the frame. The general trend in Table 2
illustrates that the recognition performances of k-NN, random forest, and SVM increase
when more chewing samples are included in the frame. This indicates that the chewing
portion includes important information for classification. Therefore, in this assessment,
we have obtained the best performance by using the random forest for a 30-sample frame
with swallowing positioned at the 4/5 of the frame length. Frames of 30 samples perform
slightly better than frames of 20 samples. Thus, we have chosen 30-sample frames after
exploring both 20- and 30-sample frames with different swallowing positions in order to
find the optimal raw signal for effective feature extraction. The results are given in Table 2.

Table 2. Classifier performance with 20- and 30-sample windows.
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As shown in Figure 4, the waveform after swallowing becomes flat during the breath-
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the accuracy of the system if it is included in the sample window (i.e., when the position
of swallowing in the window is changed). Swallow positioning at the end of the window,
in addition to performing well also agrees with the generalization assumption of [7], in
which each swallow was combined with the preceding chewing pattern to form one intake
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cycle before a new piece of food was ingested. In contrast, in the most similar work given
by [10,11], swallowing was set in the middle of the window, so the window included
silent phases along with related eating patterns; thus, the algorithm could not attain a
high accuracy. Discriminating features are obtained from informative frames carrying
information about the swallow event and the prior chewing sequence.

4. Feature Selection and Food Classification

A set of optimal features are chosen based on their predictive capability to associate
ingestion patterns to a food category. Twelve statistical features (the arithmetic mean,
standard deviation, first eigenvalue, harmonic mean, interquartile range, kurtosis, median,
maximum, range, skewness, geometric mean, and z-score mean) are computed from
processed or informative frames in order to classify different food classes by exploiting
variations in the pattern of chewing sequence and swallowing event for each food. We
have applied a heuristic algorithm to select efficient and non-redundant features to enable
the classifier to distinguish various food categories.

There are various filtering algorithms that can be employed to select important features
and organize them according to rank. Here, RELIEFF [34], an instance-based method, has
assigned the relevance score to all extracted features. The score or weight of the features
denotes their ability to distinguish the food categories. The features are organized in order
of descending score, and low ranked features are removed. Accordingly, ten high-scoring
features form the finalized set of optimal features to build the food classifiers.

RELIEFF

RELIEFF, a heuristic-based feature-filtering algorithm, selects a set of optimal features
by assigning weight to the features. The algorithm randomly chooses near instances and
applies the features over the chosen instances. The filtering method assigns a high weight or
score to features that exhibit the ability to distinguish among near instances. The algorithm
computes the difference between two instances based on the attributes or features using
function diff (Attribute, instance1, instance2)/n. The features differ by discrete value,
either 0 (equal values) or 1 (different values), whereas features in a continuous domain
differ by the actual difference normalized to the interval [0, 1]. The weight-scores denote the
strength of the feature. The attribute score is updated based on the notion that informative
features should have the same score for the instances belonging to same class and should
have different values for instances belonging to different categories. The RELIEFF method
computes the feature weight W[A] by Equation (2).

W[A] = P(value of A|different class nearest instance )−
P(value of A|same class nearest instance )

(2)

Algorithm 1 The feature selecting RELIEF algorithm

1: Set all weights W [A] =0.0
2: for i: =1: n (number of random instances) do
3: begin
4: Randomly select an instance R
5: Find nearest hit H (same class) & nearest miss M (different class).
6: for A: =1: all attributes do
7: W[A] := W[A]− di f f (A,R,H)

n +
di f f (A,R,M)

n
8: end for
9: end for

The algorithm is applied to the twelve features to compute their discriminating powers,
which are shown in Figure 7. The rank of mean of standardized z scores and kurtosis is
at the bottom of the important features list as the feature selecting algorithm is applied.
It shows that both features at the bottom carry redundant and irrelevant information
about ingestion patterns. Therefore, both features are eliminted to reduce the the model
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complexity and improve its accuracy. The classifiers are built on the remaining optimal set
of features computed from the ingestion patterns of different foods.

Figure 7. Important features in descending rank.

5. Experiment

We recruited eighteen graduate students at Sungkyunkwan University, eleven males
and nine females, who had no disorder related to eating. The users agreed by signing con-
sent forms prior to the experiment, and their personal data was kept private in accordance
with the declaration of Helsinki. The subjects were subsequently invited for an individual
recording in three sessions. Cheese pizza, chocolate chip cookies, peanuts, Pringles chips,
and water were used for food intake testing of the proposed wearable nutrition-monitoring
system. Participants were directed to eat only one food at a time and were prohibited from
eating other foods in between these foods, so that the experimental data for each food
category could be saved with the correct label by memory.

The users were instructed to eat a bite of food weighing about 1 g so that each bolus
would weigh 1 g before it was swallowed. Swallow counts were used to estimate the
weights of the ingested foods and the calories consumed, and to facilitate food recognition.
Each chip and peanut weighed about 1 g. One cookie weighed about 6 g. The pizza was
cut into 10-g slices, and a plastic cup containing 10 mL of water was used for each serving.
A 1-g estimated bite was demonstrated in front of each participant 30 min before the start
of the experiment. Participants were directed to consume a whole chip or one peanut, and
to perform six bites for each cookie, 10 bites for one slice of pizza, and 10 sips for each cup
of water.

At the beginning of the experiment, the necklace was calibrated around the user’s neck
and the user was handed a mobile set displaying the diet and caloric intake monitoring
application. When the user turned on the switch displayed on the screen, a wake-up signal
was given to the Simblee microcontroller board to be ready for intake-activity monitoring,
and the system started acquiring data from the piezoelectric sensor after 2 s. The two-
second delay in acquiring the sensor signal was selected to allow the user time to pick up
the glass of water or take the first bite of food after switching on the food-intake activity.

Data collection for the ingestion activity was undertaken in a real environment; for
example, other researchers sitting in the laboratory were allowed to talk, and the sound of
the door opening and closing was permitted. The necklace-embedded piezoelectric sensor
(the data-collecting source) is not influenced by surrounding noise; its waveform changes
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when the neck skin exerts force. In contrast, microphone-based food monitoring systems
exhibit lower recognition performance in real environments due to surrounding noise.

6. Result and Discussion

The performance of our proposed method is compared to most relevant previous
studies as shown in Table 3. The performance and limitation of relevant studies and our
method are described. It is evident that our method has outperformed several relevant
studies with higher accuracy, better usability, and low limitations. However, there are a few
studies based on advanced deep-learning models that extract features and perform recog-
nition together [35,36]. We have not used computationally complex deep learning models
as we did not want to improve classification accuracy with the cost of high computation
but preferred simple machine learning models. The simple model used attained better
classification accuracy and can be integrated in wearable devices to perform its operation
in real-time.

Table 3. The performance comparison between the proposed study and previous related studies.

Description Performance Limitation

A wearable system presented
in [10,11] to detect neck skin
movement caused by
ingestion.

Their method achieved
maximum accuracy of 90% for
a small number of categories.

Binary classification

Nutrition intake monitoring
system [19] consisting of a
necklace similar to [10,11]
estimated meal volumes.

The system attained average
accuracy of 83%. Low food categories

The authors improved
wearable system of [10,11],
and [19] by the addition of an
accelerometer to decrease
detection of false positive
swallows [13].

The system attained average
accuracy of 83%. Low food categories

The authors compared the
performance of a microphone
and piezoelectric sensor for
swallow detection [3], when
used separately.

The microphone-based system
exhibited about 10% higher
performance than
necklace-based system.

Low recognition accuracy for
fair count of food classes.

Our proposed method based
on piezoelectric sensor
recognized suitable count of
food classes by exploiting an
accurate flexible sensor with
better data processing
technique

Our method achieved average
recognition performance of
94% for five food classes

Low food classes

A detailed performance comparison of the current study and previous studies is
discussed in following sections.

6.1. Food Classification

Our method attained a high recognition rate for five food types (chips, cookies, nuts,
pizza, and water) when 30 samples (1.5 s) were used. Our method is compared to the most
similar published method [10,11,13,19] in Figure 8, which clearly demonstrates that our
method performs better than the previous method in recognizing all food types. Random
forest, k-NN, and SVM are used to assess the effectiveness and efficiency of the two
algorithms. The performance of the classifiers is evaluated based on precision, recall and
the f-measure. The previous methods [10,11] exhibited a moderate recognition rate because
of their large sample window. We think that large windows average out short-duration
swallowing events, and STFT cannot produce distinct statistical features.
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Figure 8. Food recognition performance: (a) Food recognition performance of the proposed method;
(b) Food recognition performance of the previous method.

All three classifiers exhibited the highest classification for water over foods as water
shares no common ingestion pattern with other food. Thus, the users’ ingestion patterns
for water were totally different, as can be seen in its generated waveform in Figure 4. The
classifiers attained lower performance for cookies and pizza as instances belonging to these
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foods were misclassified to each other. The misclassified or incorrectly classified foods may
have common textural characteristics causing their incorrect classification.

6.2. Estimation of Food Weight and Caloric Intake

In our proposed method, the weight of food is measured from the number of swallows.
The users were asked to swallow a bolus of food weighing about 1 g by taking a 1-g bite.
Although lower than the natural food-bite size, this bite size helped the user to digest the
food easily. Estimating the food weight based on the number of swallows is a novel idea
and is simpler than previously employed food-weighing systems [26,27]. The estimation
error was lower for foods with a discrete nature (chips, peanuts, and cookies) than for
foods with a composite nature (pizza and water). Because the discrete foods were ingested
easily by the users in appropriate bites, such foods could be estimated with high accuracy.
In contrast, it remained very difficult for users to take 1-g sips of water or bites of pizza,
so the errors for these items were large. Fortunately, water has zero calories, so it has no
role in calorie estimation for the goal of weight control. The weight estimation using the
proposed approach is shown in Figure 9. However, the calorie measurement estimation for
pizza was degraded, as shown in Figure 10. The weight estimation for the other solid foods
was highly accurate. High accuracy for weight estimates is important because it is the basis
for caloric measurements.

Figure 9. This figure describes the deviation of the estimated food weight from the actual weight of
the consumed food.

Figure 9 displays the swallow-size comparison among different users for each food
class. The horizontal line at 1 g represents the swallow-weight condition and acts as a
reference for users over all foods; users were asked to take 1-g bites so that we could
implement the stated strategy of weight estimation. Most of the foods shown in Figure 9
have short whiskers, indicating that all users swallowed similar amounts. However, pizza
has large whiskers, indicating that different users swallowed different amounts. The
estimated ingestion behavior of users exhibited error for swallow size, as graphically
shown by boxes deviating from the reference line in Figure 9.
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Figure 10. Calorie estimation methods and comparison with actual caloric intake.

Missed or undetected swallows and bites larger than 1 g were two sources of error in
the estimation of food weight from swallow counts. Swallows greater than 1 g were the
main contributor to the total error, while the remaining percentage of error was caused by
missed swallows (21.3%, 13.4%, 12.5%, 16.1%, and 24.7% of the total error for chips, cookies,
nuts, pizza, and water, respectively). For example, the overall error for water volume or
weight was estimated as 29.26%, which can be further partitioned into 75.3% for large
swallows and 24.7% for missed swallows. The percentage of error from missed swallows
was smaller for the remaining foods, while the percentage of error from large swallow sizes
was larger. All the participants in this experiment were young and were observed to take
bites larger than the instructed 1 g for weight and calorie estimation. Thus, the weight and
calorie estimation could be improved through careful selection of the amount of food for
each bite.

The number of calories in each food is measured as the estimated weight of the food
multiplied by its calorie weightage (the number of calories in 1 g of that food). As previously
stated, the calorie weightage can be entered into the developed smartphone application in
two ways: manually by the user, or automatically as the application default value, which is
generalized over food varieties. The manual method requires a little effort from the user to
enter the calorie value correctly and achieve the goal of calorie estimation. Alternatively,
the user can avoid the extra burden of manually entering the calorie weightage by instead
selecting the default value. For the automatic selection of calories, many varieties of the
same food are considered, and the mean value is fixed as the default in the application
(this was completed prior to the experiment). This method of calorie estimation can either
minimize or maximize the error, depending on whether the default calorie weightage is
higher or lower than the actual weightage. Figure 10 compares the relative performance
of the two methods of estimating caloric intake. The whiskers of each box represent the
calorie distribution and intra-person variability in calorie consumption for the related food.
The differences in whisker height for boxes of different colors represent the errors that
occurred in estimating the calories of the related food classes.

From this weight estimation, it is evident that calorie estimation error results from
differences between the actual and estimated food weights. The estimated weight of food
was observed to be less than the actual weight due to missed swallows and larger swallow
sizes than the assumed 1 g. Clearly, error in the weight estimation is propagated in both
methods of calorie estimation. Although the manual calorie estimation method requires
the user to find out the calorie weightage of each food in advance, this method is only
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subject to error if there are discrepancies in the weight estimation. In contrast, the calorie
measurement based on the application default values is affected by both the propagated
weight error and the generalized calorie weightage.

As shown in Figure 10, the manual method of calorie insertion was more accurate
than the application default-based method for cookies and pizza. Because the application
default-based method selected a smaller number of calories, the error difference increased
as the gap between the actual and estimated calories increased. In contrast, the application-
based method performed better in estimating the calories of chips and nuts because the
default value was close to the actual value. The default calorie weightage clearly reduced
the error gap caused by the weight estimation, so the calorie number was similar to the
actual calorie number, as shown above in Figure 10. Thus, default values can regulate
the error generated by weight differences, as they minimized the error for chips and nuts
and maximized the error for cookies and pizza. The default calorie weightages of 5.25
for chips and 6.07 for nuts were higher than the actual values of 5.2 for chips and 5.67 for
nuts. Similarly, smaller default values of 4.6 for cookies and 2.56 for pizza were chosen;
the actual values are 5.125 for cookies and 3.01 for pizza. Thus, larger and smaller default
values, reduced and increased the error, respectively, caused by weight discrepancy in the
calorie estimation.

It has been graphically established that the application default weightage method has a
higher error than the manual insertion method for some foods and a smaller error for other
foods. Overall calories are calculated as the sum of the calories of all foods. Knowledge of
the overall caloric intake can help the user to consume the required number of calories and
to balance excessive calorie intake through physical exercise.

7. Conclusions

We have designed a wearable in the form of a necklace embedded with a piezoelectric
sensor to monitor ingestion patterns for different foods. Our system extracts statistical
features in the time domain and selects important features to enable the classifiers to
recognize foods more accurately than the previous state-of-the-art piezoelectric sensor
system that employs spectrogram features.

We have found that chewing patterns combined with a swallow event in the timedo-
main and a suitable number of samples in each frame are essential to accurately associate
ingestion patterns to the relevant food category. Additionally, our system also exhibited the
advantages of estimating the weights and calorie counts of solid foods. Our work has the
limitation of including mainly on a young age group of subjects in the experiment. In the
future, we aim to extend this system to monitor other activities across diverse age groups,
to improve people’s lifestyles and help them achieve the goal of better health. Moreover,
determining an accurate caloric value may be possible with an advanced form of the food
intake monitoring system in future studies.
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