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Abstract: This paper presents an optimal sensor placement method for vibration signal acquisition in
the field of industrial robot health monitoring and fault diagnosis. Based on the general formula of
Bayes and relative entropy, the evaluation function of sensor placement is deduced, and the modal
confidence matrix is used to express the redundancy of sensor placement. The optimal placement
of vibration sensors is described as a discrete variable optimization problem, which is defined as
whether the existing sensor layout can obtain joint state information efficiently. The initial layout of
the sensor was obtained from the structural simulation results of the industrial robots, and the initial
layout was optimized by the derived objective function. The efficiency of the optimized layout in
capturing joint state information is proven by the validation experiment with a simulation model.
The problem of popularizing the optimization method in engineering is solved by a verification
experiment without a simulation model. The optimal sensor placement method provides a theoretical
basis for industrial robots to acquire vibration data effectively.

Keywords: industrial robots; vibration signal; sensor placement; joint state information; Bayesian theory

1. Introduction
1.1. Background and Significance of the Study

As more and more robots are introduced into space, industry, and private homes, fault
monitoring is becoming a more critical problem. In the past 30 years, fault monitoring
and diagnosis methods for various nonlinear systems and robotic systems have been
studied. Model-based analytical redundancy methods have been used for fault detection
and isolation of nonlinear and robot systems [1–3].

The purpose of fault detection technology is to generate fault-sensitive diagnostic
signals. In existing automatically controlled systems, faults can occur in both the mechanical
and electrical parts of the plant. Fault isolation allows fault-related inputs to be located
from all other system inputs and generates specific residual signals for each fault. For
example, in an electromechanical system, such as a robot, a single fault may occur in a
specific driver, a specific sensor, or a system on a specific component [4,5].

For multi-joint robots, dynamics [6], kinematics [7], joint clearance [8], and friction
models [9] have been studied. The results show that the mechanical transmission system is
an essential part of multi-joint robots to transmit motion and force [10].

When the transmission accuracy of the robot is reduced, the working efficiency and
output product quality decrease, and the positioning accuracy of the robot is also affected
by various factors. Therefore, when the sensors are arranged, the motion state information
of the joints should be captured as efficiently as possible. In theory, how to define the
validity of sensor distribution is the core of solving this problem.
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1.2. Related Work

Juri [11] proposed a greedy frame sense algorithm to select the optimal sensor location
when estimating parameters from the measured data of sensors. This algorithm is the first
one that is close to optimal in the mean square error.

In the last 10 years, the optimal placement of sensors in mechanical systems and
structures has become a hot research topic. Applications include modeling, identification,
fault detection, and active control of systems, such as bridges [12]. To ensure safety
and functionality, more and more structures are equipped with various types of sensors,
such as accelerometers, displacement sensors, strain gauges, and fiber optic sensors for
monitoring [13]. The modal confidence matrix is an excellent tool for evaluating the
correlation of modal shape vector space. The calculated scalar value is between 0~1 or
expressed as a percentage. For industrial robots, the redundancy of sensor placement can
be evaluated using a modal confidence matrix.

Yi [14] proposed a hybrid optimization method to optimize sensor placement when
constructing an effective structural health detection system. In this method, the modal
confidence matrix is introduced, and dual structure coding based on a generalized genetic
algorithm is used to determine the sensor position. Hanis [15] argued that sensor configura-
tions should also minimize unnecessary high-mode spillovers in addition to the classic EFI
approach. Castro-Triguero [16] used four classical sensor location methods: two based on
the Fisher information matrix and two based on the rank optimization of the energy matrix.
Methods based on information theory have been developed to provide reasonable solutions
to the problem of selecting the optimal sensor configuration in modal identification and
structural parameter estimation [17,18]. Li [19] considered that, in the sensor placement
of the structural health monitoring system, the structural array and natural frequency
should be considered, along with the degree of participation in the structural response.
Therefore, a sensor placement method considering both the dynamic characteristics of the
structure and the actual load conditions is proposed, and it is verified that the method has
a better modal identification effect. Brehm [20] focused on the problem of determining the
optimal reference sensor position under random excitation in a weakly stationary process,
combined with the set design variables of the sensor location, and the genetic algorithm
was used to avoid evaluating all possible combinations of reference sensor positions. The
proposed method was verified by a numerical benchmark study of a supported beam and
a practical sample. David used a theoretical estimation framework to calculate the optimal
geometric sensor formations that would yield the best achievable performance in terms of
target positioning accuracy by maximizing the determinant of the appropriately defined
Fisher Information Matrix (FIM) [21].

Flynn [22] considered the optimal sensor placement problem in structural health
inspections. Based on the general Bayes formula, optimal placement was established as
a process of minimizing the expectation of specific errors. Finally, the optimal solution
generated by the algorithm was discussed. Using the influence of spatial correlation
prediction error on optimal placement, Costas Papadimitriou [23] used information entropy
as the performance measure of sensor configuration, and he expressed the optimal position
of sensors as the optimization problem of discrete variables, which solved the problem of
modal identification and parameter estimation of the structure-related model. Sun Hao [24]
transformed the optimization problem into an integer optimization problem and then
proposed a discrete optimization scheme based on an artificial bee colony algorithm to
solve the optimization problem.

Health monitoring and fault diagnosis of industrial robots are essential for safe and re-
liable operation, and a practical sensor layout is essential for fault diagnosis and other work.
From the above situation, it can be concluded that most of the existing sensor placement
methods are based on an optimization algorithm or optimization matrix, and the objective
function cannot meet the functional characteristics of industrial robots. Furthermore, as
flexible equipment, the operational characteristics and the error problem in the process of
sensor signal acquisition need to be considered.
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To solve the sensor placement problem of industrial robots, we propose the importance
of joint state information acquisition in this paper, and the optimal sensor placement
method for joint state information acquisition and its corresponding theoretical framework
is proposed. By simultaneously interpreting the error between the velocity and the actual
velocity of the distribution theory and the posterior probability of the joint motion, the
evaluation function of the sensor placement based on relative entropy is derived. The
constraint function is established by using the modal confidence matrix of different sensor
layouts. Finally, the evaluation function is combined with the constraint function as the
objective function of the sensor placement. This is the first time in the field of industrial
robot fault diagnosis and health assessment. The motion state of joints can be obtained
more effectively by this method, which is of great significance to the fault diagnosis and
health assessment of industrial robots.

2. Sensor Placement Method

First, the kinematic and dynamic simulation of the industrial robot is considered in
this study. Through the simulation, the deformation nephogram of the industrial robot and
the velocity distribution at different positions can be obtained. The position of the sensor
placement is determined by the Bayesian optimal design, which is realized by maximizing
the information gain of joint motion state information.

2.1. Derivation of Forward Kinematics of Industrial Robots

The mechanical arm of the six-axis industrial robot used in the simulation in this paper
is assembled by a series of connecting rods, so a corresponding coordinate system should
be constructed to express the robot. At present, the two commonly used link coordinate
system construction methods in robotics are the standard type and the improved D-H
coordinate system. Among them, the improved D-H refers to adding a new parameter on
the basis of the standard four parameters, through which the singularity that occurs when
the adjacent connecting rods are in a parallel relationship can be solved. Since the general
six-axis industrial robot does not have parallel links, an improved D-H coordinate system
that uses more parameters is not used.

On the other hand, in the existing standard D-H coordinate system, there are also two
different establishment methods. The first is that the origin of the coordinate system oi−1
is unified with the joint i; the corresponding second is that the coordinate system oi−1 is
unified with the joint i− 1. Due to the problem of the tree structure, the first coordinate
system will be ambiguous when dealing with it. Considering the diversity of industrial
robots, the second method of establishing a system was chosen after a comprehensive
comparison. The first method of establishing a system is described in detail below, and the
MATLAB model effects corresponding to the two coordinate systems are given.

The establishment method of the connecting rod coordinate system oixiyizi is shown
in Table 1.

Table 1. Method for establishing a D-H coordinate system.

Origin oi zi-Axis xi-Axis yi-Axis

When the axis of joint i intersects with the axis
of joint i + 1, the intersection point is taken

Coincides with the
axis of joint i

If the joint axis i intersects i + 1, it is
perpendicular to the plane where the joint axis

i and i + 1 are located

Determined by the
right-hand rule

When the axis of joint i is out of plane with the
axis of joint i + 1, take the intersection of the
common perpendicular of the two axes and

the axis of joint i

On the common perpendicular of the links i
and i + 1, its direction is from i to i + 1

When the axis of joint i is parallel to the axis of
joint i + 1, take the intersection of the common
perpendicular of the axis of joint i and the axis

of joint i + 1 with the axis of joint i
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The coordinate system fixed on the robot base (link 0) is coordinate system {0}. This
coordinate system has the property of being invariant and can be used as a reference. The
reference coordinate system {0} itself is not specially set, but considering the subsequent
calculation, the reference coordinate system {0} is set to coincide with the coordinate
system {1}. For the revolute joint n, θn is set to 0.

According to the coordinate system establishment criteria described in this paper,
the connecting rod coordinate system of the six-axis industrial robot is solved, as shown
in Figure 1.
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Figure 1. Industrial robot connecting rod coordinate system.

The link coordinate system of the industrial robot contains 4 parameters. They are
defined as follows:

1. Link length ai: along the xi axis, the distance from zi−1 to zi;
2. The torsion angle αi of the connecting rod: the angle from zi−1 to zi around the xi axis;
3. Link offset di: along the zi axis, the distance from xi−1 to xi;
4. Joint angle θi: the angle of rotation from xi−1 to xi around the zi axis.

For a rotary joint, due to its joint characteristics, it is considered that the definitions of
its link length ai, link torsion angle αi and link offset di are unified, and the joint angle θi is
a joint variable.

Considering the established six-axis industrial robot model, the model parameters need
to be calculated according to the specified connecting rod parameter calculation method.
For the six-axis industrial robot model shown in Figure 1, the corresponding link D-H
parameters are calculated, as shown in Table 2. Through the D-H parameters of the
industrial robot in the table, the configuration of the connecting rod of the industrial robot
can be described, which can provide calculation support for the subsequent kinematics
analysis and provide importable related parameters for the subsequent kinematics and
dynamics simulation.
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Table 2. D-H parameters of industrial robots.

Link\Parameters ai−1 αi−1 di θi

1 0 0 0 θ1
2 a1 −π/2 0 θ2
3 a2 0 0 θ3
4 0 π/2 d4 θ4
5 0 −π/2 0 θ5
6 0 π/2 d6 θ6

i−1Ti is defined as: According to the description method of homogeneous transforma-
tion of robotic transformation matrix, i−1Ti can be obtained according to the principle from
left to right:

i−1Ti =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (1)

The parameters corresponding to each joint are brought in, and the motion transfer
matrix of each joint is solved as follows:

0T1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

1T2 =


c2 −s2 0 0
0 0 1 0
−s2 −c2 0 0

0 0 0 1

2T3 =


c3 −s3 0 a2
s3 c3 0 0
0 0 1 0
0 0 0 1


3T4 =


c4 −s4 0 0
0 0 −1 −d4
s4 c4 0 0
0 0 0 1

4T5 =


c5 −s5 0 0
0 0 1 0
−s5 −c5 0 0

0 0 0 1

5T6 =


c6 s6 0 0
0 0 −1 −d6
s6 c6 0 0
0 0 0 1


(2)

where si = sin θi, ci = cos θi.
After obtaining the transformation matrix of the connecting rod coordinate system,

the kinematic equation of the industrial robot is derived. The overall transfer matrix is 0T6,
and the expression of is:

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (3)

nx = − s6(c4s1 + s4(c1c2c3 − c1s2s3)) − c6(c5(s1s4 − c4(c1c2c3 − c1s2s3)) + s5(c1c2s3 + c1s2c3)
ny = s6(c4c1 + s4(s1s2s3 − c2c3s1)) + c6(c5(c1s4 − c4(s1s2s3 − c2c3s1)) − s5(c2s3s1 + c3s1s2)

nz = s4s6(c2s3 + c3s2) − c6(s5(c2c3 − s2s3) + c4c5(c2s3 + c3s2))
ox = s6(c5(s1s4 − c4(c1c2c3 − c1s2s3)) + s5(c1c2s3 + c1c3s2)) − c6(c4s1 + s4(c1c2c3 − c1s2s3))
oy = c6(c1c4 + s4(s1s2s3 − c2c3s1)) − s6(c5(c1c4 − c4(s1s2s3 − c2c3s1)) − s5(c2s3s1 + s2c3s1))

oz = s6(s5(c2c3 − s2s3) + c4c5(c2s3 + s2c3)) + c6s4(c2s3 + s2c3)
ax = c5(c1c2s3 + c1c3s2) − s5(s1s4 − c4(c1c2c3 − c1s2s3))
ay = s5(c1s4 − c4(s1s2s3 − c2c3s1)) + c5(c2s1s3 + c3s1s2)

az = c5(c2c3 − s2s3) − c4s5(c2s3 + s2c3)
px = (3c1c2)/5 − (3s5(s1s4 − c4(c1c2c3 − c1s2s3)))/25 + (3c5(c1c2s3 + c1c3s2))/25 +

(16s3c1c2)/25 + (16c1c3s2)/25
px = (3c2s1)/5 + (3s5(c1s4 − c4(s1s2s3 − s1c2c3)))/25 + (3c5(s1c2s3 + s1c3s2))/25 +

(16s1s3c2)/25 + (16c3s1s2)/25
pz = (16c2c3)/25 − (3s2)/5 − (16s2s3)/25 + (3c5(c2c3 − s2s3))/25 −

(3c4s5(c2s3 + c3s2))/25

(4)
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2.2. Numerical Method of Velocity

To obtain the theoretical velocity value of the placement position, we first have to
study the relevant knowledge of robotics. To calculate the velocity value of the precise
position, we first need to calculate the velocity of the robot connecting rod, that is, the
velocity transfer formula between connecting rods.

i+1vi+1 = i+1Ri(
ivi +

iωi × iPi+1) (5)

where i+1vi+1 is the velocity of the i + 1 connecting rod relative to the {i + 1} coordinate
system, ivi is the velocity of the origin of the coordinate system {i} relative to the coordinate
system {i}, iwi is the angular velocity of the connecting rod i relative to the coordinate
system {i}, i+1Ri is the rotation transformation matrix from the coordinate system {i} to the
coordinate system {i + 1}, is the first three order matrix of i+1Ti, and i+1Pi is the distance of
the i + 1 connecting rod relative to the ith connecting rod.

By introducing the parameters of each link into the expression, a theoretical solution
for the speed of each link can be obtained. In the actual sensor layout, the speed of
each measuring point is not the same, so it needs to be specific to each measuring point
to calculate its corresponding speed. Therefore, based on the calculation formula for
connecting rod speeds given by robotics, according to the distance between each point
and adjacent joints, the speed calculation method of a specific measuring point is given.
First, the velocity of each joint or connecting rod relative to its coordinate system {i + 1}
is calculated according to the formula. Then, the velocity of the point relative to the
coordinate system {i + 1} is calculated according to the distance from the point to the joint.
The calculation formula of the velocity of the point relative to the coordinate system {i + 1}
is as follows:

i+1vp = i+1vi+1 +
i+1wi+1 × d (6)

where, i+1vp is the velocity of the sensor point p relative to the coordinate system {i + 1},
i+1vi+1 is the velocity of the origin of the coordinate system {i + 1} relative to the coordinate
system {i + 1}, i+1wi+1 is the angular velocity of the connecting rod i + 1 relative to the
coordinate system {i + 1}, and d is the distance of the sensor point relative to the origin of
the coordinate system {i + 1}

Finally, the velocity in the base coordinate system is obtained through the correspond-
ing transfer matrix. The coordinate transfer formula is as follows:

0vp = 0Ri+1
i+1vp (7)

Among them, 0vp is the velocity of sensor distribution point p relative to the base
coordinate system, 0Ri+1 is the rotation transformation matrix from the coordinate system
{i + 1} to the base coordinate system, and is the first three order square matrix of 0Ti+1.

On the other hand, the flexible joint of the industrial robot and the vibration defor-
mation of the manipulator material affect the actual speed of the placement. Therefore, a
mechanical simulation analysis of the manipulator is needed.

2.3. Simulation Analysis of Industrial Robot

Sensor placement is an a priori problem in the case of only analyzing data; for example,
they are obtained through finite element models [25]. Considering that before the opti-
mization of the sensor location, there are many measuring points available for the actual
industrial robot, to determine a more reasonable initial layout scheme, a modal simulation
of the industrial robot is carried out to analyze its deformation under the influence of vibra-
tion. The parameters of the industrial robot are shown in Table 3. The modal simulation of
the model is carried out using ANSYS Workbench software. The first six modal shapes of
the model are shown in Figure 2.
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Table 3. Parameters of the industrial robot with the model.

Project Type Number
of Axes

Driving
Mode

Repeat Positioning
Accuracy

Range of
Motion

Parameter RB13 6 AC servo 0.07 mm R499~R1404 mm
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mode shape.

The simulation parameters are as follows: 254,880 divided nodes, 150,163 divided
units, and the bottom of the base are set as the fixed support.

The maximum natural frequencies and relative amplitudes of the first six orders of the
whole machine are shown in Table 4.
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Table 4. The first six natural frequencies and amplitudes.

Order 1 2 3 4 5 6
Natural frequency/Hz 12.6 20.0 30.0 70.3 116.7 338.3

Maximum relative amplitude/m 0.11 0.09 0.10 0.12 0.15 0.14

The results of the modal analysis are as follows:
First-order vibration: The natural frequency is 12.6 Hz, and the maximum amplitude

is 0.11 M. The deformation mainly shifts along the x-axis and rotates around the z-axis. The
closer to the end, the greater the amplitude.

Second-order vibration: The natural frequency is 20.0 Hz, and the maximum amplitude
is 0.09 M. The deformation mainly moves along the y-axis and rotates around the x-axis.
The closer to the end, the greater the amplitude.

Third-order vibration: The natural frequency is 30.0 Hz, and the maximum amplitude
is 0.10 M. The main deformation is the torsion of the main arm around the y-axis, with a
large amplitude at the elbow and end.

Fourth-order vibration: The natural frequency is 70.3 Hz, and the maximum amplitude
is 0.12 M. The main deformation is that the end of the main arm swings around the z-axis,
and a larger amplitude is concentrated in the elbow and forearm.

Fifth-order vibration: The natural frequency is 116.7 Hz, and the maximum amplitude
is 0.15 M. The main deformation is the rotation of the arm and elbow around the z-axis,
and a larger amplitude is concentrated in the elbow.

Sixth order vibration: The natural frequency is 338.3 Hz, and the maximum amplitude
is 0.14 M. The main deformation is that both ends of the jib swing around the y-axis, and a
larger amplitude is concentrated at the two ends and the middle of the forearm.

According to the simulation results of the modal analysis, there is a large amount of
vibration deformation at the forearm, elbow, and related joints of the manipulator. When
considering the initial location, the end of the forearm and elbow should be considered.
Therefore, the initial placement of the sensor is selected as shown in Figure 3.
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2.4. Optimal Sensor Placement Based on Bayesian

In the existing practical working environment, the sensor placement of industrial
robots relies more on work experience. There is no complete theoretical system to guide
the sensor placement of industrial robot running state monitoring, which cannot effectively
improve the efficiency and accuracy of domestic robot fault diagnosis and predictive
maintenance. Moreover, the sensor placement data of industrial robots is too noisy, can
easily result in large data processing, and is unable to achieve effective data collation.
Therefore, it is necessary to quantify the advantages and disadvantages of the sensor
layout, reduce the number of points, and find the optimal placement scheme through
theoretical analysis.

2.4.1. Bayesian Estimation of Motion Joint Position

Whether the running state of the industrial robot can be better expressed is an impor-
tant index for measuring the sensor placement of the industrial robot, and the joint motion
state of the industrial robot is the main component of the running state of the robot. First,
according to the operational characteristics of the industrial robot, an appropriate event is
established, and the corresponding probability distribution is given. Then, assuming that
the running joint of the industrial robot in the current state is r and the running joint is the
event A, the uncertainty of event A is quantified by the probability distribution, which is
updated according to the data measured by the sensors arranged on the industrial robot. If
the sensor arranged on the industrial robot can detect the motion of the position due to
the motion of joint r, it can detect the number of the moving joint, and then it can correctly
judge event A. Therefore, the optimal sensor placement problem can also be understood.
The sensor placement we determined can make the best estimation of event A (the number
of joints in motion).

Since the model of the industrial robot has been established in the previous chapter,
and the theoretical calculation formula of industrial robot speed has been given, now
suppose that the distance from the manipulator to the origin of the base is taken as the
coordinates of sensor placement, and a reasonable initial sensor layout is determined
according to the simulation results in Section 2.2. The corresponding acceleration sensor is
arranged at each position to obtain the acceleration of the point, and then the acceleration
is integrated to obtain the corresponding velocity.

V ′ (r; s) is the predicted value of the velocity measured at the point s, which is obtained
by calculating the theoretical velocity of s when r joint moves? Moreover, assuming that the
prior distribution of event A exists and is known, let the prior probability distribution be
p(r). Then, when the measured value Vt of the sensor is known, the posterior distribution
p(r|Vt, s) of event A can be determined. According to the Bayesian principle, the posterior
distribution p(r|Vt, s) is proportional to the product of its prior distribution p(r) and
likelihood p(Vt|r, s), namely p(r|Vt, s) ∝ p(r)·p(Vt|r, s). The likelihood equation represents
the probability that the measured value y comes from the real moving joint r after a given
sensor placement s. Since there is an error between the real measured value and the
theoretically calculated value, assuming that the error is ε(s), the relationship among them
is as follows.

Vt = V ′ (r; s) + ε(s) (8)

The principle of maximum entropy is a criterion for selecting the distribution of ran-
dom variables whose statistical characteristics are most consistent with objective conditions.
It is an effective criterion for selecting the distribution of random variables with maximum
entropy. In the discrete case, the entropy of the equiprobability model is the maximum,
but the detection of the joint motion state of the industrial robot is not an equiprobability
model. Therefore, the discrete model does not meet the requirements. Multivariate Gaus-
sian distribution is the most natural expression of random variables in ignorance. When
the mean and covariance are constant, the random variable with a normal distribution
has maximum entropy. Therefore, it can be assumed that the error of the above formula
conforms to the definition and that ε(s) obeys a multivariate Gaussian distribution with a
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mean value of 0 and a specific covariance matrix. Therefore, according to the error formula
between the theoretical velocity and the real velocity, the likelihood function p(Vt|r; s) of
the real velocity should obey the multivariate Gaussian distribution with the mean value
of V ′ (r; s) and the specific covariance matrix, which is expressed as follows:

p(Vt|r; s) =
1√

(2π)2ndet(Σ)
exp(−1

2
(Vt −V ′ (r; s))TΣ−1(Vt −V ′ (r; s))) (9)

2.4.2. Optimal Sensor Placement for Industrial Robots Based on Information Gain

The optimal sensor placement problem is to find the sensor position that can obtain
the most information about the joint position. The information gain can be measured by the
Kullback–Leibler divergence between the prior distribution and the posterior distribution.

u(s, Vt) :=
∫
R

p(r|Vt, s) ln
p(r|Vt, s)

p(r)
dr (10)

The utility function is maximized by determining the optimal sensor placement, defined
as the expected value of the Kullback–Leibler divergence over all possible measurements.

U(s) := Ey|s[u(s, Vt)] =
∫
Y

u(s, Vt)p(Vt|s) =
∫
Y

∫
R

p(r|Vt, s) ln
p(r|Vt, s)

p(r)
p(Vt|s)drdVt (11)

In the evaluation function, p(r) is a known distribution p(r|Vt, s) and p(Vt|s) are
unknown distribution, so it is necessary to use the Bayesian principle to transform the
evaluation function.

According to the Bayesian formula, the relationship between two conditional proba-
bilities can be obtained

P(A|B) = P(B|A) ∗ P(A)/P(B) (12)

According to this formula p(r|Vt, s) = p(Vt|r, s) ∗ p(r, s)/p(Vt, s), event A and sensor
layouts are assumed to be independent events.

p(r|Vt, s)
p(r)

=
p(Vt|r, s) ∗ p(r, s)

p(r) ∗ p(Vt, s)
=

p(Vt|r, s)
p(Vt, s)/p(s)

=
p(Vt|r, s)
p(Vt|s)

(13)

p(r|Vt, s) ∗ p(Vt|s) =
p(Vt|r, s) ∗ p(r)

p(Vt|s)
∗ p(Vt|s) = p(Vt|r, s) ∗ p(r) (14)

Through the transformation of the above formula, the evaluation function is rewritten
as follows:

U(s) := Ey|s[u(s, Vt)] =
∫
Y

u(s, Vt)p(Vt|s) =
∫
Y

∫
R

p(Vt|r, s)p(r) ln
p(Vt|r, s)
p(Vt|s)

drdVt (15)

In the current evaluation function, p(r) is a known prior distribution, p(Vt|r, s) has
been mathematically expressed by the multivariate Gaussian distribution, and only the
distribution of p(Vt|s) is unknown. When the probability distribution p(Vt|r, s) of measured
velocity is known, the mathematical expression of p(Vt|s) distribution is obtained by
integrating the joint variable r [26].

p(Vt|s) =
∫
R

p(Vt|r, s)p(r)dr

≈
Nr
∑

k=1
p
(

rk
)

p
(

p(Vt|rk, s)
) (16)

where Nr is the number of joint positions.
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When i = 1, . . . , Nr, the integral of R is approximated by point ri. The evaluation
function is rewritten as follows:

U(s) ≈
Nr

∑
i=1

p
(

ri
)∫

Y

p(Vt|r, s) ln
p(Vt|r, s)
p(Vt|s)

dVt (17)

Monte Carlo sampling can be used to estimate the above evaluation function.

U(s) ≈
Nr

∑
i=1

NVt

∑
j=1

p(ri)

NVt

[ln p(Vt
i,j|ri, s)− ln(p(Vi,j

t |s)] (18)

where NVt is the number of initial layouts of vibration sensors.
Thus far, the sensor placement evaluation function that can be expressed by a known

mathematical formula has been obtained, which can be recorded as follows:

U(s) =
Nr

∑
i=1

NVt

∑
j=1

p(ri)

NVt

[ln p(Vt
i,j|ri, s)− ln(

Nr

∑
k=1

p(rk)p(Vt
i,j|rk, s)] (19)

After obtaining the evaluation function, the theoretical derivation of the sensor optimal
placement model was completed. Then, the initial placement points need to be imported
to calculate the corresponding optimal placement. In practical applications, due to the
large number of sensor locations, it is unrealistic to calculate the evaluation function of
all kinds of combinations of different numbers. While it is not easy to obtain the optimal
global solution by using optimization algorithms such as genetic algorithms, the number of
optimizations needs to be given, that is, the super parameters. In this case, a more efficient
method should be considered for multi-point optimization.

Since the evaluation function of the optimization system has been given, and the data
collection of sensors can be considered independent of each other, the heuristic sequential
sensor placement method is considered, and the evaluation function is used to arrange
the sensors iteratively, one sensor at a time. Firstly, the maximum evaluation function
value of each initial location is obtained under the real speed and theoretical speed, and
the corresponding initial location is the best location s1 of the first sensor. By using the
heuristic sequential placement method, the first sensor’s optimal placement s1 and the
remaining initial sensor placement are combined to obtain the placement combination
(s1, si). The maximum evaluation function values of different combinations of distribution
points are calculated, respectively, and the corresponding combination of distribution
points is the optimal combination of distribution points, and the second sensor’s optimal
placement s2 is obtained, then, s1 and s2 are combined with the remaining points to obtain
the distribution point combination (s1, s2, si). The maximum evaluation function values of
a different combination of sensor points are calculated, respectively, and the corresponding
combination (s1, s2, si) of sensor points is taken as the optimal combination of sensor
points to get the third optimal combination of sensor points, and the third sensor optimal
distribution point 3 is obtained. The above steps are repeated until the optimal number of
sensors reaches the preset number or the difference between the current evaluation function
value and the previous evaluation function value is less than the set threshold; then, the
optimal sensor points are obtained.

2.5. Constraint Equation

After the initial selection of the optimal layout is completed through the optimal layout
model, considering the structural characteristics of the industrial robot, it is necessary to
further optimize the completed optimal layout by using the redundancy index to use the
minimum number of sensors to represent the overall state of the industrial robot. The most
common method is to carry out an overall modal analysis and calculate the MAC matrix
(modal confidence matrix) of different points. The maximum value of the off-diagonal
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elements in the MAC matrix is minimized as the constraint function of the subsequent
optimization algorithm. Finally, the global optimization algorithm is used to find the
optimal layout. The calculation formula of the MAC matrix is as follows:

MACij =

(
φT

i φj
)2(

φT
i φi
)(

φT
j φj

) (20)

where φi, φj, are the ith and jth order vectors of the modal matrix. The off-diagonal elements
of the MAC matrix represent the intersection angles of corresponding modal vectors i and j
are the values of degrees of freedom corresponding to the ith and jth mode shapes of N
sensors, respectively. The smaller the off-diagonal elements of the modal confidence matrix,
the better the independence of the calculated mode shapes and the better the effect of the
sensor configuration. On the contrary, the greater the correlation of the calculated mode
shapes, the worse the effect of the sensor configuration.

Therefore, the maximum value of the off-diagonal elements of the modal confidence
matrix can constrain the evaluation function. In addition, to ensure the unity of dimensions,
it is necessary to standardize the constraint value and evaluation value, respectively, and
z-score standardization can eliminate the influence of dimensions. The final objective
function value can be obtained by subtracting the standardized evaluation value and the
constraint value. The objective function is expressed as follows:

U(s) = Normalize(
Nr

∑
i=1

NVt

∑
j=1

p(ri)

NVt

[ln p(Vt
i,j|ri, s)− ln(

Nr

∑
k=1

p(rk)p(Vt
i,j|rk, s)])− Normalize(M) (21)

where M is the maximum value for off-diagonal elements for each layout.

3. Experiment
3.1. Verification Method for Layout

Because the sensor layout of an industrial robot has not formed a complete theoretical
system, the judgment basis of the sensor layout should be given according to the above
probabilistic method. The flow chart of the layout verification method is shown in Figure 4.

1. According to the given initial position, sensors are arranged in the corresponding
position of the real industrial robot;

2. Set the joint speed of the industrial robot as a fixed speed, make the industrial robot
move accordingly, and collect the acceleration of sensor distribution in the process
of motion;

3. The acceleration signal is processed to get the velocity of each point, and the probabil-
ity of motion from each joint is calculated by using the probability model;

4. Compare the probability of each joint with the real motion joint to determine whether
the maximum probability corresponds to the real motion joint. If so, it is considered
that the sensor layout can obtain the whole machine state.

In this paper, two types of experiments are conducted for industrial robots with and
without models, and each type of experiment acquires a series of measured experimental
data through multi-channel sensors and calculates the data pre-processing and sensor
optimization layout through MATLAB for the measured experimental data. Algorithm 1 is
the pseudo code for the sensor-optimized layout algorithm.
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Algorithm 1: Optimal sensor placement based on Bayesian and Constraint equation

Input: the measured velocity Vt and the predicted velocity V ′ (r; s) of the sensor.
Output: optimal sensor placement s_best.

1 rn = 3;
2 if sn = 1 do
3 for i = 1 to rn do
4 for j = 1 to le do
5 compute p(i,j);//according to Equation (16).
6 end
7 end
8 for i = 1 to rn do
9 for j = 1 to le do
10 compute U(i,j);//according to Equation (19)
11 end
12 end
13 for i = 1 to rn do
14 compute Us(i);//sum U(i,j)
15 end
16 s_best = s(max(Us));
17 else
18 sn = sn + 1;
19 for i = 1 to rn do
20 for j = 1 to le do
21 compute p(i,j);//according to Equation (16)
22 end
23 end
24 for i = 1 to rn do
25 for j = 1 to le do
26 compute U(i,j);//according to Equation (19)
27 end
28 end
29 for i = 1 to rn do
30 compute Us(i);//sum U(i,j)
31 end
32 s_best = snew(max(Us));
33 for i = 1 to rn do
34 compute n_best;//according to Equation (21)
35 end
36 s_best = s_best(n_best);//optimal sensor placement
37 end
38 //rn—number of joints;
39 //s—initial Sensor placement;
40 //sn—number of sensors currently optimized;
41 //le—number of sensors in the initial layout;
42 //p(i j)—the likelihood function;
43 //U(i,j)—the sensor placement evaluation function according to Equation (19);
44 //Us(i)—sum of regression values of each sensor coordinate;
45 //snew—the new sensor placement based on heuristic sequential sensor placement;
46 //n_best—the optimal number of sensors according to the change of the objective function;
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3.2. Verification of Optimal Sensor Placement for Industrial Robots Based on the Simulation Model

To verify the effectiveness of the sensor placement method proposed in this paper, we
carry out a single joint motion verification experiment for a six-axis industrial robot. The
experimental scene is shown in Figure 5.
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To obtain the real speed, we combined the measured acceleration with the theoretical
speed as noise. Moreover, because the frequency of the real collected signal is generally
high, it is not advisable to reduce all acceleration points to one dimension. At the same
time, bringing all acceleration points into the calculation will lead to too much calculation.
Therefore, an appropriate dimension reduction method is needed to process the original
signal. Considering the signal preprocessing method of the vibration signal, we select the
typical time-domain characteristics of the vibration signal. The time-domain characteristics



Appl. Sci. 2022, 12, 6086 15 of 23

of the input vibration signal are taken as the input of the probability model for calculation.
The selected features should reflect the amplitude and fluctuation characteristics of the
signal. Therefore, the selected time-domain characteristics include mean value, root mean
square value, absolute mean value, skewness, kurtosis, and variance. Divide the above-
mentioned original signals into two groups, take 40,000 sampling points for each group
of original signals, calculate the time domain signal characteristics of the two groups of
signals, respectively, and combine the real speed with the time domain characteristics’
overall input. The input is shown in Figure 6.
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Figure 6. Data characteristics of motion data: (a) data characteristics of the first joint, (b) data
characteristics of the second joint, and (c) data characteristics of the third joint.

The signal features of the three joints in motion are input into the probability model
program. The optimal layout evaluation is calculated circularly, and the corresponding
redundancy is calculated. The optimal layout order is [0.7, 1.47, 0.7, 0.8, 1.18, 0.8, 1.56, 1.47,
1.37, 1.37, 1.18, 0.8, 0.5, 0.5, 0.2, 0.2].

By observing the distribution of objective function values, as shown in Figure 7, and
considering the problem of the degree of freedom of the industrial robot, ten sensors are
selected to be arranged. The optimal sensor layout is [0.7, 1.47, 0.7, 0.8, 1.18, 0.8, 1.56, 1.47,
1.37, 1.37]. The corresponding objective function value is 2.4. The empirical layout and
uniform layout are shown in Figure 8.
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Figure 8. Three kinds of layouts for Industrial robot with the simulation model: (a) optimal layout,
(b) empirical layout, and (c) uniform layout.
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According to the process shown in Section 3.1, the second and third joint motions are
judged by probability, respectively, and the optimal layout, empirical layout, and uniform
layout are selected for comparison.

According to the results in Figure 9, in the layout verification experiment with the
simulation model, the empirical layout and the optimal layout have a higher discrimination
effect. In the judgment results of the third joint motion, the empirical layout shows a
better discrimination effect than the optimal layout. In general, both empirical layout
and optimal layout have good performance in the layout verification experiment with the
model. However, due to the complex process of model simulation and kinematic analysis,
this method cannot be applied to large-scale industrial scenes.
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3.3. Optimal Sensor Placement Method and Verification of Industrial Robots without
Simulation Models

In the implementation process of the sensor layout optimization method, first, the
kinematics and dynamics simulation analyses are carried out based on the simulation
model and DH parameters, and the theoretical speed is taken as the theoretical value
of the probability model. The subsequent optimization is carried out through the error
distribution. However, in the actual scene, in some cases, the simulation model of the
industrial robot is not easy to obtain, and the calculation process based on simulation
analysis is more complex, which is not suitable for the scene that needs to conclude sensor
placement quickly. Therefore, based on the defects of the above placement method, a
sensor-optimal placement method that discards the simulation model is considered.

Considering that the calculation of theoretical velocity is due to the quantization
of the error distribution in the new layout method, the acceleration signal collected by
the sensor is directly taken as the real value. Because of the uniform motion of each
joint, the theoretical acceleration value of each layout point is 0, so the error of the two is
the real acceleration signal collected by the sensor. According to the maximum entropy
principle, the acceleration signal collected by the sensor includes the interference of the
theoretical acceleration value with the environmental noise and its structure, in which the
environmental noise and its structure interference can be regarded as random variables; that
is, the error also conforms to the multivariate Gaussian distribution. Hence, the subsequent
optimization process is the same as above. The industrial robot without the 3D model used
in the experiment is also a six-axis industrial robot, as shown in Figure 10.
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Figure 10. Industrial robot without simulation model.

Divide the original signals into two groups, take 40,000 sampling points for each group
of original signals, and calculate the time-domain signal characteristics of the two groups
of signals. The results are shown in Figure 11.
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Figure 11. Data characteristics of motion data: (a) data characteristics of the first half of the first joint,
(b) data characteristics of the second half of the first joint, (c) data characteristics of the first half of
the second joint, (d) data characteristics of the second half of the second joint, (e) data characteristics
of the first half of the third joint, and (f) data characteristics of the second half of the third joint.

The signal features of the three joints in motion are input into the probability model
program. The optimal layout evaluation is calculated circularly, and the corresponding
redundancy is calculated. The optimal layout order is [1.56, 1.37, 1.18, 0.8, 0.8, 1.47, 0.7,
1.18, 0.8, 1.37, 0.2, 1.47, 0.7, 0.5, 0.5, 0.2].

By observing the distribution of objective function values, as shown in Figure 12, and
considering the problem of the degree of freedom of the industrial robot, ten sensors are
selected to be arranged. The optimal sensor layout is [1.56, 1.37, 1.18, 0.8, 0.8, 1.47, 0.7, 1.18,
0.8, 1.37]. The corresponding objective function value is 2.716. The empirical layout and
uniform layout are shown in Figure 13.
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Figure 12. Objective function value for Industrial robot without the simulation model.
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According to the process shown in Section 3.1, the second and third joint motions are
judged by probability, respectively, and the optimal layout, empirical layout, and uniform
layout are selected for comparison.

According to the results in Figure 14, the uniform layout and the optimal layout
have an excellent distinguishing effect, and the empirical layout has a high distinguishing
effect. According to the maximum entropy principle, when the peak power is limited,
the random variable with a finite domain has maximum entropy when it is uniformly
distributed. Therefore, uniform distribution has a good effect when the simulation model
is unknown. In general, for the layout verification experiment without a simulation model,
the optimal layout still has obvious advantages. Considering the calculation process of
optimal placement, we take the acquisition of joint state signal as an important basis. The
objective function of optimization is quantified by relative entropy so that the optimal
placement can effectively obtain the motion state of the robot.



Appl. Sci. 2022, 12, 6086 21 of 23Appl. Sci. 2022, 12, 6086 22 of 24 
 

  
(a) (b) 

Figure 14. Probabilistic verification of three layouts: (a) Probability verification of the second joint 

movement, (b) Probability verification of the third joint in motion. 

3.4. Result 

In the experiment of this paper, a verification experiment of the optimal layout 

method of an industrial robot sensor is completed. According to the connection of the joint 

motion of the industrial robot, the sensor layout verification method of the industrial ro-

bot is first designed, and the probability of each joint is considered to be compared with 

the real moving joint to determine whether the maximum probability corresponds to the 

real moving joint, and joint 2 and joint 3 are determined as the judgment kinematic joints 

(two joints move in the same plane). For an industrial robot with a simulation model, its 

optimal layout is obtained, and the optimal layout, empirical layout, and uniform layout 

are used to verify the layout of the industrial robot sensors. It is calculated that the optimal 

layout has a probability increase of 0.0244 and a probability decrease of 0.0399 compared 

with the empirical layout, respectively. A relatively uniform layout has a probability in-

crease of 0.1869 and 0.0339, respectively. For the model-free simulated industrial robot, its 

optimal layout is obtained. Compared with the empirical layout, the optimal layout has a 

probability increase of 0.2693 and 0.2630, respectively, and a probability increase of 0.0277 

and 0.0255, respectively, compared to the uniform layout. Based on the above experi-

mental conclusions, the effectiveness of the optimal layout method for industrial robot 

sensors can be proved, and the applicability of the method in the industrial field is proved. 

4. Conclusions 

This paper studies the optimal placement method of sensors to obtain better data 

sources for the health assessment and fault diagnosis of industrial robots. The work in this 

paper can be summarized as follows. 

Combining the 6-DOF industrial robot speed calculation formula with Bayesian op-

timization, taking redundancy as the constraint, and finally determining the layout 

method of the industrial robot acceleration sensor. Considering the importance of joint 

motion state information for the health assessment and fault diagnosis of industrial ro-

bots, we want this layout method to capture joint motion state information to the greatest 

extent. To obtain the initial sensor layout, we carry out the modal simulation of the indus-

trial robot model. At the same time, considering the need to calculate the speed of specific 

points, the original speed transfer formula of the robot is rewritten, and the speed calcu-

lation formula of specific points is obtained. Considering that the evaluation function can-

not give the number of sensors, the modal confidence matrix is improved by using the 

kinematic characteristics of the industrial robot, and the improved modal confidence ma-

trix is used to constrain the evaluation function.  

For different experimental objects, verification experiments with models and without 

models are carried out. Compared with the current common layout and uniform layout, 

Empirical 

layout

Optimal 

layout

Uniform 

layout

Probability proportion

Probability ratio of motion of the second joint

Probability ratio of motion of the third joint

Empirical 

layout

Optimal 

layout

Uniform 

layout

Probability proportion

Probability ratio of motion of the third joint

Probability ratio of motion of the second joint
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movement, (b) Probability verification of the third joint in motion.

3.4. Result

In the experiment of this paper, a verification experiment of the optimal layout method
of an industrial robot sensor is completed. According to the connection of the joint motion
of the industrial robot, the sensor layout verification method of the industrial robot is
first designed, and the probability of each joint is considered to be compared with the
real moving joint to determine whether the maximum probability corresponds to the real
moving joint, and joint 2 and joint 3 are determined as the judgment kinematic joints
(two joints move in the same plane). For an industrial robot with a simulation model, its
optimal layout is obtained, and the optimal layout, empirical layout, and uniform layout
are used to verify the layout of the industrial robot sensors. It is calculated that the optimal
layout has a probability increase of 0.0244 and a probability decrease of 0.0399 compared
with the empirical layout, respectively. A relatively uniform layout has a probability
increase of 0.1869 and 0.0339, respectively. For the model-free simulated industrial robot,
its optimal layout is obtained. Compared with the empirical layout, the optimal layout
has a probability increase of 0.2693 and 0.2630, respectively, and a probability increase
of 0.0277 and 0.0255, respectively, compared to the uniform layout. Based on the above
experimental conclusions, the effectiveness of the optimal layout method for industrial
robot sensors can be proved, and the applicability of the method in the industrial field
is proved.

4. Conclusions

This paper studies the optimal placement method of sensors to obtain better data
sources for the health assessment and fault diagnosis of industrial robots. The work in this
paper can be summarized as follows.

Combining the 6-DOF industrial robot speed calculation formula with Bayesian opti-
mization, taking redundancy as the constraint, and finally determining the layout method
of the industrial robot acceleration sensor. Considering the importance of joint motion
state information for the health assessment and fault diagnosis of industrial robots, we
want this layout method to capture joint motion state information to the greatest extent. To
obtain the initial sensor layout, we carry out the modal simulation of the industrial robot
model. At the same time, considering the need to calculate the speed of specific points,
the original speed transfer formula of the robot is rewritten, and the speed calculation
formula of specific points is obtained. Considering that the evaluation function cannot give
the number of sensors, the modal confidence matrix is improved by using the kinematic
characteristics of the industrial robot, and the improved modal confidence matrix is used
to constrain the evaluation function.



Appl. Sci. 2022, 12, 6086 22 of 23

For different experimental objects, verification experiments with models and without
models are carried out. Compared with the current common layout and uniform layout,
the optimized layout obtained by this method can capture joint state information more
effectively. The effectiveness of the optimal layout is verified by a model-based sensor
optimal layout experiment, which verifies the effectiveness of the optimization method.
The sensor optimal layout experiment realizes the extension of the layout method without
a model. It is also proved that the optimal layout of the sensor depends on the structure of
the industrial robot itself and the real signal collected by the sensor. The layout is evaluated
by the error between the real signal collected by the sensor and the theoretical calculation
value, and redundancy is taken as the constraint function of the layout by using part of
the results of the modal simulation. Finally, the optimal layout objective function of the
industrial robot acceleration sensor is obtained, which can provide better data sources for
health assessment and fault diagnosis of industrial robots.
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