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Abstract: This paper proposes a numerical scheme for solving linear and nonlinear differential equa-
tions obtained from the mathematical modeling of a flow phenomenon. The scheme is constructed
on two grid points. It is a two-stage, or predictor–corrector type, scheme whose first stage (the
predictor stage) comprises a forward Euler scheme. The stability region of the proposed scheme is
larger than that of the first-order forward Euler scheme. A problem is constructed, comprised of a
mathematical model for the Darcy–Forchheimer flow of micropolar fluid over a stretching sheet, and
is modified using partial differential equations (PDEs) by incorporating the effects of homogeneous–
heterogeneous reactions. A set of PDEs is further reduced into ordinary differential equations (ODEs)
by several transformations and is solved using the proposed numerical scheme. By comparing the
results obtained using the proposed scheme with those obtained using the existing forward Euler
scheme, it can be observed that the proposed scheme achieved a smaller absolute error. The obtained
results show that the angular velocity profile displayed dual behavior according to increases in the
values of the microrotation and coupling constant parameters. As part of our research, we conducted
a comparison with other existing schemes. The findings of this study can serve as a helpful guide for
future investigations into fluid flow in closed-off industrial settings.

Keywords: numerical scheme; stability; micropolar fluid; homogeneous–heterogeneous reactions;
absolute error

1. Introduction

Fundamental fluid mechanics is a branch of mathematics that is founded on the
law of convection and involves nonlinear models. Constitutive relations can efficiently
describe such fluids’ external and rheological properties, which the traditional Navier–
Stokes dynamic model cannot. Non-Newtonian materials follow the law of convection,
whereas constitutive relations are referred to as microstructural features. The maintenance
of translation and rotatory motion by micropolar fluids enables them to be classified under
the umbrella of non-Newtonian fluid dynamics. Additionally, such fluids can produce
stress movements, body coupling, and effective spin inertia.

Researchers in the fields of engineering and geophysics study the microscopic prop-
erties of a wide range of fluids, including those found in air conditioners, fuel tanks,
agricultural fields, fiber insulation, ceramic processing, grain storage devices, and coal com-
bustors. Nowadays, researchers converge their efforts and combine these disciplines with
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fluid dynamics to explore the phenomenon of the heat and solute transport of micropolar
fluid flow through a perforated medium.

Eringen [1] formulated the micropolar fluid theory, encompassing animal blood,
polymeric fluids, lubricants, and other liquid crystals, to explain the nature of fluids,
opposing Newton’s viscosity law. Natural motion, body-couple stress, and the microscopic
effects of micropolar fluid constituents were incorporated into Eringen’s theory in the form
of an abstract. The versatility of these fluids is a point of fascination in this field, and
nowadays more researchers are incorporating the study of heat and mass flow. Related
developments can be traced in [2].

Lukaszewicz [3] and Eremeyev et al. [4] explicitly addressed this theory’s mathemati-
cal aspects and applications. However, several authors, including Beg et al. [5], Aurangzaib
and Shafie [6], Srinivasacharya and Ramreddy [7], Noor et al. [8], Tripathy et al. [9], Mishra
et al. [10], and Gibanov et al. [11], have reported on its practical aspects in Darcy and
non-Darcy porous media under various circumferences. Nield and Bejan [12] wrote a
comprehensive treatise on the convective heat and mass transport of diverse fluids. This
theory has several applications in engineering, industry, and science, such as collection
devices, material processing, and solar energy. Related details can be reviewed by consult-
ing the references listed in [12]. The radiation effect was well studied in [13], and Rahman
and Sattar [14] presented a hydrodynamic investigation of micropolar fluid flow across
frequently moving plates. Bhargava et al. [15] formulated a nonlinearly stretching sheet
to obtain the numeric solution for Newtonian and non-Newtonian cases. Rashidi and
Erfani [16] proposed a novel method known as DTM–Pade for studying the influence of
thermal radiation on the flow of magneto micropolar fluid over constantly moving plates.
The results of the experiment supported the method applied, which was favorable for
all boundary-layer flows. Ramreddy and Pradeepa [17] studied the convective flow of
micropolar fluids over erect plates using numerical analysis.

Extensive studies on micropolar fluids have been conducted over the last few decades.
The work of Shamshuddin et al. [18] considered these fluids using a diagonally placed
moveable plate to understand the variable physical consequences. Using the convergent
series solution, Hayat et al. [19] established a novel theory of nanofluids to explore the
effect of thermal radiation on the Marangoni convection flow of carbon–water nanoflu-
ids. Ferdows et al. [20] studied various radiative micropolar fluid motion elements in a
non-Darcy perforated medium. Anwar Beg et al. [21] conducted theoretical studies on
non-Newtonian magnetized micropolar gas flow. A cross-examination of the solutions
offered by different methodologies demonstrated their accuracy and yielded a remarkable
correlation. Anathaswamy et al. [22] undertook an analytical investigation of the movement
of micropolar fluids.

Buongiorno [23] focused on thermophoresis and Brownian movement as leading fac-
tors for many slip transport features. Thermophoresis is observable when reactions occur
between nonidentical particles because of their relocation from large molecules due to a
comprehensive temperature slope. Brownian motion is caused by the constant bombard-
ment of particles in the nearby medium by accessible aeriform/liquid molecules. Hayat
et al. [24] conducted a comprehensive study on thermophoresis and Brownian motion,
analytically presenting the accelerated radiative flow of micropolar nanofluid based on
these features. Patel and Singh [25] also investigated Brownian motion and thermophoretic
effects based on a micropolar fluid flowing through a perforated stretching surface. Using
thermophoresis and Brownian moment, Sabir et al. [26] presented a numerical solution for
the flow of a steady micropolar fluid over a stretching plate. The results revealed that the
phenomenon of thermophoresis is responsible for the movement of particles in a medium.

The study of fluid flow mass and heat transfer is only valuable when it considers
the reactive species. Such studies have broad applications in the field of physiological
flows and in industry. If a reaction occurs uniformly through a given phase, it is called
a homogenous reaction. First-order chemical reactions are those whose rates are exactly
proportional to their concentrations. It is worth mentioning that micropolar fluids un-
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der variable conditions possess significant properties, as mentioned by Chamber and
Young [27]. Their research investigated the impact of destructive and generative homoge-
nous first-order chemical reactions in the presence of a flat plate. Khan et al. [28] conducted
a comparative investigation of the consequences of homogeneous–heterogeneous reactions
on Casson fluid. The effect of the activation energy and binary chemical reactions on
Walter-B nanofluid flow at the stagnation point was studied numerically by Khan and
Alzahrani [29]. Under the premise of activation energy, Abbas et al. [30] investigated an
entropy-optimized second-order nanofluid slip flow. Chaudhary and Jha [31] considered
the effects of chemical reactions in a micropolar fluid model to predict heat transfer in a
vertical plate under the assumption of a slip flow regime.

A study of the natural convection flow of a non-Newtonian micropolar fluid over a
permeable cone was presented in [32]. The effects of homogeneous–heterogeneous reac-
tions were also considered. The implicit finite difference method was adopted to solve the
reduced set of partial differential equations. The results showed that the concentration
profile decreased as the homogeneous and heterogeneous reactions increased incremen-
tally. The problem of thermoelastic micropolar half-space with a traction-free surface was
addressed in [33] with a known conductive temperature at the medium surface. Some of
the results were displayed in graphs, and the high-order temporal derivative and effect
of the discrepancy indicator were examined. An investigation of the Darcy–Forchheimer
flow of Reiner–Philoppoff nanofluid over a stretching sheet was conducted in [34] under
the influence of a heat source/sink. The reduced set of ordinary differential equations
was solved by employing the Matlab solver bvp4c. It was concluded that the wall heat
transfer increased as the values of the thermophoresis parameter and Schmidt number grew.
The effect of the nonlinear thermal radiation and melting phenomena of Cross nanofluid
flow over a cylinder was investigated in [35]. The Matlab solver bvp4c was adopted to
solve the reduced ordinary differential equation. The numerical results revealed that an
increase in the mixed convection parameters enhanced the velocity. The classical Keller
box method was used in [36] to solve a set of differential equations obtained from the flow
of non-Newtonian fluid over a flat, penetrable, porous barrier. From the experimental
results, it was observed that first-grade viscoelastic (FGVNF) nanofluid is a better conductor
than (ZrO2 − EO) FGVNF transmission. The magnetohydrodynamic flow of micropolar
nanofluid with numerous slips and radiation effects was studied in [37], and the influence
of the material and buoyancy parameters was examined. The effects of heat generation and
chemical reactions on the MHD flow of Williamson nanofluid were discussed in [38]. It was
concluded that the Nusselt number escalated and the skin friction coefficient decreased
with increasing chemical reaction parameter values. A study of magnetohydrodynamic
thin-film nanofluid sprayed on a stretching cylinder was presented in [39]. Water-based
nanofluids were investigated considering the effects of the thin film. The study also dis-
cussed the spray rate, temperature, pressure distribution, and velocity profile features,
which were displayed in graphs. A study of the heat and mass transfer of ethylene-glycol-
based hybrid nanofluid considering the effects of homogeneous–heterogeneous chemical
reactions was presented in [40]. An analytical method referred to as the homotopy analysis
method (HAM) was employed to solve nondimensional differential equations. It was found
that the concentration of cubic autocatalytic chemical reactions and the tangential velocity
decreased and the heat transfer escalated as the Reynolds number values increased. More
work on the fluid flow over plate can be seen in [41–43].

Numerous numerical methods, both explicit and implicit, can be considered to handle
fluid dynamics problems. Explicit methods may converge faster than implicit methods,
but implicit methods provide a larger stability region. Another advantage of using explicit
schemes is that they do not require the linearization of the differential equation when a
nonlinear differential equation is being solved. During linearization, some accuracy is
lost because only the linear part(s) of the differential equation is/are considered. This
study proposes a numerical scheme for solving linear and nonlinear differential equations.
According to the stability analysis of the scheme, it provides a larger stability region than
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the existing forward Euler scheme. Our study also comprises a mathematical model for
the heat transfer of the chemically reactive Darcy–Forchheimer flow of non-Newtonian
micropolar fluid over a stretching sheet. The considered fluid is incompressible, laminar,
steady, and two-dimensional. The effect of the convective boundary condition is also
considered in the flow model. A numerical scheme is proposed to solve the reduced ODEs
obtained from the mathematical model of the flow problems. The model’s differential
equations are converted into a system of first-order differential equations and solved by the
proposed scheme in combination with the shooting approach. The shooting approach was
included because the proposed scheme applies only to first-order differential equations.

2. Proposed Numerical Scheme

The proposed scheme is constructed on two grid points, and both stages are explicit.
The first stage utilizes only the information of the first derivative of the dependent variable.
The second stage is based on the information of the first and second derivatives of the
dependent variable. The scheme can also be called a predictor–corrector type scheme,
in which the predictor stage is the forward Euler method. To initialize the construction
procedure of the proposed scheme, consider the differential equation

y′ = f (y), (1)

subject to the initial condition
y(0) = A1, (2)

where A1 is a constant.
To construct the scheme for solving Equations (1) and (2), consider the following

predictor stage
yi = yi+1 + hy′i−1 (3)

where h is the step length. The second stage of the scheme is expressed as:

yi = yi−1 + h
{

a1yi
′ + b1y′i−1

}
+ h

2
{

c1yi
′′ + d1y′′i−1

}
(4)

where a1, b1, c1, and d1 are the unknowns, which will be determined later. To find the values
of the unknowns a1, b1, c1, and d1, consider the Taylor series expansions for yi−1, y′i−1, and
y′′i−1 as

yi−1 = yi − hy′i +
h

2

2
y′′i −

h
3

6
y′′′i +

h
4

24
yiv

i + O
(

h
5
)

(5)

y′i−1 = y′i − hy′′i +
h

2

2
y′′′i +

h
3

6
yiv

i + O
(

h
4
)

(6)

y′′i−1 = y′′i − hy′′′i +
h

2

2
yiv

i + O
(

h
3
)

(7)

By substituting Equation (3) and Equations (5)–(7) into Equation (4), the following is
obtained:

yi = yi − hy′i +
h

2

2
y′′i −

h
3

6
y′′′i +

h
4

24
yiv

i + O
(

h
5
)
+ h


a1y′i−1 + a1hy′′i−1 + b1y′i−

b1hy′′i + b1
h

2

2 y′′′i +

b1
h

3

6 yiv
i + O

(
h

4
)

+ h
2
{

c1y′′i−1 + c1hy′′′i−1

+d1y′′i − d1hy′′′i + O
(

h
2
)} (8)

Comparing the coefficients of yi, hy′i, h
2
y′′i , h

3
y′′′i , and h

4
yiv

i on both sides of Equation
(8) yields

0 = −1 + a1 + b1 (9)
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0 =
1
2
− b1 + c1 + d1 (10)

0 = −1
6
− a1

2
+

b1

2
− d1 (11)

0 = − 1
24

+
a1

3
− c1

2
(12)

Solving Equations (9)–(12) determines the value of a1, b1, c1, and d1, as follows:

a1 =
3
8

, b1 =
5
8

, c1 =
1
6

, d1 = − 1
24

(13)

Therefore, Equations (3) and (4) represent the two stages of the proposed scheme for
solving Equation (1). In the next section, the stability of the scheme for a linear differential
equation is evaluated.

Stability Analysis
To identify the stability region of the proposed technique for an ordinary differential

equation, consider a linear differential equation of the form

y′ = ky (14)

The first stage of the proposed scheme for Equation (14) can be expressed as

yi = yi−1 + hy′i−1 = yi−1 + hkyi−1 (Using Equation (14)) (15)

yi = yi−1

(
1 + hk

)
(16)

The second stage of the proposed scheme for Equation (14) can be expressed as

yi = yi−1 + h
{

a1y′i + b1y′i−1
}
+ h

2{
c1y′′i + d1y′′i

}
(17)

yi = yi−1 + h
{

a1kyi−1

(
1 + hk

)
+ b1kyi−1

}
+ h

2
{

c1k2yi−1

(
1 + hk

)
+ d1k2yi−1

}
(18)

yi =
{

1 + a1z(1 + z) + b1z + c1z2(1 + z) + d1z2
}

yi−1 (19)

where z = hk.
Thus, the scheme is stable if it satisfies∣∣∣1 + (a1 + b1)z + (a1 + c1 + d1)z2 + c1z3

∣∣∣ < 1 (20)

The values of the unknown parameters a1, b1, c1, and d1 are determined from (13).
The stability region of the proposed scheme is presented in Figure 1.
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Consistency of the Scheme
The consistency of the proposed scheme can be verified using Equation (14). To achieve

this, consider Equation (19), expand yi using the Taylor series expansion, and rewrite the
resulting equation in the form

yi−1 − hy′i−1 +
h

2

2
y′′i−1 + O

(
h3
)
= yi−1 + h

{
a1k
(

1 + kh
)
+ b1k

}
yi−1 + h

2
{

c1k2
(

1 + hk
)
+ d1k2

}
yi−1 (21)

Simplifying Equation (21) yields

y′i−1 = kyi−1 + O
(

h
)

(22)

Applying the consistency condition h→ 0 to Equation (22) reduces it to an original
differential Equation (14) evaluated at the “(i− 1)th” grid point.

3. Problem Formulation

Consider the laminar, steady, two-dimensional incompressible flow of micropolar
fluid over a sheet. Let the sheet be stretched at the stretching velocity Uw. The x-axis for
this phenomenon lies along the sheet, and the y-axis lies perpendicular to the sheet. The
flow is generated by the sudden acceleration of the sheet towards the positive x-axis. Let
T be the temperature of the fluid. The mathematical model also comprises the effects of
homogeneous–heterogeneous reactions, which are expressed as

A + 2B→ 3B , rate = kcab2, (23)

while the equation of the first isothermal reaction is

A→ B, rate = ksa, (24)

where a and b, respectively, denote the concentration of chemical products A and B.
Figure 2 shows the geometry of this flow phenomenon. When combined with the Darcy–
Forchhiemer model, following [13,43], the governing equations for the flow phenomena
can be expressed as follows:

∂u
∂x

+
∂v
∂y

= 0 (25)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + K1

(
∂σ

∂y

)
− ν

K∗
u− Fu2 (26)

G1
∂2σ

∂y2 − 2σ− ∂u
∂y

= 0 (27)

u
∂T
∂x

+ v
∂T
∂x

= α
∂2T
∂y2 −

1
ρCp

∂qr

∂y
+ Q0(T − Tw) (28)

u
∂a
∂x

+ v
∂a
∂y

= DA
∂2a
∂y2 − kcab2 (29)

u
∂b
∂x

+ v
∂b
∂y

= DB
∂2b
∂y2 + kcab2 (30)

subject to the boundary conditions

u = Uw = ax, v = 0,−k ∂T
∂y = h̃(Tw − T), DA

∂a
∂y = ksa, DB

∂b
∂y = −ksa at y = 0

u→ 0, T → T∞, a→ a0, b→ 0 at y→ ∞

}
, (31)
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By using the linearized Rosseland approximation, the radiative heat flux is expressed
as

qr = −
4σ∗T3

∞
3k∗

∂T
∂y

(32)

where σ∗ denotes the Stefan–Boltzmann constant, and k∗ denotes the mean absorption
coefficient. Consider now the following transformation:

u = ax f ′, v = −
√

aν f , θ = T−T∞
Tw−T∞

, σ =
(

a3

ν

) 1
2 xH

h = b
a0

, g = a
a0

, η =
√

a
ν y

 (33)

By substituting Transformation (33) into Equations (25)–(31), the following are ob-
tained:

f ′2 − f f ′′ = f ′′′ + Kb H′ − λ f ′ − Fr f ′2 (34)

GH′′ − 2H − f ′′ = 0 (35)

− f θ′ =
1
Pr

θ′′ +
4
3

Rd
Pr

θ′′ + Qθ (36)

− Sc f g′ = g′′ − ScKgh2 (37)

− Sc f h′ = δh′′ + ScKgh2 (38)

subject to the dimensionless boundary conditions

f = 0, f ′ = 1, H = 0, θ′ = −Bi(1− θ), K2g′(0) = g(0), δK2h′(0) = −g(0)

f ′ → 0, θ → 0, H → 0, g→ 1, h→ 0

}
(39)

Kb = K1
ν , λ = ν

aK∗ , Fr =
cb

K∗
1
2

, G = G1a
ν

Rd = 4σ∗T3
∞

k∗k , Pr =
ν
α , Sc =

ν
DA

, K =
kca2

0
a

K2 =
√

a
ν

DA
ks

.δ = DB
DA

, Bi = h
k

√
ν
a

 (40)

The set of differential Equations (34)–(38) using the boundary conditions described
in (39) are solved by employing the proposed explicit numerical scheme with a shooting
strategy. Since the proposed scheme can only be employed on first-order differential
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equations, second- and third-order differential equations must be reduced into a system of
first-order differential equations. Equations (34)–(38) are reduced to the system of first-order
differential equations as follows:

f = f1, f (0) = 0 (41)

f ′1 = f2, f1(0) = 1 (42)

f ′2 = f 2
1 − f f2 − Kb H1 + λ f1 + Fr f 2

1 , f2(0) = x1 (43)

H′ = H1. H(0) = 0 (44)

H1(0) = x2 (45)

θ′ = θ1, θ(0) = x3 (46)

θ′1 =
3Pr

3 + 4Rd
(− f θ1 −Qθ), θ1(0) = x4 (47)

g′ = g1, g(0) = x5 (48)

g′1 = −Sc f g1 + ScKgh2
1, g1(0) = x6 (49)

h′ = h1, h(0) = x7 (50)

h′1 =
1
δ

(
−Sc f h1 − ScKgh2

)
, h1(0) = x8 (51)

where x′js for j = 1, 2, . . . , 8 are unknown initial conditions.
The differential equations obtained by applying the proposed scheme to Equations (41)–(51)

are expressed as:
f i = fi−1 + h f1,i−1 (52)

f 1,i = f1,i−1 + h f2,i−1 (53)

Hi = Hi−1 + hH1,i−1 (54)

θi = θi−1 + hθ1,i−1 (55)

gi = gi−1 + hg1,i−1 (56)

h̆i = hi−1 + hh1,i−1 (57)

fi = fi−1 + h
(

a1 f 1,i + b1 f1,i−1

)
+ h

2
(

c1 f 2,i + d1 f2,i−1

)
(58)

f1,i = f1,i−1 + h
(

a1 f 2,i + b1 f2,i−1

)
+ h

2
{

c1

(
f

2
1,i − f i f 2,i−

KbH1,i + λ f 1,i + Fr f
2
1,i

)
+ d1

(
( f 2

1,i−1 − fi−1 f2,i−1−
Kb H1,i−1 + λ f1,i−1 + Fr f 2

1,i−1)

)}
(59)

f2,i = f2,i−1 + h
{

a1

(
f

2
1,i − f i f 2,i − Kb H1,i + λ f 1,i + Fr f

2
1,i

)
+ b1

(
f 2
1,i−1 − fi−1 f2,i−1 − Kb H1,i−1 + λ f1,i−1 + Fr f 2

1,i−1

)}
+h

2{c1

(
2 f 1,i f 2,i(1 + Fr)− f 1,i f 2,i − f i

(
f

2
1,i − f i f 2,i − Kb H1,i + λ f 1,i + Fr f

2
1,i

)
− Kb

G

(
2Hi + f 2,i

)
+d1

(
2 f1,i−1 f2,i−1(1 + Fr)− f1,i−1 f2,i−1

− fi−1

(
f 2
1,i−1 − fi−1 f2,i−1 − Kb H1,i−1 + λ f1,i−1 + Fr f 2

1,i−1

)
− Kb

G

(
2Hi−1 + f2,i−1

)
+ λ f2,i−1

)
)}

(60)

θi = θi−1 + h
(
a1θ1,i + b1θ1,i−1

)
+ h

2
{

c1

(
3Pr

3 + 4Rd

)(
− f iθ1,i −Qθi

)
+ d1

(
3Pr

3 + 4Rd

)
(− fi−1θ1,i−1 −Qθi−1)

}
(61)
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θ1,i = θ1,i−1 + h
{

a1

(
3Pr

3+4Rd

)(
− f iθ1,i −Qθi

)
+ b1

(
3Pr

3+4Rd

)
(− fi−1θ1,i−1 −Qθi−1)

}
+h

2{c1

((
3Pr

3+4Rd

)(
− f 1,iθ1,i −Qθ1,i

)
+
(

3Pr
3+4Rd

)2(
f

2
i θ1,i + Q f iθi

))
+d1

((
3Pr

3+4Rd

)
(− f1, i−1θ1,i−1 −Qθ1,i−1) +

(
3Pr

3+4Rd

)2(
f 2
i−1θ1,i−1 + Q fi−1θi−1

))
}

(62)

gi = gi−1 + h(
(

a1g1,i + b1g1,i−1

)
+ h

2
{

c1

(
−Sc f ig1,i + ScKgi h̆

2
i

)
+ d1

(
−Sc fi−1g1,i−1 + ScKgi−1h2

i−1

)}
(63)

g1,i = g1,i−1 +h
{

a1

(
−Sc f ig1,i + ScKgi h̆

2
i

)
+ b1

(
−Sc fi−1g1,i−1 + ScKgi−1h2

i−1
)}

+h
2
{

c1

(
−Sc f 1,ig1,i − Sc f i

(
−Sc f ig1,i + ScKgi h̆

2
i

)
+ ScKg1,i h̆

2
i + 2ScKgi h̆i h̆i,i

)
+d1(−Sc f1,i−1g1,i−1 − Sc fi−1

(
−Sc fi−1g1,i−1 + ScKgi−1h2

i−1
)
+ ScKg1,i−1h2

i−1

+2ScKgi−1hi−1h1.i−1)}

(64)

hi = hi−1 + h
(

a1h1,i + b1h1,i−1

)
+ h

2
{

c1

δ

(
−Sc f ih1,i − ScKgih

2
i

)
+

d1

δ

(
−Sc fi−1h1,i−1 − ScKgi−1h2

i−1

)}
(65)

h1,i = h1,i−1 +h
{

a1
δ

(
−Sc f ih1,i − ScKgih

2
i

)
+ b1

δ

(
−Sc fi−1h1,i−1 − ScKgi−1h2

i−1
)}

+h
2
{

c1
δ

(
−Sc f 1,ih1,i − Sc f i

1
δ

(
−Sc f ih1,i − ScKgih

2
i

)
− ScKg1,ih

2
i − 2ScKgihih1,i

)
+ d1

δ

(
−Sc f1,i−1h1,i−1 − Sc fi−1

1
δ

(
−Sc fi−1h1,i−1 − ScKgi−1h2

i−1
)
− ScKg1,i−1h2

i−1

−2ScKgi−1hi−1h1,i−1)}

(66)

First, the step size is chosen for applying the proposed numerical scheme to solve any
differential equation. For this process, the whole one-dimensional domain is divided into
a finite number of grid points. The solution is found at each grid point. The problem’s
domain is infinite, but for computational purposes, a finite domain is considered. Thus,
the boundary condition imposed at infinity is only imposed at a finite number. The
fixed length of each subinterval is considered. To find the convergence of the numerical
scheme, the stability condition must be satisfied, indicating that the proposed scheme
is consistent because it is more than first-order accurate and conditionally stable. Thus,
it is a conditionally convergent scheme. The chosen step size can control the region
of convergence. If the step size is chosen appropriately, the scheme will remain stable,
converging to the true solution.

4. Results and Discussion

The proposed scheme is a two-stage numerical scheme in which the first stage is
the forward Euler method. The second stage comprises the weighted sum of the given
differential equations’ first and second derivatives of the dependent variables. The scheme
is explicit and fourth-order accurate. The stability analysis of the proposed scheme for
solving a linear differential equation demonstrated that it provides a broader stability region
than the forward Euler method. Due to the large stability region and higher accuracy, the
proposed scheme can be implemented for solving problems. The scheme is also consistent,
and the consistency was specifically proven for linear differential equations. Moreover,
Equations (31)–(36) were also solved with the Matlab solver bvp4c, which can solve linear
and nonlinear boundary value problems. The Matlab solver is fourth- or fifth-order accurate.
An initial guess is required to solve a given differential equation using a Matlab solver.
However, the proposed scheme is implemented using a shooting technique, which is a
strategy for solving differential equations when one or more initial condition(s) is/are not
specified. These unknown initial conditions are determined by applying another technique
for solving equations. For this step, the Matlab solver fsolve is used, which requires one
set of initial guesses to start the solution procedure and then updates the initial guesses by
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solving equations obtained by applying given boundary conditions. If a second- or higher-
order boundary value problem is turned into a system of first-order differential equations,
one or more initial conditions will be unknown. Using the shooting strategy, the unknown
initial conditions are determined by applying the given boundary condition(s). Thus, in this
manner, solutions to ordinary differential equations can be found by employing a particular
type of finite difference method that applies only to first-order differential equations.

Figures 3–14 were constructed by employing the proposed scheme for solving
Equations (31)–(36). The discretizations of Equations (37)–(47) by the proposed numerical
scheme with given or assumed initial conditions are provided in Equations (48)–(62). Figures 3
and 4 compare the forward Euler and proposed scheme in terms of the absolute error between
these schemes and the Matlab solver bvp4c. From these figures, it can be concluded that
the proposed scheme is more accurate than the forward Euler scheme, because it produced
the lowest absolute error. Figure 5 shows the impact of porosity parameter λ on the velocity
profile. The velocity profile decreases as the porosity parameter increases because the fluid’s
viscosity rises. Figure 6 shows the influence of the inertia coefficient on the velocity profile.
From Figure 6, it can be observed that the velocity profile decreases as the inertia coefficient
increases, which can be considered a consequence of the elevated drag force that produces
resistance in the flow as the values of the inertia coefficient rise. Figure 7 depicts the velocity
profile according to variations in the coupling parameter. The velocity profile displays dual
behavior. It grows slightly near the plate and decreases as the coupling parameter increases.
This boosted velocity profile is a result of the enhanced viscosity of the fluid due the rising
coupling parameter values. Therefore, the velocity of the flow escalates in that region. Figure 8
shows the impact of the coupling parameter on the angular velocity. The angular velocity
displays dual behavior as the coupling parameter increases. The angular velocity escalates near
the plate and then de-escalates as the coupling parameter rises. The effect of the microrotation
parameter on the angular velocity is depicted in Figure 9, which also displays the dual behavior
of the angular velocity as the values of the microrotation parameter increase. The escalation
of the microrotation parameter leads to an increase in the microrotation constant and a decay
in the kinematic viscosity of the fluid. Since the flow velocity is at its maximum near the plate,
the angular velocity decreases, and the flow velocity decreases away from the plate. Due to
the increasing values of the microrotation constant, the angular velocity escalates in the region
near the edge of the boundary layer. The effect of the Biot number on the temperature profile is
depicted in Figure 10. The temperature profile rises as the Biot number increases. This is the case
when the convective heat transfer rises due to a reduction in the conductive heat transfer, which
is a consequence of the decreasing thermal conductivity of the plate and leads to growth in the
temperature profile. The temperature profile increases as the heat source parameter increases,
which is shown in Figure 11. The rise in the heat source parameter increases the heat flux of the
fluid due to incoming radiation from the heating process that boosts the temperature profile.
The changes in the concentration profiles of species A and B according to variations in the
Schmidt number are shown in Figure 12. The concentration profile of species A grows as the
values of the Schmidt number rise, whereas the concentration profile of species B decreases as
consequence of the reduction in the mass diffusivity. The effect of the homogeneous reaction
parameters on the concentration profiles of species A and B is depicted in Figure 13. The
concentration profile for species A decreases, but the concentration profile for species B grows
as the homogeneous reaction parameter increases. By increasing the homogeneous reaction
parameter, the coefficient of the reaction rate for species B, increases, leading to an increase in
the concentration of species B, and, due to the negative effect of the reaction term for species
A, a decrease in the concentration profile for species A is observed. Figure 14 shows the effect
of heterogeneous reaction parameters on the concentration profiles of species A and B. The
concentration profile of species A grows, and the concentration profile of species B decreases as
the heterogeneous parameter increases.



Appl. Sci. 2022, 12, 6072 11 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

 
Figure 3. Comparison of the proposed scheme with the forward Euler method for velocity, angular 
velocity, and temperature profiles using 𝐺 = 1, 𝐾 = 0.1, 𝜆 = 0.1, 𝐹 = 0.1, 𝑃 = 7, 𝑅 = 0.1, 𝑄 =0.1, 𝐵𝑖 = 0.1, and  𝑁 = 2040. 

 

Figure 4. Comparison of the proposed scheme with the forward Euler method for species 𝐴 and 𝐵 

using 𝐺 = 1, 𝐾 = 0.1, 𝜆 = 0.1, 𝐹 = 0.1, 𝑃 = 7, 𝑅 = 0.1, 𝑄 = 0.1, 𝐵𝑖 = 0.1, and 𝑁 = 2040. 

0 2 4 6
0

1

2

3

4

5

6
x 10-7

η

|b
vp

4c
-P

ro
po

se
d|

 

 

0 2 4 6
0

1

2

3

4

5

6
x 10-4

η

|b
vp

4c
-E

ul
er

|

 

 
Velocity
Angular Velocity
Temperature

Velocity
Angular Velocity
Temperature

0 2 4 6
0

0.005

0.01

0.015

η

|b
vp

4c
-E

ul
er

|

 

 

0 2 4 6
0

1

2

3

4

5

6

7

8
x 10-4

η

|b
vp

4c
-P

ro
po

se
d|

 

 
Chemical Species A
Chemical Species B

Chemical Species A
Chemical Species B

Figure 3. Comparison of the proposed scheme with the forward Euler method for velocity, an-
gular velocity, and temperature profiles using G = 1, Kb = 0.1, λ = 0.1, Fr = 0.1, Pr = 7,
Rd = 0.1, Q = 0.1, Bi = 0.1, and N = 2040.
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Figure 5. Effect of porosity parameter on velocity profile using G = 1, Kb = 0.9, Fr = 0.1, and
N = 3040.
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Figure 9. Effect of microrotation parameter on angular velocity using Kb = 0.01, λ = 0.1, Fr = 0.1,
and N = 3040.
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Figure 10. Effect of Biot number on temperature profile using G = 1, Kb = 1, λ = 0.5, Fr = 0.1,
Pr = 4, Rd = 0.1, Q = 0.3, and N = 3040.
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Figure 11. Effect of heat source parameter on temperature profile using G = 1, Kb = 1, λ = 0.5,
Fr = 0.1, Pr = 4, Rd = 0.1, Bi = 0.5, and N = 3040.
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Figure 12. Effect of Schmidt number on concentration profiles of species A and B using G = 1,
Kb = 1, λ = 0.5, Fr = 0.1, K = 1, δ = 1, K2 = 1, and N = 3040.
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Table 1 shows the numerical values of− f ′′ (0) and−θ′(0) by varying the microrotation
parameter, coupling parameter, inertia coefficient, heat source parameter, Biot number, and
Prandtl number. The numerical values of− f ′′ (0) escalate as the values of the microrotation
parameter and inertia coefficient increase and decrease as the values of the coupling
constant parameter increase. The numerical values of −θ′(0) decrease as the values of the
heat source parameter increase and grow as the values of the Biot number and Prandtl
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number increase. Table 2 compares the results obtained by the proposed scheme and those
provided by past research for computing −θ′(0). The results of this study are supplied for
two different values of the Biot number. Table 2 shows the variations in the results and
can be consulted to validate the numerical scheme presented in this paper that provides
fourth-order accuracy.

Table 1. List of numerical values for − f ′′ (0) using the proposed scheme and Matlab solver bvp4c
when λ = 0.1 and Rd = 0.5.

G Kb Fr Q Bi Pr
−f”(0) −θ’(0)

bvp4c Proposed bvp4c Proposed

0.5 0.5 0.1 0.1 1 3 1.031707 1.031706 0.414644 0.414644
1 1.044032 1.044032 0.416028 0.416028

0.9 0.5 1.042270 1.042270 0.415837 0.415837
0.9 1.011661 1.011660 0.413135 0.413135
0.7 0.1 1.027045 1.027045 0.414596 0.414596

0.2 1.056069 1.056069 0.412853 0.412852
0.1 0.1 1.027045 1.027045 0.414596 0.414596

0.2 1.027045 1.027045 0.357609 0.357608
0.3 1 1.027045 1.027045 0.259314 0.259313

10 1.027045 1.027045 0.338257 0.338256
3 1 1.027045 1.027045 0.114308 0.114308

2 1.027045 1.027045 0.169927 0.169926

Table 2. Comparison of results obtained by the proposed scheme and by past research for calculation
of −θ′(0) using λ = Fr = Kb = Rd = Q = 0.

Pr
Wang [41]

Bi→∞
Khan and Pop [42]

Bi→∞
Mabood et al. [43]

Bi→∞
Proposed Scheme

Bi = 100 Bi = 109

0.7 0.4539 0.4539 0.453918 0.469378 0.587843
2 0.9114 0.9113 0.911358 0.902463 1.014149
7 1.8954 1.8954 1.895403 1.859681 1.973166

20 3.3539 3.3539 3.353904 3.244681 3.421444
70 6.4622 6.4621 6.462199 6.069466 6.458617

5. Conclusions

A new numerical scheme was proposed for solving ODEs that achieves fourth-order
accuracy. A stability and consistency analysis of the proposed scheme for linear ODEs
was also conducted. In addition to proposing a numerical scheme, we put forward a
mathematical model for the Darcy–Forchheimer flow of non-Newtonian micropolar fluid
over a sheet, considering the effects of homogeneous–heterogeneous reactions. Since the
exact solution of the reduced ODEs obtained from the set of equations governing the flow
problem was unknown, the numerical solution obtained by the Matlab solver bvp4c was
considered for comparison in place of the exact solution. The absolute error between the
Euler/proposed scheme and the Matlab solver bvp4c was depicted graphically, showing
that the proposed scheme is more accurate than the existing forward Euler scheme. The
following conclusions can be drawn:

• The angular velocity displayed dual behavior as the coupling and microrotation
parameters increased.

• The velocity profile also showed dual behavior as the coupling constant parameter
increased.

• The concentration profiles of species A and B displayed dual behavior as the values of
the Schmidt number and the homogeneous and heterogeneous reaction parameters
increased.
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• The proposed scheme achieved a larger stability region than the existing Euler scheme.
• The proposed scheme provided higher accuracy and a lower absolute error compared

with the existing numerical scheme.

Following the completion of this investigation, it will be possible to recommend further
applications for the current methods in addition to those already mentioned [44,45]. The
proposed numerical scheme can be further applied to solve problems that arise in various
science and engineering fields.
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Nomenclature

u, v Horizontal and vertical component of velocity Tw Wall temperature
ν =

µ+S
ρ Kinematic viscosity T∞ Ambient temperature

F = Cb

xK∗
1
2

Nonuniform inertia coefficient cb Drag coefficient

cp Specific heat capacity K∗ Permeability of porous space
ρ Density of the fluid α Thermal diffusivity
Q0 Coefficient of heat source kc, ks Rate constants
h̃ Convective heat transfer coefficient k Thermal conductivity
σ Microrotation component K1 = S

ρ Coupling constant
Kb Coupling constant parameter S Constant characteristic of the fluid
λ Porosity parameter Fr Inertia coefficient
G Microrotation parameter Rd Radiation parameter
Pr Prandtl number Sc Schmidt number
K Homogenous reaction parameter K2 Heterogeneous reaction parameter
δ Ratio of diffusion coefficients Bi Biot number
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