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Featured Application: This research covers the development of a soft sensor model for dynamic
processes based on convolutional neural networks for the measurement of suspended solids
and turbidity.

Abstract: The great potential of the convolutional neural networks (CNNs) provides novel and
alternative ways to monitor important parameters with high accuracy. In this study, we developed
a soft sensor model for dynamic processes based on a CNN for the measurement of suspended
solids and turbidity from a single image of the liquid sample to be measured by using a commercial
smartphone camera (Android or IOS system) and light-emitting diode (LED) illumination. For this,
an image dataset of liquid samples illuminated with white, red, green, and blue LED light was taken
and used to train a CNN and fit a multiple linear regression (MLR) by using different color lighting,
we evaluated which color gives more accurate information about the concentration of suspended
particles in the sample. We implemented a pre-trained AlexNet model, and an MLR to estimate total
suspended solids (TSS), and turbidity values in liquid samples based on suspended particles. The
proposed technique obtained high goodness of fit (R2 = 0.99). The best performance was achieved
using white light, with an accuracy of 98.24% and 97.20% for TSS and turbidity, respectively, with
an operational range of 0–800 mgL−1, and 0–306 NTU. This system was designed for aquaculture
environments and tested with both commercial fish feed and paprika. This motivates further research
with different aquatic environments such as river water, domestic and industrial wastewater, and
potable water, among others.

Keywords: computer vision for measurements; convolutional neural network (CNN); transfer
learning; total suspended solids (TSS); turbidity

1. Introduction

In aquatic environments such as intensive aquaculture systems, there is an accumula-
tion of organic and inorganic matter, feed residues, and aquatic microorganisms [1]. This
accumulation is associated with total suspended solids (mgL−1) and could be defined as
the mass present in a water column. Suspended particles scatter and absorb light, causing
turbidity or loss of transparency of the water [2]. Total suspended solids (TSS) is an impor-
tant parameter in determining water quality. In aquaculture, a high level of TSS reduces the
vision and ability of fish to catch their feed. Mathematically, a TSS value can be correlated
with turbidity [3], which uses the degree of loss of water transparency due to suspended
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solids. Therefore, the greater the number of suspended solids in the liquid, the greater the
degree of turbidity [4].

For turbidity measurement, an established protocol is method 180.1 by the U.S EPA.
The measurement ranges between 0 and 40 NTU (nephelometric turbidity units), and to
achieve higher values, the samples must be diluted in water and the measurement must be
rescaled. Otherwise, there are several arrangements for turbidimeters that use different
light sources and detectors. However, none of them can be used as a low-cost alternative
to monitor water quality in a rapid noninvasive way with a wide dynamic range. For
example, some low-cost turbidimeters operate with short ranges; their operating ranges
are 2.2–54.2 [5], 0–10 [6], 0–12 [7], and 0–100 NTU [8–10]. Furthermore, these methods do
not allow the estimation of water turbidity using a single data record. There are advanced
turbidimeters with a wide operating range, but they are expensive and require two data
records for turbidity estimation [6,11].

By contrast, recent advances in computer vision, software development, and other
technological advances are being implemented to solve some measurement limitations
(the lack of a wide operating range, high cost, etc.) of conventional turbidimeters. Recent
advances in turbidimeters are focused on image analysis. Examples include the novel
turbidimeter technique of Gimenez et al. that developed a turbidimeter based on image
degradation analysis; however, this method needs reference samples, and samples need
additional treatment (must be sonicated) [12]. Gu et al. applied a random forest ensemble
to space remote sensing data to obtain river turbidity measurement based on hyperspectral
images, and obtained precision of 67% [13]. Mullins et al. carried out turbidity measure-
ments in the range 10–250 NTU using image processing methods, where they processed and
analyzed image-by-image in the measurement process, reaching a precision of 90% with
controlled environmental conditions [14]. In addition, with the advent of smartphones, new
turbidimeters have been reported. In the case of Bayram et al., they performed turbidity
measurements using a smartphone; however, the precision between the samples measured
with the calibrated Hach colorimeter and their smartphone colorimeter was 48% [15].
Leeuw and Boss also measured turbidity using a smartphone by remotely detecting water
reflectance based on environmental conditions, reaching precision of 74% [16].

In this study, we measure turbidity and suspended solids by using a CNN that could
be used as a low-cost alternative to monitor water quality in a rapid noninvasive way with
a wide dynamic range. Our research proposes to use revolutionary emerging technology
called convolutional neural network (CNN) and open-source technologies to develop a
technique capable of measuring TSS and turbidity values simultaneously from a single
image of the liquid sample to be measured. CNN is inspired by the working of the human
brain and is able to analyze raw data without human intervention. CNNs have been applied
successfully in different areas such as images classification [17,18], image segmentation [19],
roughness measurement [20,21], and soft sensors [22–24]. Additionally, CNNs have gained
popularity due to their ability to approximate any continuous function [25–27], so they
could have better precision in the turbidity task than other machine learning methods
such as additional trees, multilayer perceptron, naive Bayes, random forest, and support
vector machine [13,28].

This research describes how to use a soft sensor [22] model for dynamic processes
based on a convolutional neural network, with the highlights of measuring the TSS and
turbidity values from a single image. This image is registered by a conventional smartphone
(Android and IOS system). The measurements, acquired noninvasively, have high precision
and a wide dynamic range for aquatic environments.

The rest of this paper is organized as follows. Section 2 describes the CNN architecture
and the experiments; Section 3 shows the results and holds the discussion. Finally, Section 4
reports some conclusions and discusses future work.
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2. Materials and Methods
2.1. Proposed Classification CNN

This paper is based on the principles of artificial intelligence, more specifically in
operating blocks and several layer of neurons that work together to mimic the functioning
of the visual cortex of mammals, which are called convolutional neuronal networks (CNNs).
In image classification tasks, a CNN first performs a feature extraction step from the input
image, then the features are passed to a neural network and finally we obtain, as an output,
the probability assigned to the input image that it belongs to a certain category [29].

To work with CNNs, few people train a CNN from scratch, due to it is rare to have a
large dataset, and it is more efficient to use the advantages of transfer learning, where a
CNN model that was previously trained to perform a task is reused and trained again to
learn a new task without the need to use large databases (e.g., 1000 classes for ImageNet
dataset). Figure 1 shows the transfer learning process carried out on our CNN model,
whose classification task is changed.

Figure 1. Representation of the TL process in the CNN model used: (1) training dataset (ImageNet)
and CNN; (2) input image to classify; (3) classification result; (4) reuse of the pre-trained model for a
new task; (5) new training dataset (images of the new task) and modification of the CNN; (6) new
input image to be classified; and (7) classification result.

A simple and elementary CNN model with a powerful modeling capability is AlexNet [30].
AlexNet architecture is simple and easy to train and optimize, and has a proven ability to
classify and recognize simple images with low visual complexity, such as low resolution [31].
For this, only AlexNet was trained, due to its simplicity and popularity. In this research, an
AlexNet model is trained using an image dataset of liquid samples with different values of
suspended solids. RGB-image input size for AlexNet is 224 × 224 [32]. The AlexNet model
used is shown in Figure 2.

2.2. Proposed Estimator Based on Multiple Linear Regression (MLR)

Thus, we have a model capable of classifying the images in the dataset. The output
vector of the trained model can be treated as a decoded version of the input image since
the model extracts implicit information from the liquid sample. Although the CNN model
classifies certain liquid samples, it cannot classify images with intermediate values of
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suspended solids. Nevertheless, if the feature vectors (CCN output vectors) are used
to fit an MLR, we can predict the TSS and turbidity values of any liquid sample. The
main requirement is to train the CNN with a number of classes that contain the target
dynamic range.

Figure 2. Details of the trained CNN model used in this research. The layer FC8 is marked to indicate
the resizing of this layer according to the number of classes in the new task.

In a convolutional neural network, there are two steps: the first is called feature
extraction, and the second is classification; the second step is built from a branch of neurons.
For example, a single neuron uses the inputs (features) to compute a response (output) or
a single logit, which is the value of multiplying the inputs with weights and adding the
bias term (−∞ to +∞), and then passed through the activation function to obtain an output.
Therefore, a logit vector can be acquired by using the real number calculated in a group of
neurons. In CNN models, in the last layer, to obtain the probabilities of the classes, it is
required to input the logit values into a SoftMax function to generate a normalized vector
of probabilities (0 to 1) with a value for each predicted class.

The MLR is then fitted with the logits vector obtained from the last layer, and a linear
equation is created to approximate new and unknown values. Figure 3 shows how the
MLR is fitted using the logit vector of the training dataset, and the general operation of the
proposed method. When the CNN input is a new image (unknown sample), a new logit
vector is created, and used in the MLR to obtain the estimated value. Hence, in this research,
class probabilities are used to predict the TSS and turbidity values in a liquid sample.

Furthermore, the CNN and the MLP were trained separately. The CNN was trained
using the Cross-entropy function, so a simple classification task was developed. A trained
CNN was used to obtain the probabilities based on the input image, then a trained MLP
was used to obtain the approximated value according to the values (obtained in the training
process) used to fit the MLP. In other words, an MLP was used to predict the value of a
variable based on the value of another variable. We then obtained the TSS and turbidity
values based on the features (probabilities) found by the CNN.

2.3. CNN Validation as Classifier

One of the main advantages of using a CNN is that it automatically learns the most
relevant features in an input image without human supervision. By viewing the convolu-
tional feature maps of an image, we can look at the regions of the image noted by the CNN
to perform the classification. In this research, several sets of feature maps were analyzed to
confirm that CNN can detect image changes due to the particles suspended in the liquid
samples. This would confirm that CNN is only counting differences in suspended solids
and ignoring other parameters such as optic aberrations, spurious radiation, mismatch
compensated pulse effects, etc. Figure 4 shows a set of convolutional feature maps extracted
from the stacked results in each convolutional layer.
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Figure 3. Extraction of logit vectors used to fit the MLR and the complete measurement system.

Figure 4. Convolutional feature maps of a liquid sample.
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2.4. Samples

Two samples of commercial interest were used: fish feed and paprika. The study
was mainly based on fish feed, and to validate our results, paprika (with 2 extra classes)
was tested. Commercial fish feed was used as the suspended solid, given that fish feed is
one of the components that accumulates the most in intensive aquaculture systems [33,34].
Additionally, because fish feed for tilapia is designed to be in suspension [35], it makes it
easy to dose. Twenty liquid samples were prepared by mixing one liter of distilled water
with each mass (g) of the fish feed and paprika mass, as shown in Table 1. The masses were
created on a Denver Instruments PI-214 high-resolution balance (with four decimal places).
The sample concentration ranged from 0 to 0.8 gL−1, chosen because this is the operating
range of most commercially available turbidimeters and/or solids meters, such as HANNA
and Hach instruments. Concentration samples (fish feed and paprika mass) used for each
class are shown in Table 1.

Table 1. Concentration samples (fish feed and paprika mass) used for each class.

Classes 0 1/2 3/4 1 2 3 4 5 6 7 8

Fish mass (g) 0.000 - - 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800
Paprika mass (g) 0.000 0.002 0.007 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800

2.5. Experimental Setup

A transparent container with a cubic shape of approximately 5 × 5 × 5 cm was filled
using the liquid sample. A magnetic mixer was used to keep all the particles suspended,
for preventing them from settling, and to allow the suspended particles to be recorded by
the camera. The mixer speed used was 60 rpm during image registration (images from
the training and validation dataset). The experimental setup used for this experiment is
shown in Figure 5. The illumination distance was selected to prevent shadows on the liquid
sample. The camera distance was selected to avoid imaging the edges of the container, so
that the model does not learn the morphology of the container during the CNN training.
The experiment was carried out in a dark room. The background was constant throughout
the experiment; therefore, the CNN learned the information from the samples for each
color, and it did not take information about the background. This is also corroborated in
Figure 4, where the activations of the artificial neurons were focused, or the CNN took the
information, for the classification of the suspended solid samples. The experiment setup
implemented an RGB LED lamp. Red, green, blue, and white were used. Liquid samples
illuminated with different colors are shown in Figure 6. The illumination of all colors
was kept constant at an irradiance of 0.852 mW/cm2. The spectral power distributions of
the illumination used in this study are shown in Figure 7, which were measured using a
spectrophotometer (USB2000, Ocean Optics, Orlando, FL, USA). The experimental setup
was adjusted to the neural network by keeping constant all parameters (smartphone camera
mode, LED lamp intensity, etc.) that were not under measurement. The neural network
learned to identify the image changing characteristics, and since its training included
samples with only distilled water (class 0), and considering that the only parameter which
varied was the suspended solids, the effects of spurious light and other sources of noise
were minimized.

To create and record the liquid sample dataset, the rear-facing cameras of a Huawei
Mate 20 Lite and an iPhone 6 were used. A total of 88,000 images were recorded. For
samples with fish feed, 39,600 images were recorded with an Android operating sys-
tem smartphone, and 48,400 images for paprika samples utilizing the smartphone with
an IOS operating system. The size of the images recorded via the smartphones was
2448 × 2448 pixels; however, the images were center-cropped at 224 × 224 pixels, accord-
ing to the input layer of the CNN. The smartphone camera was used in manual mode
with a capture speed of 20 FPS (frames per second) in burst mode. The ISO level and the
focus (focused at the container wall) option were kept constant during the experiment. Of
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the 88,000 recorded images, 80,000 images were randomly selected to create the training
images dataset. The remaining 8000 images were used to build the validation dataset, i.e.,
90% of the dataset was used for training, while the remaining 10% was used for validation
or to test the operation of the CNN, that is, the validation images were not used in the
validation process or training test.

Figure 5. Experimental setup: (a) scheme of the experimental setup; (b) experimental setup used.

Figure 6. Recorded images of samples illuminated with a concentration of 0.1 gL−1 of the fish feed
mass in distilled water and under different lighting colors: (a) white light; (b) red; (c) blue; (d) green.

Figure 7. The spectral power distributions of the RGB LED lamp used in this study: (a) blue; (b) green;
(c) red; and (d) white.

The training process was developed and implemented using Google Colaboratory,
which is a free cloud service for machine learning education and provides a Python note-
book (Jupyter) environment running in a dedicated virtual machine on an Nvidia Tesla K80
GPU with 2496 CUDA cores. The AlexNet model (CNN) was taken from the Torchvision
package, which offers some popular pre-trained models and other image processing tools.

In artificial intelligence, the process of finding the “best” or “optimal” parameters
for the performance of a CNN model is called optimization. The classic optimization
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method is called stochastic gradient descent (SGD). It is a simple procedure that involves
iteratively finding the values that result in the lowest possible error (loss) based on the
training dataset. Although newer and more powerful optimization algorithms exist, SDG
provides consistency in the overall training process and results.

One of the most important hyperparameters is the “learning rate”. It is responsible for
adjusting the rate at which the model calculates the gradient of the loss function. Therefore,
the learning rate controls how much the model changes its predictions as it updates its
results based on model error. A high learning rate makes the model change its parameters
quickly, while a low learning rate makes the model change its parameters slowly. The best
option is the selection of a learning rate value that makes the error decrease correctly (not
too quickly), finding the minimal error in the fewest number of epochs. An “epoch” is
another relevant hyperparameter; it refers to the number of times that the entire training
dataset is passed through the CNN model. However, a model is trained using batches.
In the context of a single training epoch, “batch size” refers to the amount of data passed
to be processed by the CNN and updates model parameters at a time until an epoch is
complete. Larger batches allow for more computational parallelism, and can often lead to
better performance.

However, larger batches also require more memory and can cause latency when
passed into the training function. Finally, the hyperparameter “momentum” is employed to
accelerate the gradient descent by taking into account a fraction of the previous gradients
to update to the current one.

For the CNN training, the algorithm executed a total of 75 training epochs. The epoch
number was selected by analyzing the loss of training according to previous executions of
the training process. The CNN was trained using a stochastic gradient descent algorithm
with a momentum of 0.9 and a batch size of 50. The other hyperparameters used in the
experiment are listed in Table 2.

Table 2. Hyperparameters used in the training process.

Hyperparameters Value

Algorithm optimizer SGD
Learning rate 0.0005
Momentum 0.9
Batch size 50

Number of epochs 75

The selection of the hyperparameters was established based on the image classification
examples exposed in the PyTorch documentation. In addition, several executions were
carried out in search of minimizing errors, and until a high accuracy of classification (100%)
and estimation (98.24% and 97.20% for TSS and turbidity, respectively) was reached.

2.6. Performance Metrics

The performance of the proposed method was evaluated in two stages.

2.6.1. Performance Metrics for Classifier Evaluation

A confusion matrix is used to analyze the performance of a classification tool [36–38].
Four important terms make up a confusion matrix, which describes the following cases:
the cases that were predicted as elements that belong to a class and that actually belong
to that class are known as true positives (TP). Similarly, the cases of elements that were
predicted that do not belong to a class and do not belong to that class are known as true
negatives (TN). On the other hand, the cases of elements that were predicted to belong to
a class but which do not really belong to the class are named false positives (FP). Finally,
the cases that were predicted not to belong to the class and actually belong to the class are
known as false negatives (FN). The elements of the confusion matrix are used to calculate
the following performance metrics for the evaluation of the classifier:
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Accuracy is the percentage of the total number of predictions that were classified
correctly and is calculated as:

Accuracy = (TP + FN)/N (1)

where N is the total number of elements to classify.
Precision is the ability of the classifier to predict a sample according to what it really is,

and is defined as:
Precision = TP/(TP + FP) (2)

Recall is the ability of the classifier to find all the positive samples. In other words,
how many examples of positive cases were correctly labeled, and can be written as:

Recall = TP/(TP + FN) (3)

Similar to Recall, Specificity is the ability of the classifier to find all the negative samples,
and is defined as:

Speci f icity = TN/(TN + FP) (4)

F-Score is the harmonic mean of Precision and Recall, and provides a notion of how
precise the classifier is. A high F-Score value indicates that the model performs better in
positive cases. It is calculated as:

F-Score = (2 × Precision × Recall)/(Precision + Recall) (5)

Receiver operating characteristic (ROC) is a plot of the rate of true positives (Recall)
versus the rate of false positives (Specificity). This graph characterizes the ability of a CNN
to identify positive cases as positive, and negative cases as negative. Meanwhile, the area
under the ROC curve (AUC) is the probability that a randomly chosen pair of positive and
negative cases will be classified correctly.

2.6.2. Performance Metrics for MLR Evaluation

The following metrics were used to evaluate the performance of the MLR, whose task
is to estimate the correct measured value.

The coefficient of determination (R2) is a statistical measure of the goodness of fit or
reliability of the model according to the data. This coefficient determines the quality of the
model to replicate the results. The values of R2 are between 0 and 1. Zero implies that there
is no linear relationship, and a value of one means that there is a perfect linear relationship.
The coefficient of determination is calculated as:

R2 = 1 − ∑n
i=1(y_predictedi − y_mean)
∑n

i=1(y_truei − y_mean)
(6)

where y_predicted is defined as the predicted value, y_true as the true value, and y_mean as
the average of the y data.

Mean absolute error (MAE) is evaluation metric used in regression models. It is
the mean of the difference between the original values (y_true) and the predicted values
(y_predicted). Mathematically, it is described as:

MAE =
∑N

i=1 abs(y_truei − y_predictedi)

N
(7)

Mean square error (MSE) is defined as the difference between the original values and
the predicted values, and squared by the mean difference; the higher this value, the worse
the model. Mathematically, it is represented as:

MSE =
∑N

i=1(y_truei − y_predictedi)
2

N
. (8)
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3. Results and Discussion

This section shows the results of the evaluation of CNN’s performance metrics. The
CNN model was independently trained four times; in each training we used a color
training dataset (white, red, green, and blue datasets). In addition, the efficiency of the
MLR was evaluated to estimate the TSS and turbidity values. The validation dataset that
was used consisted of nine classes for each color with 100 images in each class. For the
CNN evaluation, a confusion matrix was implemented in which the rows are related to the
true labels and the columns to the labels predicted by the CNN. Diagonal cells are linked
to observations that are correctly classified. A perfect classification is reached when each
space of the diagonal elements counts 100. The confusion matrix obtained at the end of
the training process for the four color datasets was the same for fish feed and paprika (no
extra classes) and is shown in Figure 8. If we visualize the extra classes in the confusion
matrix, the diagonal also has 100 elements. The success of this classification may be due
both to the size of the dataset (which is relatively large) and to the lack of complexity of the
classification objects. In addition, since the MLR evaluation metrics had a percentage of
error, we can guarantee that the CNN did not memorize the dataset and was not overfitted.
The trained CNN for each color dataset reached a maximum score on its performance
evaluation metrics for accuracy, precision, recall, F-score, and ROC (see Figure 9). The
performance obtained for the trained CNN for each color dataset is shown in Table 3.

Figure 8. Confusion matrix reached for all colors.

Although the trained CNN achieved the same high score on the CNN performance
metrics for each color dataset, it should be noted that the training time was different for each
color dataset. The best training time was reached using the white light dataset. On the other
hand, the worst training time was obtained using the green dataset. The difference between
the CNNs trained with the white and green databases was 266% in training time. The CNN
trained with the red dataset was the second-best model, which reached the maximum score
in almost double the amount of time in comparison to the white one. These differences
could be attributed to the fact that the CNN creates individual feature maps for each RGB
color channel [39]. Therefore, the white color, which is the combination of the three color
channels, could generate more detailed feature maps using the three color channels, which
could allow the CNN to classify all classes more effectively. Training time is a parameter
that gives us information about which color dataset is best categorized by the CNN. Once
the CNN has been trained, when entering a new image, it calculates its TSS and turbidity
values in fractions of a second. The accuracy and loss curves in the training process are
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shown in Figure 10. It is easy to see that the blue classifier (CNN model trained with the
blue dataset) was the first to achieve a high accuracy score; however, its training process
started with a low accuracy value of 42% in its first epoch, and only reached 100% accuracy
at the 15th epoch. Another important aspect concerns the green classifier, which started
with the lowest accuracy score of 12%, and reached a high accuracy value at the 12th epoch,
but continued its training process with some fluctuations. The red classifier started with a
low accuracy value of 45% in its first epoch, and reached 100% accuracy at the 12th epoch.
Meanwhile, the white classifier obtained an accuracy value of 90% in its first epoch, and
obtained an accuracy of 100% in its seventh one.

Figure 9. ROC curve obtained in the CNN performance evaluation (all colors). Note: all classes
overlap in the horizontal line.

Table 3. Performance measures of the CNN as classifier for each color dataset.

Metrics White Red Blue Green

Accuracy 1.00 1.00 1.00 1.00
Precision 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00
F-Score 1.00 1.00 1.00 1.00

Fish Feed training time (min) 65.38 102.88 156.53 174.11
Paprika training time (min) 162.49 200.58 232.62 236.08

Figure 10. (a) Classifier training accuracy for each validation color dataset. (b) Loss for each validation
color dataset.

Differences between RGB colors in terms of accuracy and loss curves can be related
to the spectral characteristics of the light. In particular, the sample was a brown color for
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fish feed, whose spectrum has more red-light content, and then the red image may have
more information, which may improve the red channel analysis. Regarding the green and
blue channels, the wavelength peak of green LED illumination is about 40 nm displaced
from the peak wavelength of the green pixel responsivity of the CMOS camera, while the
wavelength peak of the blue LED lamp is about 10 nm displaced. This spectral mismatch
may reduce the information of the green channel in comparison with blue and red channels.
This is similar for paprika samples whose spectrum has more red-light content.

MLR performance measures were calculated and the results obtained for the different
color datasets are shown in Table 4. When looking at the results in Table 4, it is observed
that the MLR for the white dataset had the highest value of the coefficient of determination
R2, and furthermore, the highest model quality to replicate the results. In addition, the
MLR with the white dataset had the lowest MAE and MSE values. Therefore, the best
MLR performance for the estimation task was performed with the white dataset, unlike the
green illuminated samples, which had the worst MLR performance. The study was mainly
focused on fish feed and, to validate our results, paprika was tested. For both samples,
the CNN + MLR have the performance listed in Table 4. The liquid samples created in
this research have a TSS range of 0–800 mgL−1. The TSS values, estimated by both the
CNN + MLR, are shown in Table 5 for the different color datasets.

Table 4. MLR performance metrics for each color dataset for the fish feed and paprika samples.

Metrics Sample White Red Blue Green Sample White Red Blue Green

R2 0.991 0.983 0.958 0.913 0.999 0.991 0.997 0.984
MAE 0.016 0.021 0.035 0.052 0.006 0.016 0.009 0.030
MSE 0.0004 0.0009 0.0022 0.0045 0.0002 0.0009 0.0004 0.0004

Table 5. Mean values ± standard deviation of the TSS estimated by the CNN + MLR for each color
dataset for the fish feed and paprika samples.

Samples Classes
Colors

White Red Blue Green

0 0.019 ± 0.024 0.021 ± 0.002 0.021 ± 0.035 0.083 ± 0.102
1 0.109 ± 0.013 0.117 ± 0.026 0.118 ± 0.031 0.120 ± 0.056
2 0.189 ± 0.014 0.203 ± 0.016 0.215 ± 0.041 0.215 ± 0.019
3 0.296 ± 0.017 0.303 ± 0.016 0.310 ± 0.036 0.262 ± 0.020
4 0.396 ± 0.020 0.397 ± 0.033 0.399 ± 0.061 0.319 ± 0.043
5 0.494 ± 0.036 0.499 ± 0.052 0.496 ± 0.039 0.512 ± 0.041
6 0.592 ± 0.015 0.592 ± 0.035 0.590 ± 0.063 0.549 ± 0.065
7 0.705 ± 0.014 0.713 ± 0.023 0.685 ± 0.050 0.693 ± 0.054
8 0.809 ± 0.013 0.778 ± 0.022 0.785 ± 0.069 0.848 ± 0.010

0 0.000 ± 0.013 0.000 ± 0.019 0.000 ± 0.043 0.000 ± 0.119
1/2 0.002 ± 0.012 0.005 ± 0.030 0.004 ± 0.019 0.005 ± 0.027
3/4 0.007 ± 0.015 0.006 ± 0.019 0.004 ± 0.019 0.015 ± 0.020
1 0.102 ± 0.011 0.103 ± 0.025 0.091 ± 0.040 0.113 ± 0.107
2 0.199 ± 0.021 0.202 ± 0.019 0.195 ± 0.045 0.183 ± 0.024
3 0.291 ± 0.019 0.303 ± 0.027 0.298 ± 0.060 0.267 ± 0.027
4 0.390 ± 0.010 0.366 ± 0.045 0.426 ± 0.041 0.324 ± 0.049
5 0.496 ± 0.011 0.459 ± 0.032 0.494 ± 0.038 0.468 ± 0.041
6 0.603 ± 0.015 0.600 ± 0.055 0.612 ± 0.058 0.584 ± 0.060
7 0.689 ± 0.020 0.682 ± 0.030 0.694 ± 0.045 0.722 ± 0.049
8 0.789 ± 0.016 0.805 ± 0.020 0.799 ± 0.058 0.776 ± 0.035

Performance metrics shown in Tables 4 and 5 indicate that the best light illumination
for the proposed method was white color for the fish feed sample. This is because the
white color showed an error of 2.53% compared to 3.16% for red, 4.16% for blue, and
9.57% for green. The proposed method with the white dataset had an operational range
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of 0 to 0.8 gL−1 and high goodness of fit (R2 = 0.99). Therefore, the method with the
white dataset obtained the lowest error of ±2.53% and a general standard deviation of
±0.018, which implies an accuracy of 97.46%. These errors are the measurement errors
(observational errors), which were calculated by using the values of the reference samples
listed in the Table 1 (taken as the true values). In general, the results indicate that the
measuring precision is reasonably good for the fish feed sample. However, the two smaller
concentrations (Classes 0 and 1) had lower precisions. To improve this problem and test
repeatability, we repeated and expanded the measurement with a different sample, paprika,
and a smartphone with a different operating system (iPhone 6, IOS system).

In order to improve and validate our results, we analyzed a set of liquid samples
made with paprika. This additional set of samples incorporated two new classes (1/2 and
3/4) into the CNN training process, which significantly reduced the measuring error of
classes 0 and 1. Additionally, Table 5 shows TSS values for the paprika samples with each
color illumination dataset. In view of the training of the new classes, the CNN + MLR
improved its accuracy to 98.2400% for the TSS values with the white dataset.

It should be highlighted that between TSS and turbidity there is a correlation due to
the coefficient of proportionality that creates a linear regression between them. This coeffi-
cient of proportionality between TSS and turbidity depends on the geometric and optical
properties of the suspended solids (i.e., size, shape, refraction index, mass density) [40–42].
In other words, the samples of fish feed and paprika have the same concentration of
TSS, but have different concentrations of turbidity since they have a different coefficient
of proportionality.

In order to estimate the turbidity values in the liquid samples, the system was trained
and validated using reference values measured with another instrument. These turbidity
reference values were measured with a HACH DR900 colorimeter, within the operating
range 0–263 NTU, and are shown in Table 6. The reference measurements were replicated six
times to obtain the standard deviation of the device. Note that when making measurements
near 200 NTU with the HACH DR900, the standard deviations increased, due to it being
adjusted with a calibration curve using the reading obtained with the 200 NTU formazin
standard. Additionally, according to the user manual, the instrument error is ±21 NTU [43].
Table 6 shows the TSS and turbidity reference values for the fish feed and paprika samples.
The turbidity values estimated by our method are shown in Table 7 for the different color
datasets. The white dataset showed the lowest standard deviation values among all color
datasets. It had a maximum standard deviation of ±13.68 NTU for the fifth class and, in
turn, had a lower standard deviation than the instrument used as reference. In addition, for
the fish feed samples, the white color presented an error of 9.84% compared to 11.64% for
red, 12.55% for blue, and 42.50% for green. Therefore, the 0–263 NTU range is appropriate
for aquatic environments, as the safe turbidity level for aquatic life should not exceed
25 NTU [44]. For the turbidity measurement, the standard deviation in our proposed
method was ±6.98 NTU and an accuracy of 90.16% for the white dataset, which was the
best color dataset for the fish feed samples. Additionally, Table 7 shows the turbidity values
estimated by our method for paprika samples, and it can be noted that by training the new
classes, the CNN + MLR improved its accuracy to 97.20% for turbidity values using the
white dataset. In order to test our method, eight new samples with paprika were prepared
with fractional concentrations of TSS. To validate the proposed method, these samples were
estimated without training the CNN or the MLR for these TSS values. The TSS values
estimated by the CNN + MLR are shown in Table 8, with an accuracy of 96.88% for the
white dataset. The turbidity values estimated by the proposed method are shown in Table 9,
with an accuracy of 96.14% for the white dataset. The CNN + MLR were validated for extra
concentration samples.
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Table 6. Turbidity samples of the reference measured with the HACH DR900 for each TSS of the fish
feed and paprika samples. Turbidity samples are shown as mean data ± standard deviation.

Samples Classes TSS (gL−1)
Turbidity

(NTU) Samples TSS (gL−1)
Turbidity

(NTU)

0 0.000 0 ± 0.55 0.000 0 ± 0.48
1/2 - - 0.002 2 ± 2.45
3/4 - - 0.007 3 ± 3.69
1 0.100 38 ± 2.61 0.100 27 ± 5.21
2 0.200 77 ± 7.06 0.200 61 ± 2.87
3 0.300 95 ± 13.62 0.300 90 ± 4.95
4 0.400 132 ± 12.37 0.400 123 ± 4.75
5 0.500 168 ± 12.67 0.500 145 ± 7.71
6 0.600 189 ± 22.66 0.600 170 ± 4.92
7 0.700 245 ± 21.65 0.700 248 ± 2.39
8 0.800 263 ± 23.73 0.800 306 ± 3.87

Table 7. Turbidity measured with the proposed method. It shows mean values ± standard devi-
ation of the turbidity estimated by the CNN + MLR for each color dataset for the fish feed and
paprika samples.

Samples Classes
Colors

White Red Blue Green

0 7.14 ± 9.00 8.09 ± 6.08 8.05 ± 13.41 31.43 ± 38.65
1 41.39 ± 4.94 44.70 ± 10.03 44.98 ± 11.66 45.68 ± 21.28
2 75.05 ± 5.36 77.54 ± 6.19 79.72 ± 15.58 79.74 ± 7.11
3 94.26 ± 6.38 96.22 ± 5.96 98.81 ± 13.76 88.21 ± 7.49
4 130.48 ± 7.71 130.89 ± 12.65 131.78 ± 23.06 102.07 ± 16.30
5 165.91 ± 13.68 167.89 ± 19.61 166.52 ± 14.70 170.52 ± 15.58
6 187.24 ± 5.77 187.32 ± 0.04 187.07 ± 23.83 178.35 ± 24.55
7 245.97 ± 5.24 247.30 ± 8.81 236.60 ± 19.04 241.14 ± 20.56
8 266.25 ± 4.79 259.11 ± 8.39 260.34 ± 26.07 278.65 ± 3.99

0 0.09 ± 3.56 0.36 ± 5.10 0.18 ± 11.69 0.27 ± 33.43
1/2 1.91 ± 2.00 2.85 ± 5.10 1.16 ± 11.69 2.65 ± 33.43
3/4 2.95 ± 2.15 1.67 ± 5.40 1.16 ± 15.66 5.17 ± 9.56
1 27.54 ± 2.29 27.92 ± 6.69 24.70 ± 10.88 31.49 ± 29.31
2 60.55 ± 2.99 61.46 ± 5.02 59.33 ± 12.15 55.15 ± 6.48
3 87.44 ± 5.07 91.06 ± 7.32 89.45 ± 16.23 80.52 ± 7.18
4 119.70 ± 2.78 111.68 ± 12.23 128.61 ± 10.99 97.92 ± 13.20
5 144.03 ± 2.89 136.05 ± 8.53 143.68 ± 10.39 137.89 ± 10.96
6 172.10 ± 3.10 170.16 ± 14.87 179.05 ± 15.66 166.03 ± 16.15
7 239.34 ± 2.91 234.12 ± 8.15 243.01 ± 12.15 260.59 ± 13.20
8 299.44 ± 3.37 307.24 ± 5.40 305.88 ± 15.66 292.25 ± 9.56

Table 8. The estimated TSS of the extra concentration samples with the proposed method. It shows
mean values ± standard deviation of the TSS estimated by the CNN and the MLR for each color
dataset for paprika samples.

Samples TSS (gL−1)
Colors

White Red Blue Green

0.05 0.05 ± 0.011 0.02 ± 0.011 0.004 ± 0.051 0.013 ± 0.026
0.15 0.14 ± 0.018 0.11 ± 0.015 0.08 ± 0.049 0.14 ± 0.056
0.25 0.24 ± 0.016 0.20 ± 0.021 0.17 ± 0.049 0.16 ± 0.050
0.35 0.33 ± 0.017 0.30 ± 0.018 0.29 ± 0.058 0.26 ± 0.049
0.45 0.44 ± 0.011 0.36 ± 0.040 0.42 ± 0.039 0.32 ± 0.040
0.55 0.54 ± 0.015 0.45 ± 0.030 0.49 ± 0.040 0.46 ± 0.040
0.65 0.63 ± 0.018 0.60 ± 0.040 0.61 ± 0.050 0.58 ± 0.048
0.75 0.72 ± 0.019 0.80 ± 0.029 0.80 ± 0.046 0.77 ± 0.040
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Table 9. The estimated turbidity of the extra concentration samples with the proposed method. It
shows mean values ± standard deviation of the turbidity estimated by the CNN and the MLR for
each color dataset for paprika samples.

Samples Turbidity
(NTU)

Colors

White Red Blue Green

12 12.69 ± 2.97 6.31 ± 2.94 1.16 ± 13.63 3.56 ± 6.88
42 39.90 ± 4.83 31.48 ± 3.99 21.89 ± 13.20 41.51 ± 15.12
73 71.55 ± 4.32 61.46 ± 5.56 52.53 ± 13.25 48.35 ± 13.20

105 99.43 ± 4.59 91.05 ± 4.88 89.44 ± 15.68 80.51 ± 13.12
134 132.30 ± 2.91 111.68 ± 10.82 128.61 ± 10.74 97.92 ± 10.77
156 153.95 ± 4.05 136.04 ± 8.20 143.68 ± 10.80 137.89 ± 10.69
207 199.26 ± 4.91 170.15 ± 10.93 179.04 ± 13.47 166.02 ± 12.96
272 254.33 ± 5.05 307.24 ± 8.04 305.88 ± 12.28 292.25 ± 10.90

The results showed that the proposed method can be improved by including more
classes with small concentrations in the CNN training. This can be noticed by comparing the
test results for the fish feed and paprika samples. For example, with white light illumination,
the measurement error is reduced from 2.53% to 1.76% for TSS estimation, and from 9.84%
to 2.79% for turbidity estimation. These results provide evidence for the effectiveness of
the proposed method, and indicate high resolution and accuracy. Nevertheless, despite
the high performance this method offers, its associated limitations should be recognized.
Among these are the type of samples that can be measured. The proposed method was
tested with commercial fish feed and paprika as suspended solids, which do not represent
all types of suspended solids. There are other aquatic environments such as river water,
domestic and industrial wastewater, drinking water, among others, where the size of the
particles may be smaller than that of the fish feed or paprika mass. However, as CNN
analyzes the images in depth, with the high-level convolutional layers calculating all the
differences between the images, their potential for application to other types of suspended
solids is promising. This is because the CNN image analysis not only differentiates particle
distribution, but also contrast, brightness, and color. This means that further research
should explore this issue, considering other types of samples such as river water, domestic
and industrial wastewater, and potable water, among others. In addition, this research
is expected to become a prototype, in which we would have an encapsulation box with
LED lighting included. In the box, we could place the sample and the smartphone in
certain fixed positions and perform the measurement. In a future work, it could be tested
if the LED flash (white light) of the smartphone could be used because the white dataset
presented the best performance.

4. Conclusions

In this paper, a novel method was proposed to estimate TSS and turbidity values
in liquid samples using a CNN and an MLR together with a smartphone. The main
conclusions of the study follow:

• The CNN and the MLR developed can estimate the TSS and turbidity values using
images recorded by a common smartphone (Android and IOS systems).

• The proposed method is capable of estimating concentration values for unknown
classes (validated with samples of unknown concentrations for the CNN).

• The proposed method is capable of estimating TSS and turbidity measurements in
homogeneous material samples with different particle size, which are in motion or sus-
pended. The use of a mixer is to keep all the particles suspended, for preventing them
from settling, and to allow for the suspended particles to be recorded by the camera.

• This method of measuring turbidity and TSS is inexpensive and reduces human
intervention. The results show the effectiveness of the proposed method, indicating
high accuracy of 98.24% and 97.20% for TSS and turbidity measurements, respectively,
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which is high compared to measurements made with commercial turbidimeters, and
prevailing algorithms of machine learning.

• Once the CNN model is trained and the MLR is fitted, the algorithm can be used on
a smartphone or other devices with a lower cost Nvidia GPU. In this research, the
execution of the TSS and turbidity estimation algorithm was validated on a smartphone
(Huawei Nova 3) using “Pydroid 3”, and the same results were obtained according to
the Google Colaboratory service.

• As further work, a range extension (adding larger TSS values) and an expansion of
the training dataset (more images) could be performed to achieve better method per-
formance. Moreover, further research should also investigate heterogeneous material
samples such as river water, domestic and industrial wastewater, potable water, and
different sediments on the seabed, among others. In addition, it is expected that this
research study will be helpful for developing a device for actual applications; for
example, a mobile device where both the camera and the liquid sample are encapsu-
lated, thus avoiding influence on the measurements by external conditions of light
and background.
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