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Abstract: Relatively important node mining has always been an essential research topic in complex
networks. Existing relatively important node mining algorithms suffer from high time complexity
and poor accuracy. Therefore, this paper proposes an algorithm for mining relatively important
nodes based on the edge importance greedy strategy (EG). This method considers the importance of
the edge to represent the degree of association between two connected nodes. Therefore, the greater
the value of the connection between a node and a known important node, the more likely it is
to be an important node. If the importance of the edges in an undirected network is measured,
a greedy strategy can find important nodes. Compared with other relatively important node mining
methods on real network data sets, such as SARS and 9/11, the experimental results show that the
EG algorithm excels in both accuracy and applicability, which makes it a competitive algorithm in
the mining of important nodes in a network.
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1. Introduction

With the advances in human scientific cognition and information technology, network
science has become a hot topic in academia. As the primary research object of network
science, complex networks are gradually emerging in the eyes of scholars [1]. A complex
network refers to a network with some or all of the properties of self-organization, self-
similarity, attractor, small world, and scale-free. Complex networks can model all aspects
of real-life human society, and through the study of these networks abstracted from reality,
people can explore the laws of the real world. Therefore, analysis of complex networks and
their applications is a crucial issue.

Many research papers on complex networks have been published [2–5]. Early research
covered the traditional statistical properties of networks (e.g., the two papers that laid the
foundation of complex networks—scale-free networks [6] and small-world networks [7]).
Later works described the structural properties of networks (e.g., the exploration of “com-
munity phenomena” [8] and “network modalities” [9]). Even later, papers addressed the
deeper study of points and lines. The examination of complex networks has undergone
tremendous evolution, and the study of the importance of the nodes or edges of complex
networks is one of the most important topics.

Nodes and edges are the basic elements of network structure. Studying important
nodes or edges helps us protect the system better, but also helps us understand the system
better. For example, a disease transmission network can search for known infected people.
Then, susceptible people can be searched, treated, and isolated, in order to prevent further
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spread of the virus. For another example, Fan et al. collected 20 years of trade data
from 232 countries and regions around the world, and then constructed a trade network.
In this network, a novel node importance ranking and analysis method was proposed
by comprehensively considering factors such as generalized degree, DHC theorem and
weight [10]. This method helps the formulation of trade policies in countries around the
world, and deepens our understanding of the history of world trade. Xu et al. also pointed
out that for traditional information retrieval evaluation metrics based on citation network
structure, it is difficult to accurately assess the impact of a particular piece of literature.
They experimentally argued that the adapted PageRank and LeaderRank methods are still
the most accurate evaluation criteria available [11].

As an interdisciplinary subject, there are examples of applying various computer tech-
nologies to the research of complex networks. For example, Liu et al. proposed an artificial
neural network-based model for information dissemination and opinion evolution, IPNN
(Information propagation and public opinion evolution model based on artificial neural
network, IPNN) [12]. Fan et al. proposed a reinforcement learning-based algorithm for
node importance identification in complex networks, FINDER. It first learns the exhaustive
method in a simulated BA network, continues training the previously trained model in
the real network, and evaluates the performance of the model based on the order of node
removal [13]. In addition, many excellent improvements to the traditional node importance
recognition algorithm have also been proposed. For example, Fan et al. proposed a new
node importance ranking metric, the circle ratio, beginning from a circular structure in the
network [14]. Traditional methods judge the importance of a node by the contributions of
neighboring nodes. However, the circle ratio judges the importance of the current node by
the amount of information it brings to its neighbors, which inspires a new research idea [14].
Lu and Liao et al. summarized and sorted out the current node importance identification
and ranking methods in various existing networks [15,16].

As we can see, most of the current research on nodes focuses on the mining and
discovery of important nodes in a network, but little research exists on the mining of
relatively important nodes. The idea of relative node importance considers questions like
“which node in a network is the most important relative to a specific node or a specific
group of nodes?” Compared with other research fields, the relative or local importance
of nodes also has practical implications, especially when the scale of the network grows
larger. Some research results on relative node importance mining are available today,
but these methods still need improvement. Areas of improvement include whether the
time complexity and space complexity can be further reduced, how to further improve the
accuracy of exiting method, which kind of method performs the best on a specific type of
network, and the parameter selection and optimization method, etc.

In this paper, we consider the connection role of important edges in an unweighted
network, where the edge importance represents the degree of association between two
nodes. The connections between important nodes should be closer, thus we propose a
metric to measure edge closeness for important nodes in an unweighted network. It is
based on the idea of “the node with the largest edge closeness to a known important node
is likely to be an important node” for which an edge importance greedy strategy (EG) is
proposed to mine relatively important nodes. Through the comparison experiments with
the NN [17] and the RD [18], which originated from protein networks, and the Katz [19],
which is based on random wandering, it can be proved that the EG strategy achieves ideal
experimental results and shows its application value in identifying the importance level of
unprivileged network nodes.

2. Greedy Strategy Based on Edge Importance

The EG algorithm uses greedy strategy that requires an importance measure for the
edges in a network before each use. It works by adding known important nodes to a set
C that includes all their neighbors, after which one can assign an importance score to the
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connected edges of the known important nodes based on the topological information of the
network. The importance score can be calculated as follows:

SV =
k j

ki
· 1
d2 +

1
cn + 1

(1)

where (k j/ki)·
(
1/d2) is an important component called NP value, which measures the

importance of a certain node; ki is the degree of known important node i; k j is the degree of
known important neighbor node j; d is the shortest distance between node j and the set of
known important nodes; and cn is the number of common neighbors of node j and known
important nodes.

The core idea of Equation (1) is actually very straightforward: the larger the k j is,
the greater the importance of node j. On the other hand, since d is the shortest distance
between node j and the set of known important nodes, the larger the d is, the smaller the
value of 1/d2. A small k j or a large d results in a smaller NP, and thus a lower importance
score for node j. In other words, nodes with low degree and large distance from known
important nodes tend to have lower importance, and vice versa.

In particular, there will be cases where two nodes have the same NP value. In order
to solve this problem, a bias value 1/(cn + 1) is added to Equation (1) to distinguish
their importance.

Once the importance score is obtained, the greedy strategy is used to find the node
whose edge has the largest score from an edge set that corresponds to known important
nodes. The found node will then be added to set C. The edge scores corresponding to
each node in set C will be again calculated, and the node will be found by using the same
strategy stated previously. This process is repeated until all nodes are added. The order in
which nodes are added to set C is exactly the order of their importance.

The pseudo-code for the EG algorithm, also known as Algorithm 1, is as follows:

Algorithm 1: EG Algorithm

Begin
Input Network G = (V, E), the set of known important nodes R;
Initialization C = R; S = 0;
1. While the number of elements in C is less than |V| do:
2. for i in C do:
3. for j in i neighbors do:
4. SV(i, j) = k_j/k_i ·1/d̂2 + 1/(cn + 1);
5. end for
6. t = {j|max(SV)};
7. Place the node t into set C;
8. end for
9. end while
10. return C

End

The EG algorithm is divided into three parts, which are as follows: computation of the
shortest path of a single source; computation of the node importance score; and selection of
the greedy policy. The EG algorithm chooses to compute the neighboring nodes of known
important nodes. Lines 1–2 of the algorithm are the traversal of the set C, and the nodes in it
are computed and analyzed. Lines 3–5 of the algorithm calculate the node importance score
by first selecting a node i from among the set of known important nodes, then traversing its
neighbor nodes and calculating the importance score of each neighboring node. Lines 6–8
of the algorithm apply a greedy strategy to select nodes, and the node with the highest SV
is added to set C. The above process is repeated until all nodes are added to set C.

It can be found that the time complexity of the EG algorithm depends mainly on the
calculation of the shortest path of a single source and the importance score. It is easy to see
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that the calculation of the node importance score is a cumulative process, and depends on
the degree of the important nodes. When there is only one element in the set of important
nodes, its time complexity is k, and k is the average degree of the network; when there are
two elements, its time complexity is 2k, and so on. The time complexity of this part can be
written as k + 2k + 3k + . . . + nk, which equals to O

(
n2k

)
.

One can also notice that the previously calculated node importance scores are fully
reusable when new nodes are added to the set of important nodes. In this case, each time
an important node is added, only the neighboring node scores of the newly added node
need to be calculated. Based on above analysis, one can conclude that the time complexity
actually depends on the number and average degree of nodes in the network, thus the
overall time complexity would be O

(
nk

)
.

The following section will use the network shown in Figure 1 to illustrate the compu-
tation process of the edge greedy strategy.

Figure 1. Example network of the edge importance greedy strategy.

Step 1, number the nodes in Figure 1 sequentially are 1, 2, 3, 4, 5, 6 and 7. Let node 1 be
a known important node, and add node 1 to set C. Calculate the edge scores first according
to the known important node. The edge scores here are (1,2):2.33, (1,3):1.65 and (1,4):2.0.
Node 2, which corresponds to edge (1,2), has the largest value of 2.33, and it is added to
set C.

Step 2, calculate the edge importance score for nodes 1 and 2 in set C, and one obtains
(1,3):1.65, (2,4):1.75, (2,5):1.125, and (2,6):1.0625. Node 4, which corresponds to edge (2,4),
has the largest value and is added to set C.

Step 3, calculate the edge importance score for nodes 1, 2 and 4 in set C, and one
obtains (1,3):1.65, (2,5):1.125, (2,6):1.0625 and (4,7):1.083. Node 3 has the largest value and is
added to set C.

Step 4, calculate the edge importance score for nodes 1, 2, 4 and 3 in set C and obtain
(2,5):1.125, (2,6):1.0625 and (4,7):1.083. Node 5 is selected and added to set C.

Step 5, calculate the edge importance score for nodes 1, 2, 4, 3 and 5 in set C and obtain
(2,6):1.0625 and (4,7):1.083, and node 7 is added to set C.

Step 6, calculate the edge importance score for nodes 1, 2, 4, 3, 5 and 7 in set C. The
edge importance score is (2,6):1.0625 and node 6 is added to set C.

At this point, all nodes are added and the loop ends. For node 1, the order of relatively
important nodes possibilities would be 2, 4, 3, 5, 7 and 6.
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3. Experiment

The experiments in this paper use four real network data sets.

(1) The 9/11 criminal relationship network [20]. The nodes represent the terrorists who
hijacked the planes and those who had contact with them; the edges represent the
interpersonal relationships between them; and the set of important nodes represents
the group of terrorists who hijacked the planes on 9/11.

(2) SARS international aviation network [21]. Each node represents a country; the edge
represents the existence of routes between two countries; and the earliest group of
countries with the SARS virus is the set of important nodes.

(3) Mouse protein interaction network [22]. The nodes represent mouse proteins; edges
represent the existence of interactions between proteins; and the group of mouse
protein kinases is the set of the important nodes.

(4) Human protein interaction network [22]. The nodes represent human proteins; edges
represent the existence of interactions between proteins; and the group of human
protein kinases is the set of the important nodes.

The topological information of these network data sets is listed in the following Table 1.

Table 1. Network topology information.

Network N N′ M K C

9/11 37 19 85 4.59 0.52
SARS 224 18 2247 20.06 0.65

Human 3574 186 6002 3.36 0.15
Mouse 1187 67 1557 2.62 0.09

The table header indicates the topological attributes of a network. N is the number
of nodes in the network; N′ is the number of important node sets; M is the number of
edges; and K and C are the average degree and clustering coefficient of the entire network,
respectively.

In this paper, we use AUC (Area Under Curve) to evaluate the overall results of this
algorithm for mining relatively important nodes. The AUC is calculated as follows.

AUC =
0.5n1 + n2

n
(2)

where n1 represents the number of times that the importance score of a node selected from
the unknown important node set equals that of a node selected from the unimportant node
set; n2 represents the number of times that the importance score of a node selected from the
unknown important node set is larger than that of a node selected from the unimportant
node set. n represents the number of comparisons, which is the product of the size of the
unknown important node set and the size of the unimportant node set.

In this paper, we conduct nine rounds of experiments for each network, and the ratios
(p) of known important nodes for each round are set to 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80% and 90%. Each round uses a different algorithm to calculate the relative importance of
the nodes, according to which these nodes are ranked. Twenty independent experiments
are conducted, and the AUC values are calculated for the ranking results.

This paper uses NN [17], RD [18] and Katz [19] for comparison, and the results are
as follows.

In Figure 2, the horizontal axis represents the percentage of known important nodes
of the set of important nodes, and the vertical axis represents the average AUC value.
A higher AUC value represents a higher effectiveness. It is easy to see that the AUC values
of most algorithms show an increasing trend as the ratio of important nodes in the network
increases. The effect of the EG algorithm is most significant for the 9/11 network, and its
AUC value remains stable at around 0.8, which is far ahead of other algorithms. In the
SARS network and the Human network, our algorithm also achieved satisfactory results.
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The AUC index maintains its leading position against comparison algorithms, although
the margins are not as prominent as those for 911net. One can also note that when the
proportion of important nodes exceeds 30%, the AUC value of the EG algorithm in the
Mouse network is slightly lower than that of the Katz algorithm, which may be due to the
fact that the EG algorithm depends on adjacent nodes for judgment.

Figure 2. Comparison results from AUCs of the edge importance greedy strategy algorithm.

The experiments proved that the EG method performs best on the 9/11, SARS,
and Human networks based on the evaluation of the AUC, regardless of the ratio of
known important nodes. It performs second-best on the Mouse network. From the perspec-
tive of network topology, the SARS network is different from other networks and possesses
the highest average degree (20). At the same time, both the 911net and SARS networks
are with high node aggregation. It can be inferred that the EG algorithm performs the
best in those networks that are similar to SARS and 911net. The fluctuation amplitudes of
the AUCs for the four algorithms at different important node ratios reside in the scope of
0.08~0.12. This indicates that the ratio value in dense graphs has limited effect on these four
algorithms. However, the clustering coefficients for both the Human and Mouse networks
are smaller compared with those of the SARS and 9/11 networks, and we believe it is this
attribute that reduces the advantage of EG over Katz, which performs second best for the
Human network.

Further analysis finds that the NN algorithm considers the nodes with more connec-
tions to known important nodes as relatively important nodes, so its accuracy decreases
when the known important nodes are fewer. On the other hand, when the known im-
portant nodes are in large amounts, it is also very challenging for an algorithm like NN
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to distinguish important nodes when the number of connected nodes equals that of the
known important nodes. The RD method uses the inverse sum of the shortest path lengths
with known important nodes to measure relative importance. However, in real networks,
the nodes close to known important nodes are not necessarily the nodes we are looking for,
and those far from the known important node may actually be the ones we need. The Katz
method adopts a random wandering strategy that can better complete the mining task of
relatively important nodes in some networks, but it still needs to improve its accuracy for
other networks.

4. Discussion and Conclusions

In this paper, we propose the EG method for mining relatively important nodes based
on the greedy strategy of edge importance. This method measures the importance of the
edges of known important nodes, and uses the most important edges to find nodes that
are closely related to the current important nodes. The EG method does not calculate or
consider network paths, and thus avoids the limitations of some methods that consider
path information only. By comparing with the existing methods of mining relatively
important nodes, such as NN, RD and Katz, based on the indicator of AUC, we proved the
performance and the feasibility of the EG algorithm.

Although the adaptability of our proposed algorithm to different networks has been
discussed, we still consider it necessary to further analyze the impact network topology has
on an algorithm in a more detailed and systematic way, in order to obtain better guidance
for the use of the EG algorithm. The EG method is designed for undirected networks,
and does not consider applications in directed or weighted networks. Extending the EG
method to directed graphs, weighted graphs, or even time series networks could be another
possible future direction. Lastly, it seems that the EG method does not possess a rigorous
physical or mathematical meaning; some theoretical work can be carried out surrounding
this issue in the future.
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