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Abstract: Although fifth-generation (5G) wireless communication can ] support well a high data
rate of transmission, issues such as base station (BS) failure and poor BS signals may cause serious
interruption problems. This paper studies the user-BS selection strategy with received signal strength
indication (RSSI)-based reliability in 5G wireless networks. First, reliability is defined on the basis of
the RSSI and failure probability of the BS. The problem is modeled as a selection strategy optimization
problem with BS capacity and receiving sensitivity as constraints. Second, the original problem can
be transformed into a resource allocation problem with probabilistic constraints. For the situation
where user distribution is known, we used dynamic programming to obtain the optimal BS selection
strategy. For the situation where user distribution is unknown, starting from user trajectory data, we
used the space–time density estimation method based on the Epanechnikov kernel to estimate user
density and bring it into dynamic programming to obtain the optimal selection strategy. Simulation
results show that our density estimation algorithm is more accurate than the commonly used density
estimation algorithm. Compared with the distance-based optimization method, our RSSI-based
optimization method also improved the communication signal quality under different scenarios.

Keywords: wireless network; selection-strategy optimization; RSSI; dynamic programming; space–
time density estimation

1. Introduction

With the continuous increase in the number of network users, people’s requirements
for network operation speed and stability are also increasing, and the emergence of 5G
wireless communication technology can effectively meet current users’ comprehensive
needs for network and device communication. It can also greatly enhance the user’s service
experience [1]. In order to meet the ever-increasing demand for data services, wireless
communication networks using the 30–300 GHz millimeter-wave frequency band have
become an indispensable part of the 5G communication system [2,3]. However, millimeter
wave transmission is still affected by severe signal attenuation and congestion, which
requires a sophisticated BS deployment plan for heterogeneous cellular networks [4]. In
addition, in order to combat high path loss, 5G wireless BSs are usually densely deployed.
Different from the fixed signal transmission paths in wired networks, signals have different
transmission paths in wireless networks due to different user-BS connection strategies.
Especially when users move, even the connectivity between users and 5G wireless BSs
rapidly changes. Therefore, how to associate users with BSs to ensure the reliability of
communication as much as possible is another key issue for 5G wireless networks [5], and
this is the key object of this paper.

The user-BS connection strategy is an important issue in wireless communication
systems and has been extensively studied in the past few decades. In traditional cellular
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systems, BSs are usually deployed to achieve seamless network coverage. Whether a user
can be covered by a BS depends on the distance between them [4]. However, such a user-BS
connection strategy based solely on distance is difficult to meet the high standards of
5G wireless networks [6], since distance is only from a geometric point of view and can
only reflect limited information. The standard requirements of the 5G networks are quite
different from 4G in terms of low latency, bandwidth, reliability, and availability [7]. In
order to deal with the problems encountered in actual situations, the user-BS connection
strategy mostly starts from some utility indicators such as spectral and energy efficiency,
and quality of service (QoS) [8]. However, instead of being inherent properties, these utility
indicators are defined by people. In addition to difficulties in obtaining, there may also
exist problems such as inconsistent standards. In order to address the above problems,
we need to consider a common and real indicator that can easily be obtained in practical
scenarios. In addition, the above studies rarely take reliability into account, while 5G
wireless networks have high requirements for reliability. Reliability is one of the most
important factors of wireless network communication quality; it can not only improve
user experience, but also help operators in operation and maintenance. On the basis of the
above motivations, we considered modeling the user-BS connection strategy problem as an
optimization problem with reliability as the optimization object.

The received signal strength indicator (RSSI) is commonly used in the communication
localization field [9]. RSSI can easily be obtained from most WiFi receivers such as mobile
phones, tablets, and laptops [10,11]. RSSI meets the above requirements, so we chose to
optimize reliability with RSSI.

This paper studies the optimization of 5G wireless communication networks based
on RSSI by rationally designing a BS-user strategy selection scheme. For the selection
strategy, our goal was to maximize the communication signal quality of the overall wireless
network when BS capacity and receiving sensitivity constraints are met. Since the constraint
function exists in the form of an expectation function that cannot be handled by the
traditional random approximation simulated annealing (SA) algorithm, we began from user
distribution and considered the two cases where user distribution is known and unknown.

In the case of a given user distribution, the distribution table is used to directly derive
the confidence interval at a given significance level. Random constraints are converted
into general constraints, and the dynamic programming method is then used to solve the
optimization problem. For the case where the user distribution is unknown, we estimated
the density of users on the basis of trajectory data, and derived the dynamic programming
recursion formula on the basis of the estimated density. Our main contributions are
listed below:

(1) In order to meet the high requirements for reliability in 5G wireless networks, we
propose to model the user-BS selection strategy problem as an optimization problem
with reliability as the object.

(2) In view of the drawbacks in commonly used indicators, we chose to define reliability
by the RSSI for the first time, which could easily be obtained in practical scenarios.
Considering the time-varying nature of the user’s position, we transformed the orig-
inal problem into a resource allocation problem under probability constraints, and
solved it with dynamic programming and the time–space density estimation method.

(3) We conducted two comparative simulations to verify the superiority of our algorithm
in terms of the density estimation effect and the reliability approach GeoLife GPS
Trajectories dataset [12]. Simulation 1 showed that, under different sampling fre-
quencies, our time–space density estimation method improved accuracy by 2.84%
compared to the two-dimensional kernel density estimation method. Simulation 2
showed that, compared with the distance-based selection strategies, our RSSI-based
selection strategies improved communication reliability by an average of 3.57% under
the three scenarios above.

The rest of this paper is organized as follows. Section 3 presents the system model and
formulates the BS-user selection strategy problem. In Section 4, the wireless BS selection-
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strategy optimization problem based on identified distribution is solved by dynamic
programming. The wireless BS selection-strategy optimization problem based on user
trajectory is addressed in Section 5, where a time–space density estimation method is
proposed. Simulation results are presented in Section 6 to illustrate the performance of
the proposed time-space density estimation method under different RSSI scenarios. Lastly,
Section 7 concludes this paper.

2. Related Work
2.1. User-BS Selection Strategy

User-BS selection, aiming to associate a user with a particular serving BS, is a critical
procedure in wireless networks that substantially affects network performance [13]. In
traditional LTE systems, the radio admission control entity is located in the radio resource
control layer of the protocol stack, which decides whether a new radio-bearer admission
request is admitted or rejected [14]. The distance-based user-BS selection strategy where a
user chooses to associate with the nearest BS is the most prevalent. Five metrics are com-
monly used in user-BS selection, namely, outage/coverage probability, spectral efficiency,
energy efficiency, QoS, and fairness [15]. In actual situations, one or a combination of
several indicators are used. The new technologies and standards of 5G networks inevitably
render ineffective the above rudimentary user-BS selection strategy and metrics, and more
effective user-BS selection algorithms are needed for addressing the unique features of
emerging 5G wireless networks.

Utility is widely used in the modeling of user association problems. In order to make
decisions, utility quantifies the satisfaction that a particular service provides to decision
makers [16]. According to the used metrics, utility considered in user association may con-
sist of, for example, spectral efficiency [17], energy efficiency [18,19], QoS [20]. Logarithms,
exponentials, and sigmoidal utility functions are used to model these properties. For studies
that do not specifically discuss the selection of utility functions, it can be assumed that they
use linear utility functions, that is, utility is spectral efficiency, energy efficiency, or QoS
itself [21]. Game theory [22], combinatorial optimization [23], and random geometry [24]
are commonly used models to solve user-BS selection strategy problems. Details are shown
in Table 1.

Table 1. Common metrics and models for user-BS selection strategy problems.

Metrics

Spectral efficiency [17]

Energy efficiency [18,19]

QoS [20]

Models

Game theory [22]

Combinatorial optimization [23]

Random geometry [24]

2.2. RSSI-Based Optimization Model

In wireless communication networks, signal quality is an important indicator that
affects communication reliability, and received signal strength (RSS) is its most important
part. The majority of existing work for RSS focused on large-scale cooperative sensor
network localization subject to communication constraints. To the best of our knowledge,
RSS was first considered for cooperative localization in [25], where a single RSS was
optimized so as to limit the number of neighboring sensors. In a recent work [26], RSS
was considered for noncooperative infrastructure-based indoor positioning. However, the
focus of the above study lay on the overall positioning performance in a given service area
and thorough treatment on the measurement campaign, RSS modeling, model fitting and
parameter calibration, signaling, and performance evaluation using real data measured
from a live network.
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In order to measure RSS, we have RSSI, an optional part of the transmission layer,
which is one of the most important indicators used to determine the link quality and
whether to increase the broadcast transmission strength [27]. PredominatingRSSI models
can be divided into three types: the spatial-propagation, ShadowWing, and distance-loss
models. Considering the influence of complex factors such as reflection, blocking, and
diffraction, the distance-loss model is more capable of reflecting the actual application
environment and the closest to the true value of the distance [28].

RSSI indicates the strength of the received wireless signal, which is easily affected
by the environment and has unstable characteristics. Its value gradually decreases as the
distance between the terminal and the access point increases. The larger the RSSI is, the
higher the signal reception strength and the better the data transmission channel are. On
the other hand, the lower the RSSI is, the weaker the received signal and the worse the
quality of the physical channel for data transmission are, and the probability of packet loss
and bit errors during data transmission obviously increases.

RSSI calculates propagation loss by measuring the transmission power and the re-
ceived power, and then uses the signal attenuation model to convert propagation loss into
transmission node distance [29]. This is a low-power, low-cost ranging technology with the
characteristics of low cost, less equipment, long distance, and easy access.

Due to the above advantages, RSSI is often used to solve optimization problems in
wireless communication. In [30] RSSI was used to resolve the optimization problem of
Bluetooth low-energy (BLE) beacon density, and the authors in [31] used RSSI to help in
person tracking and monitoring in industrial environments. However, most of the existing
RSSI-based optimization models mainly focused on indoor localization and rarely applied
it to other scenarios.

In this paper, we define the overall reliability of the wireless network by the RSSI,
which can easily be obtained in the real-world scenario, together with the failure probability
of the BS, and model the problem as a selection strategy optimization problem with
reliability as the optimization goal.

3. System Model and Problem Formulation

We considered a wireless network with N BSs serving a group of users in a 2-
dimensional geometry. We used RBS to denote the invalid probability of each BS, and
NBS to denote the number of connection restrictions for each BS. Let S denote the set of
all BS selection strategies, from which users choose the appropriate strategy s ∈ S . We
used x to denote the position coordinates of UEs, and then s(x) can be expressed in detail
as (s1(x), s2(x), . . . , sN(x)). Such a selection strategy means the probability that the user
chooses to connect to BS i at location x is si(x), and we have si(x) ∈ [0, 1] together with
∑N

i=1 si(x) = 1. Our optimization goal was to maximize the quality of the communication
signal, so we define the reliability of the communication signal from the perspective of
reliability modeling.

Throughout this paper, P[A] denotes the probability of event A, di(x) denotes the
distance between BS i and user location x, RBS(i) denotes the probability that BS i is invalid,
s denotes the selection strategy, E[·] denotes the expectation operator, α denotes the given
significance level, and λ denotes the confidence interval.

3.1. Reliability Modeling

The main objective of reliability modeling is to express the reliability of a given system
in terms of the reliability measures of its constituent components. Consider a system Y
that consists of n components. Each component can only have two distinct states: it can
either be functional or be off. Let binary variable πi be the state indicator of component i as
follows:

πi =

{
1, if component i is on,
0, if component i is off.

(1)
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A state of system Y is a description of the states of all its components; hence, π = {πi}
for i = 1, . . . , n. Let Π be the set of all possible states of Y. The structural function of Y,
denoted by f (π), is a binary function that indicates whether the system is working under a
given state according to the following equation:

f (π) =

{
1, Y is functional,
0, Y has failed.

(2)

On the basis of the above definitions, the reliability of Y, denoted by R(Y), can be
calculated using the following equation:

R(Y) = P[ f (π) = 1] = ∑
π∈Π

f (π)P[π]. (3)

3.2. RSSI

RSSI is a method of receiving signal strength indicating ranging. In an actual appli-
cation environment, since a wireless signal is affected by various obstacles, reflections,
multipath propagation, temperature, and propagation mode, electromagnetic wave trans-
mission loss conforms to the lognormal shadow model, which can be described by the
modified path-loss model [29]:

PL(d) = PL(d0) + 10n log10(
d
d0

) + Xσ, (4)

where PL(d) is the loss after signal propagation distance d, PL(d0) is the loss after signal
propagation distance d0, n is the propagation factor (usually 2∼5), and Xσ is the shielding
factor that is a Gaussian random noise variable with mean 0 and variance α.

PL(d0) in (4) can be calculated by the outdoor radio free space propagation model.
The free space propagation model [32] is:

PL(d0) = 32.44 + 10n log10(d) + 10n log10( fc), (5)

where fc is the frequency of the propagated signal, and d is the distance between the
sending and receiving nodes; usually, d0 = 1 m. Our approach is not restricted by this
specific formula and it can be straightforwardly extended to any path-loss forms.

The signal strength of the anchor node received by the unknown node is:

RSSI(d) = Ps + Pa − PL(d), (6)

where Ps is the transmitting power of the node signal, Pa is the antenna gain, and PL(d) is
the loss after signal propagation distance d. According to Formulas (4)–(6), the distance can
be calculated.

In the WINNERII C2 model [33] that simulates the wireless channel of the cellular
connection in tahe 5G network environment, the path-loss value at distance d from the
urban macrocell base station can be expressed as:

PL(d) = 27 + 22.7 log10(d) + 20 log10( fc) + Xσ. (7)

3.3. Optimization Model with RSSI-Based Reliability

The higher the received signal strength is, the more reliable the connection is. Com-
bined with failure probability RBS(i) and P[π] in (3), the reliability of the user at location x,
R(s, x, RBS), can be expressed by selecting strategies s, x, and RBS :

R(s, x, RBS) =
N

∑
i=1

si(x)RSSI(di(x))(1− RBS(i)). (8)



Appl. Sci. 2022, 12, 6082 6 of 19

Combining Equation (8) with user distribution, the overall reliability of wireless side
Rw, can be calculated as:

Rw =
∫∫

R(s, x, RBS) f (x)dx

=
∫∫ N

∑
i=1

si(x)(1− RBS(i))RSSI(di(x)) f (x)dx

=
N

∑
i=1

∫∫
si(x)(1− RBS(i))RSSI(di(x)) f (x)dx.

(9)

The overall optimization problem is:

max
s∈S

N

∑
i=1

∫∫
si(x)(1− RBS(i))RSSI(di(x)) f (x)dx. (10)

BS capacity refers to the number of channels that should be configured for a base
station or a cell. In large cities and megacities, due to the rapid growth of users, each BS
should be equipped with as many available channels as possible. Therefore, BS capacity
becomes user capacity calculated by the number of channels. When there are too many
users connected to the same BS, this leads to a decrease in communication quality and
reduced reliability. Therefore, the expected number of users connected to each BS i cannot
exceed the limit of the number of connections of BS capacity NBS(i). For each BS i, the
probability of a user connecting to it can be expressed as

∫∫
si(x) f (x)dx, so the capacity

condition for M users can be expressed as:

M
∫∫

si(x) f (x)dx 6 NBS(i), (11)

for i = 1, 2, . . . , N.
Receiving sensitivity refers to the minimal received signal strength with which the

receiver can correctly take out the useful signal, which means that the RSSI must be greater
than receiving sensitivity SEN:

RSSI > SEN. (12)

SEN [34] can be expressed as:

SEN = 10 log10(KT0) + 10 log10(BW) + NF + SNRmin. (13)

where, 10 log10(KT0) represents that the noise floor at a room temperature of 25 ◦C is
−174 dBm, BW refers to bandwidth, NF is the noise figure of the system that generally
refers to the noise figure of the first low noise amplifier, and SNRmin is the minimal signal-
to-noise ratio (SNR) requirement of the receiver. Similar to RSSI, the above approach
is not restricted by this specific formula and can be straightforwardly extended to any
sensitivity forms.

Taking a gNodeB BS of 5G NR with 20 MHz bandwidth as an example, the SEN of
gNodeB is:

SEN = −174 + 10 log10(19.08× 106) + 6 + (−1)

= −96.2,
(14)

where BW = 20 MHz, and the actual bandwidth occupied by the business is 19 MHz;
NF = 6 dB for the system. NF here is the insertion loss before the first-level LNA and the
noise coefficient NF of the LNA itself, SNRmin = −1 dB.
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According to the RSSI formula [35]:

d = d010
Pa+Ps−PL(d0)

10n 10−
1

10n RSSI(d), (15)

so RSSI(di(x)) > Sensitivity can be transformed into

di(x) < D = d010
Pt−PL(d0)

10n 10−
1

10n SEN , (16)

which means that signal effective range Ci is given to any BS i, which satisfies that ∀x ∈ Ci,
di(x) < D, and D represents the maximal signal connection distance. Therefore, the
optimization problem under constraints can be expressed as:

si(x) = 0, for x /∈ Ci. (17)

On the basis of Equation (10), considering BS capacity (11) and SEN (17) constraints at
the same time, the optimization problem can be expressed as follows:

max
s∈S

Rw, (18)

s.t.

{
M

∫∫
si(x) f (x)dx ≤ NBS(i),

si(x) = 0,
(19)

for i = 1, 2, . . . , N and x /∈ Ci.

4. Wireless BS Selection-Strategy Optimization Based on Identified Distribution

First, the optimization problem is simplified. According to the calculation formula
of RSSI(d), RSSI(di(x)) is negatively correlated with log10 di(x), so original optimization
Problem (18) can be simplified to

min
s∈S

∫∫ N

∑
i=1

si(x)RBS(i) log10 di(x) f (x)dx

= min
s∈S

N

∑
i=1

∫∫
si(x)RBS(i) log10 di(x) f (x)dx.

(20)

The actual optimization objective of the above optimization problem is functional s
instead of variable x. The general idea of finding the extreme value of a functional is to
construct a Lagrangian functional according to the Lagrangian multiplier theorem and then
set the Frechet derivative of the Lagrangian functional to zero.

Assuming a uniform distribution and that si(x) is fixed for all x locations, the opti-
mization function is set to be:

f (s) =
N

∑
i=1

∫∫
C

siRBS(i) log10 di(x)
1

AC
dx. (21)

with constraints:

gi(s) = M
∫∫

si(x) f (x)dx− NBS(i) ≤ 0,

1−
N

∑
i=1

si(x) = 0,
(22)
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for i = 1, 2, . . . , N and x /∈ Ci, where C = ∪N
i=1Ci, AC represents the area of the region C.

According to the Lagrangian multiplier theorem, the Lagrangian functional is:

L(s, α, β) = f (s) +
N

∑
i=1

αigi(s) + β(1−
N

∑
i=1

si(x)). (23)

The Frechet derivative operator L of Formula (23) is calculated, and KKT
conditions (24)–(27) are solved:

∇si L(s, α, β) = 0, (24)

αigi(s) = 0, (25)

αi > 0, (26)

1−
N

∑
i=1

si(x) = 0, (27)

Then, we can obtain si = NBS(i)/N.
The above method can only be applied to simple functionals. For more complex

functionals, the commonly used functional optimization methods are variational methods
and optimal control.

Variational method is a branch of mathematics developed at the end of the 17th century.
It is a field of mathematics dealing with functions as opposed to ordinary calculus dealing
with functions of numbers. The Euler–Lagrange (E–L) equation is the key theorem of the
variational method that corresponds to the critical point of the functional. The E–L equation
is only a necessary condition for the functional to have extreme values, but not sufficient.
That is, when the functional has extreme values, the E–L equation holds.

Classical variational theory can only solve the problem of unconstrained control, but
most of the problems in engineering practice are control-constrained. Therefore, modern
variational theory with optimal control as the research object appeared. Optimal control
refers to seeking a control under given constraint conditions to allow for the given system
performance index reach the maximal (or minimal) value. The main methods to solve the
optimal control problem are the classical variational method, the maximal-value principle,
and dynamic programming.

The simplest form of variational method for a functional is:

J[y(x)] =
∫ x2

x1

F(x, y(x), y′(x))dx. (28)

In our optimization problem, F only depends on y and with no y′; at this time, Fy ≡ 0,
so Euler equation Fy(x, y) = 0 or Fy(y) = 0. This is a functional equation whose solution
does not contain any constants. The solution of this function usually does not meet the
boundary conditions, and the variational problem has no solution. It is difficult to directly
calculate it through mathematical methods, so we attempted to use the most advanced
method, optimal control algorithms, which combines modern theoretical ideas to help
in solving problems such as dynamic programming, which is an efficient mathematical
method for the study and optimization of multistage sequential decision-making problems
such as resource allocation.

4.1. Unconstrained Optimization

The original problem can be regarded to be an optimal allocation problem, N processes
correspond to the connection with N BSs, and the allocation object corresponds to the
probability of connecting to each BS in selection strategies.

We can define

Fk(I) = min
s∈S

k

∑
i=1

∫∫
si(x)RBS(i) log10 di(x) f (x)dx,
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with ∑k
i=1 si(x) = I. Next, we need to assign the connection probability of ∑k

i=1 si(x) = I
to k + 1 BSs, and the total probability assigned to the first k BSs is I − sk+1(x). According to
the optimization principle, we have:

Fk+1(I) =min
s∈S

k+1

∑
i=1

∫∫
si(x)RBS(i) log10 di(x) f (x)dx

=min
sk+1

[Fk(I − sk+1(x))

+
∫∫

sk+1(x)RBS(k + 1) log10 dk+1(x) f (x)dx].

(29)

Since the selection strategies were noncontinuous and unguided, we only needed
to ensure that the selection strategy was optimal at each point to ensure that the over-
all selection strategy was optimal. Therefore, we could transform the original overall
optimization (29) into optimizations on input node.

Given user location xl , when the SEN and BS capacity constraints were not con-
sidered, we could first calculate distance di from the user to each BS i. According to
dynamic programming, ∑k

i=1 si(xl) = I was divided, and the following recurrence formula
was obtained:

Fk+1(I) =min
s∈S

k+1

∑
i=1

si(xl)RBS(i) log10 di(xl)

=min
sk+1

[Fk(I − sk+1(xl))

+ sk+1(xl)RBS(k + 1) log10 dk+1(xl)].

(30)

4.2. Constrained Optimization

The receiving sensitivity constraint condition is relatively simple with Formula (17).
For input location xl and calculated distance di to each BS i, it can be judged whether xinput
is within the signal effective range Ci given by BS i or outside. Let those si corresponding
to outside BSs be 0, which is not considered; only those BSs within the effective range of
SEN distance are calculated step by step according to the above DP method.

According to Formula (11), the BS capacity constraint actually considers that the
number of users connected to a certain one BS cannot exceed the limit, which can be
transformed into the following form:∫∫

si(xl)M f (x)dx = E[msi(xl)], (31)

where m represents the user density at position x, whose density function is M f (x).
Corresponding to input position x, the BS capacity constraint condition needs to

ensure P[msi(x) < NBS(i)] > 1− α. We have:

P[msi(xl) < NBS(i)] > 1− α

P[m <
NBS(i)
si(xl)

] > 1− α

NBS(i)
si(xl)

> λ1−α

si(xl) <
NBS(i)
λ1−α

,

(32)

λ represents the confidence region of m’s distribution under α, which can be obtained from
the distribution table when the distribution is identified.



Appl. Sci. 2022, 12, 6082 10 of 19

Adding the BS capacity constraint to the DP method, we can obtain:

Fk+1(I) =min
s∈S

k+1

∑
i=1

si(xl) · RBS(i) log10 di(xl),

s.t. sCi <
NBS(Ci)

λ1−α
f or i = 1, . . . , k + 1

=min
sk+1

[Fk(I − sk+1(xl))

+ sk+1(xl)RBS(k + 1) log10 dk+1(xl)],

s.t. sCk+1 <
NBS(Ck+1)

λ1−α
.

(33)

According to the above analysis, the process of solving wireless BS selection-strategy
optimization on the basis of identified distribution can be obtained as shown in Algorithm 1.

Algorithm 1: Wireless BS selection-strategy optimization based on identified
distribution.

Require: x: user’s location; BS: BS information, including locations, reliability, and
connection limit numbers; D: maximal signal connection distance;

Ensure: s: BS-user connection strategy;
1: initialize: Set s = 0;
2: Step 1: Calculate distance di from x to each BS i, and find BS set KC within the

signal effective range of the user SEN on the basis of (17); let k = N(KC).
3: Step 2: Calculate the BS capacity constraint at position x according to (32).
4: Step 3: Use the DP method (16) to calculate the optimal user selection strategy s

under the condition of meeting the connection restriction.
5: return s

First, the distance from x to each BS is calculated, and the nodes within the effective
range of the signal are selected according to Formula (16). Then, the DP recursive formula
in (33) is combined to optimize the user-BS selection strategy.

5. Wireless BS Selection-Strategy Optimization Based on User Trajectory

In view of unknown user distribution, we estimate the user density of any given
location from the trajectory.

5.1. Trajectory Data

Effective data in the trajectory dataset mainly include space latitude and longitude
coordinate data, and time data.

Most of the trajectory data density estimation methods only start from spatial data,
which are commonly analyzed and visualized using the methods for home range or uti-
lization distribution estimation [36]. However, these two concepts often only focus on the
spatial distribution of the measured positions in 2D space and ignore the time series of
the measurements. So, we used a time–space density estimation method to process the
trajectory data.

5.2. Density Estimation

Kernel density estimation is a nonparametric estimation method that does not use
prior knowledge about the data distribution and does not attach any assumptions to the
data distribution. It is a method to study the characteristics of the data distribution from
the data sample itself, which is consistent with our unknown user distribution situation.
The so-called kernel density estimation is to use a smooth peak function, which is called a
‘kernel’, to fit the observed data points, thereby simulating the true probability distribution
curve. Assuming that x1, x2, . . . , xn are the n sample points of independent and identically
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distributed F, whose probability density function is f, the kernel density can be estimated
as follows:

fh(x) =
1
n

n

∑
i=1

Kh(x− xi) =
1

nh

n

∑
i=1

K(
x− xi

h
), (34)

where K(·) is the kernel function (non-negative, integral is 1, conforms to the nature of
probability density, and the mean is 0). There are many kinds of kernel functions, for
example, uniform, triangular, biweight, triweight, Epanechnikov, and normal.

Commonly used kernel functions include the Gaussian and Epanechnikov kernels [37]:

K(x) =
1√
2π

exp (− x2

2
) (Gaussian Kernel), (35)

K(x) =
3
4
(1− x2)I(|x| ≤ 1) (Epanechnikov Kernel). (36)

We used a 3-dimensional kernel density estimation method to estimate the user density
at the input location coordinate point, and selected the optimal Epanechnikov kernel in the
sense of mean square error to estimate.

At the same time, we also added the automatic calculation of bandwidth h in Formula (34)
according to the Scott principle of the d-dimensional space:

h =
√

5 · n
1

d+4 , (37)

where N represents the number of data.
We consider both space data and time data; first, the space–time kernel density function

is estimated and then integrated into the time dimension. However, because it is impossible
to accurately calculate the space–time nuclear density function, we could only use numerical
methods to calculate the space–time nuclear density of the input position coordinates at
these time nodes according to a certain time interval, which represents density in this time
interval multiplied by the time interval and accumulated as the integration process. The
specific algorithm pseudocode is shown as Algorithm 2.

Algorithm 2: Time–space density estimation.
Require: points: target location; dataspace: spatial data; datati: time data; d: data

dimension;
Ensure: Den: estimated density;

1: initialize: Set Den = 0;
2: Convert latitudinal and longitudinal data (points and dataspace) into coordinate

axis data;
3: if d = 2 then
4: Use dataspace to estimate space density Den at points with kernel density

estimation Formula (34) and the Epanechnikov kernel (36).
5: end if
6: if d = 3 then
7: Normalize time data datati.
8: for t = 0, 2, . . . , 19 do
9: time = (i− 5)/10;

10: Use dataspace and datati to estimate time–space density den at (points,time)
with (34) and (36).

11: Den = Den + den/10.
12: end for
13: end if
14: return Den
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In time–space density estimation, there are two options for 2- and 3-dimensional
density estimation. Two-dimensional density estimation only considers spatial data to
estimate the user’s spatial kernel density. Three-dimensional density estimation considers
both space and time data, first estimating the spatiotemporal kernel density function and
then integrating it into the time dimension.

The overall flow of the algorithm is shown in Figure 1.

Figure 1. Overall flow of Algorithm 3.

On the basis of the above analysis and the time–space density estimation algorithm,
the process of solving wireless BS selection-strategy optimization based on trajectory data
can be obtained as Algorithm 3.

Algorithm 3: Wireless BS selection-strategy optimization based on trajectory data.
Require: x: user’s location; BS: BS information, including locations, reliability, and

connection limit numbers; D: maximal signal connection distance;
Ensure: s:BS-user connection strategy.

1: initialize: Set s = 0;
2: Step 1: Calculate distance di from x to each BS i and find BS set KC within the

signal effective range of the user SEN on the basis of (17), let k = N(KC).
3: Step 2: Calculate the density at the position of x according to the given user’s

trajectory data using the time–space density estimation algorithm.
4: Step 3: Substitute density into the the DP Formula (30) to calculate the optimal

user selection strategy s under the condition of meeting the connection restriction.
5: return s

First, the distance from x to each BS is calculated, and nodes within the effective range
of the signal are selected according to Formula (16). Then, the user density obtained in
Algorithm 2 is brought into the DP recursive formula of (30), and the user-BS selection
strategy is optimized.

6. Performance Evaluation

We evaluated the performance of our proposed approach on the basis of the GeoLife
GPS Trajectories dataset. The GeoLife GPS Trajectories dataset was assembled from the
Microsoft Research Asia Geolife project by 182 users during a period of over three years
(from April 2007 to August 2012). A GPS trajectory of this dataset is represented by a
sequence of time-stamped points, each of which containing the information of latitude,
longitude, and altitude. Of the trajectories, 91% are logged in a dense representation, e.g.,
every 1 to 5 s or every 5 to 10 m per point. This dataset recorded a broad range of users’
outdoor movements, including not only life routines such as going home and to work,
but also some entertainment and sports activities, such as shopping, sightseeing, dining,
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hiking, and cycling. Most of the data were created in Beijing, China. Figure 2 plots the
trajectories of user [004] from 23 October 2008 to 5 July 2009.
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Figure 2. Trajectories of user [004] from 23 October 2008 to 5 July 2009. (a) Two-dimensional trajectory;
(b) three-dimensional trajectory.

Figure 2a shows that the user’s track coverage was relatively large, but in fact, accord-
ing to the analysis of the track data and Figure 2b, the user spent most of the time within a
small area in the center and had rarely traveled far away.

The reason for this difference is that Figure 2a is a two-dimensional space map that
only considers the spatial scale, and ignores information in the time scale. Our algorithm
considers both space and time information to estimate the density.

We conducted comparative simulations from two aspects. Simulation 1 compares
the difference of the density estimation effect for 2-dimensional kernel density estimation
and time–space density algorithms under different sampling frequency conditions, while
Simulation 2 compares the reliabilities of RSSI- and distance-based selection strategies.
Both simulations were conducted in a Python environment.

6.1. Comparative Simulations between Two-Dimensional Kernel Density Estimation and
Time–Space Density Estimation

In order to verify the superiority of our time–space density estimation method, we
conducted two comparative simulations. First, we compared our time–space density esti-
mation method with the two-dimensional kernel density estimation method. Comparative
simulations were carried out on a trajectory dataset with the same sampling time interval,
together with passing the same point, and on a trajectory dataset with different sampling
time intervals, together with passing the same point.

The variable between the above comparative simulations was the sampling frequency
condition. We set up two simulation scenarios, A and B, which corresponded to the
same sampling frequency and different sampling frequencies. Under both scenarios, we
assumed that RSSI followed path-loss model PL(d) = 27 + 22.7 log10(d) + 20 log10( fc) in
the WINNERII C2 model [33]. The setups of this comparative simulation are shown in
Table 2.
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Table 2. Simulation setups for simulation under different sampling scenarios.

Path Loss PL(d) = 27 + 22.7 log10(d) + 20 log10( fc)

Scenarios Point Users Sampling Interval

Scenario A (40.01, 116.31) [000, 001, 002, 003, 004] Same
Scenario B (39.96, 116.40) [132, 135, 163, 167, 168] Different

In Scenario A with the same sampling time interval, we selected five user trajectories
[000, 001, 002, 003, 004]. Their trajectory data were all sampled at 0.05 s, and they all passed
through point (40.01, 116.31). The specific trajectory is shown in Figure 3.
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Figure 3. Trajectories of users [000, 001, 002, 003, 004] and point (40.01, 116.31).

The calculated 2-dimensional kernel density and time-space density at (40.01, 116.31)
were 2.75 and 2.77 respectively, which are very similar.

In Scenario B with different sampling time intervals, we selected the trajectory data
of five users [132, 135, 163, 167, 168]. Their data collection was rather chaotic, and the
sampling time interval was not fixed. Users 135, 163, and 167 all passed through point
(39.96, 116.40). The specific trajectory is shown in Figure 4.
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Figure 4. Trajectories of users [132, 135, 163, 167, 168] and point (39.96, 116.40).
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The calculated two-dimensional and time-space densities at (39.96, 116.40) were 2.39
and 2.54. Simulation results at position [41, 116.33] are shown in Table 3.

Table 3. Simulation results for density estimation under different sampling scenarios.

Scenarios Two-Dimensional
Kernel Density
Estimation

Time-Space
Density Estimation

Improvements in
Density Estimation
Accuracy

Scenario A 2.75 2.77 0.67%
Scenario B 2.39 2.54 5.00%

Table 3 shows that, since the sampling time interval in Scenario A was the same, the
influence of the time factor on the estimation of trajectory density could be ignored. In
Scenario B, time–space density was significantly closer to the expected density 3 than the
two-dimensional kernel density was because 2D kernel density estimation ignores the
time factor. For different sampling frequencies, the density calculated at a high sampling
frequency may be higher, and the density calculated at the low sampling frequency may be
lower. Our time–space method first aligned the data in the time dimension, which means
that it could overcome the problem of different sampling frequencies and take the effects of
both time and space on density estimation into account.

6.2. Comparative Simulations between RSSI-Based and Distance-Based Selection Strategy

In order to verify the improvement effect of our algorithm, we compared it with
optimization on the basis of only distance rather than RSSI. In order to minimize the overall
connection distance between users and BSs, the optimization object of the user-BS selection
strategy optimization based on distance was set to be as follows:

min
s∈S

N

∑
i=1

si(x) · di(x), (38)

and the constraint conditions were the same as those of the user-BS selection strategy
optimization based on reliability. Comparative simulations were carried out under the
conditions of known and unknown user distribution.

In order to verify the versatility of our algorithm, we also verified RSSI on the basis of
different path-loss models. Path loss is presented in decibels as a function of distance, and
was calculated by summing the taps in SEN domain and averaging over the measurement
snapshots along the measurement run. Path loss and shadow fading are given for the
urban microcell scenario (UMi), suburban macrocell scenario (SMa), and urban macrocell
scenario (UMa) [33] for the frequency range of 0.45–6.0 GHz in Table 4.

Table 4. Path loss under different scenarios.

Scenario Path Loss

UMi PL(d) = 27 + 22.7 log10(d) + 20 log10( fc)
SMa PL(d) = 27.2 + 23.8 log10(d) + 20 log10( fc)
UMa PL(d) = 25 + 26 log10(d) + 20 log10( fc)

In the case of the given user distribution, we considered a wireless network with 5 BSs
and 10 users. The attributes of the 5 BSs were set as shown in Table 5.
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Table 5. Simulation setup for BSs with given user distribution.

BS Serial Number Position RBS NBS

1 [0, 0] 0.8 3
2 [5, 1] 0.8 5
3 [1, 7] 0.7 4
4 [2, 3] 0.8 5
5 [6, 2] 0.9 4

We assumed that all users followed normal distribution and the maximal signal
connection distance was 8, and the user-BS selection strategies at position [5, 5] are shown
in Table 6.

Table 6. Simulation results for reliability under given user distribution.

BS Selection Strategy Based on RSSI Selection Strategy Based on Distance

1 0.362 0.362
2 0 0.155
3 0 0.483
4 0.603 0
5 0.035 0

Reliability 0.565 0.540

The communication signal quality for the selection strategies based on distance and
on RSSI was 0.540 and 0.565, respectively, and our RSSI-based optimization result was
4.6% higher in communication signal quality than the non-RSSI optimization result. This
demonstrates that the RSSI-based method could better ensure communication reliability
when user distribution is known.

In the case of unknown user distribution, we considered a wireless network with 3 BSs
and 10 users. The attributes of the 3 BSs were set as shown in Table 7.

Table 7. Simulation setup for BSs with unknown user distribution.

BS Serial Number Position RBS NBS

1 [39, 116.5] 0.9 3
2 [40, 116.3] 0.95 5
3 [42, 116.4] 0.85 4
4 [39, 116.3] 0.7 5
5 [40, 116.5] 0.9 4

We selected ten user trajectories [000, 001, 002, 003, 004, 005, 006, 007, 008, 009].
Simulation results at position [41, 116.33] are shown in Table 8 and Figure 5.

Table 8. Simulation results for reliability under different scenarios.

Scenarios Reliability Based on RSSI Reliability Based on Distance Improvements in Reliability

UMi(B1) 1.990 1.943 2.4%
SMa(C1) 1.897 1.804 5.2%
UMa(C2) 1.788 1.734 3.1%
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Figure 5. Comparison chart for simulation results under different scenarios.

Simulation results show that the reliability of the selection strategy based on RSSI was
3.6% higher on average than that of the selection strategy based on distance in the UMi,
SMa, and UMa scenarios. This demonstrates that RSSI could reflect more information with
the user-BS selection strategy under both user-known and user-unknown cases, which
means that our algorithm is more effective than traditional distance-based algorithms in
common scenarios due to the better fulfilment of the high requirements for reliability in 5G
wireless networks.

7. Conclusions

In this paper, we presented a user-BS connection strategy optimization method based
on RSSI to maximize the overall communication signal quality of 5G wireless networks.
The original problem is a functional optimization problem that is difficult to solve under
nonideal conditions. Therefore, we transformed it into a resource allocation problem with
random constraints based on RSSI, and solved it with the DP method and space–time
density estimation. Simulation results show that, compared with the estimation of the
2-dimensional kernel density method that only considers spatial data, our time–space
density could simultaneously imply the information in the space and time dimensions,
and solve the problems caused by random sampling frequency with an improvement of
2.84% in density estimation accuracy. At the same time, compared with the distance-based
method, our RSSI-based optimization method improved the communication signal quality
by an average of 3.57% under different RSSI path-loss models.

In fact, there are other factors in the reliability modeling of complex systems, such
as remaining life, series, parallel connections, and the bridging model that may fit with
the reliability model of 5G wireless networks. In our future work, we are focusing on the
impact of the above factors on the reliability of 5G wireless networks.
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