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Abstract: This paper presents a scratch detection system based on a cubic Bezier curve fitting using a
linear scan camera. The objective was to detect the scratch defects of an aluminum flat tube stably
in real-time under complex uncertain background noise. To that end, according to the features
of the input image of the linear scan camera and the scratch defects, the proposed method first
segmented the input image to ten equal sections in a longitudinal direction, and for every section,
OTSU thresholding and morphological filtering were used to reduce the background noise. After the
image preprocessing, every section image was projected along a vertical direction to form a vertical
histogram. After that, for each point of every vertical histogram, a novel curve fitting method based
on the Monte Carlo method was employed to calculate the best fitted Bezier curve. All the curvatures
of the middle point of the best fitted Bezier curves then formed a curvature curve, and the scratches
were located by finding the peaks of the curvature curve. Next, the result of the ten sections were
fused to find the final positions of the scratches. The experimental results based on the linear scan
camera that captured the image of flat tubes on a moving speed of 2m/s showed that the proposed
method can detect the scratch defects under complex background noise with a high success rate
in real-time.

Keywords: scratch defects detection; cubic bezier curve; monte carlo sampling; image processing

1. Introduction

A microchannel aluminum flat tube is a thin-walled porous flat tubular part formed
by hot extrusion of a refined aluminum rod and a surface zinc spraying anti-corrosion
treatment. It is the core component of a parallel flow heat exchanger (as shown in Figure 1),
which has attracted the interest of many scholars in the field of thermal engineering
lately [1–3]. Because of its small volume, high efficiency, compactness, light weight and
many other advantages, it is favored by the automobile heat exchanger industry, and has
been widely used in automobile air conditioning systems, while its application has been
gradually expanding to the field of household air conditioning.

Due to the high technical content and difficult production of the microchannel alu-
minum flat tube, it is easy to form a variety of surface defects in the production process.
These surface defects including pits, holes, scratches et al. (as shown in Figure 2). Since
any minor surface defect may lead to a refrigerant leakage during actual use, resulting in
the scrapping of the whole heat exchanger, manufacturers are eager to find solutions for
the surface defects detection. Some of the defects such as pits and holes can be detected
successfully by using machine vision, but the detection of scratches remains an unsolved
problem. In this paper, a new scratch defects detection algorithm in the complex clutter
background was proposed to tackle this problem.

There are three reasons making it difficult to detect the scratches of a microchannel
aluminum flat tube. First, there are great differences in the depth of scratches, where some
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scratches are deep while some are shallow, causing large differences between different
scratches. Secondly, there are many background clutters in the image. For example, oil
stains will remain on the surface during the production process, which makes the imaging
situation of the flat tube surface complex and changeable. Finally, the length of the flat tube
is different: the length of the scratches may be as long as the whole length of the tube, with
the longest being up to 800 mm, while the shortest is only 200 mm. As a result, when using
deep learning algorithms, such as CNN or RNN, which rely on unified database training,
they do not perform as well as in other application cases.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 19 
 

 
Figure 1. Microchannel Aluminum Flat Tube and Parallel Flow Heat Exchanger. 

Due to the high technical content and difficult production of the microchannel alu-
minum flat tube, it is easy to form a variety of surface defects in the production process. 
These surface defects including pits, holes, scratches et al. (as shown in Figure 2). Since 
any minor surface defect may lead to a refrigerant leakage during actual use, resulting in 
the scrapping of the whole heat exchanger, manufacturers are eager to find solutions for 
the surface defects detection. Some of the defects such as pits and holes can be detected 
successfully by using machine vision, but the detection of scratches remains an unsolved 
problem. In this paper, a new scratch defects detection algorithm in the complex clutter 
background was proposed to tackle this problem. 

 
Figure 2. Examples of surface defects. 

There are three reasons making it difficult to detect the scratches of a microchannel 
aluminum flat tube. First, there are great differences in the depth of scratches, where some 
scratches are deep while some are shallow, causing large differences between different 
scratches. Secondly, there are many background clutters in the image. For example, oil 
stains will remain on the surface during the production process, which makes the imaging 
situation of the flat tube surface complex and changeable. Finally, the length of the flat 
tube is different: the length of the scratches may be as long as the whole length of the tube, 
with the longest being up to 800 mm, while the shortest is only 200 mm. As a result, when 
using deep learning algorithms, such as CNN or RNN, which rely on unified database 
training, they do not perform as well as in other application cases. 

To detect surface defects in industrial production, different kinds of advanced tech-
nologies have been developed by scholars and engineers. Wang et al. [4] proposed a 
Bayesian dynamic linear model to achieve real-time high speed rail defects detection. 
Horan et al. [5] and Arjun et al. [6] employed a pulsed eddy current to find surface defects 
in metal material surfaces and complex structures. Peng [7] and Huang [8] employed eddy 
current pulsed thermography to detect defects of metal material. Sunny et al. [9] employed 
a low-frequency radio frequency identification (RFID) system to characterize marine at-
mospheric corrosion of steel materials, and Zhang summarized and highlighted the diffi-
culties and best performance methods of passive RFID antenna systems and sensors. Teh-
ranchi et al. [10] used magnetic flux leak technique to detect crack like defects. Baek et al. 

Figure 1. Microchannel Aluminum Flat Tube and Parallel Flow Heat Exchanger.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 19 
 

 
Figure 1. Microchannel Aluminum Flat Tube and Parallel Flow Heat Exchanger. 

Due to the high technical content and difficult production of the microchannel alu-
minum flat tube, it is easy to form a variety of surface defects in the production process. 
These surface defects including pits, holes, scratches et al. (as shown in Figure 2). Since 
any minor surface defect may lead to a refrigerant leakage during actual use, resulting in 
the scrapping of the whole heat exchanger, manufacturers are eager to find solutions for 
the surface defects detection. Some of the defects such as pits and holes can be detected 
successfully by using machine vision, but the detection of scratches remains an unsolved 
problem. In this paper, a new scratch defects detection algorithm in the complex clutter 
background was proposed to tackle this problem. 

 
Figure 2. Examples of surface defects. 

There are three reasons making it difficult to detect the scratches of a microchannel 
aluminum flat tube. First, there are great differences in the depth of scratches, where some 
scratches are deep while some are shallow, causing large differences between different 
scratches. Secondly, there are many background clutters in the image. For example, oil 
stains will remain on the surface during the production process, which makes the imaging 
situation of the flat tube surface complex and changeable. Finally, the length of the flat 
tube is different: the length of the scratches may be as long as the whole length of the tube, 
with the longest being up to 800 mm, while the shortest is only 200 mm. As a result, when 
using deep learning algorithms, such as CNN or RNN, which rely on unified database 
training, they do not perform as well as in other application cases. 

To detect surface defects in industrial production, different kinds of advanced tech-
nologies have been developed by scholars and engineers. Wang et al. [4] proposed a 
Bayesian dynamic linear model to achieve real-time high speed rail defects detection. 
Horan et al. [5] and Arjun et al. [6] employed a pulsed eddy current to find surface defects 
in metal material surfaces and complex structures. Peng [7] and Huang [8] employed eddy 
current pulsed thermography to detect defects of metal material. Sunny et al. [9] employed 
a low-frequency radio frequency identification (RFID) system to characterize marine at-
mospheric corrosion of steel materials, and Zhang summarized and highlighted the diffi-
culties and best performance methods of passive RFID antenna systems and sensors. Teh-
ranchi et al. [10] used magnetic flux leak technique to detect crack like defects. Baek et al. 

Figure 2. Examples of surface defects.

To detect surface defects in industrial production, different kinds of advanced tech-
nologies have been developed by scholars and engineers. Wang et al. [4] proposed a
Bayesian dynamic linear model to achieve real-time high speed rail defects detection.
Horan et al. [5] and Arjun et al. [6] employed a pulsed eddy current to find surface defects
in metal material surfaces and complex structures. Peng [7] and Huang [8] employed
eddy current pulsed thermography to detect defects of metal material. Sunny et al. [9]
employed a low-frequency radio frequency identification (RFID) system to characterize
marine atmospheric corrosion of steel materials, and Zhang summarized and highlighted
the difficulties and best performance methods of passive RFID antenna systems and sen-
sors. Tehranchi et al. [10] used magnetic flux leak technique to detect crack like defects.
Baek et al. [11] proposed a line-scan technique for hyperspectral imaging combing a four
mirror system to observe a round spinning object to detect surface defects.

Although the techniques mentioned above have some successful applications, the
most widely used methods of defect detection are based on machine vision, and the
key part of these machine vision system is the detection and recognition algorithm. In
order to achieve robust defects detection, many useful algorithms have been proposed
by scholars all over the world. Zhang, et al. [12] used the wavelet smoothing method to
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reduce background noise from input images, and then the Otsu threshold method was
used for segmentation, and finally a Support Vector Machine was used for classification.
In the study by Song et al. [13], a local binary pattern method for adjacency evaluation was
proposed, which modified the threshold scheme of the completed local binary pattern by
constructing the adjacency evaluation window. Liu et al. [14] proposed a non-subsampled
shearlet transform and the kernel locality preserving projection (NSST-KLPP) to identify
surface defects of aluminum strips. In this work, 230 scratch defect samples were used and
the recognition rate is 95.65%. Li et al. [15] used a deep learning based YOLO (You Only
Look Once) network to detect the different surface defects on steel strips, and achieved
a 99% successful detection rate with high speed (83FPS). He et al. [16] used a baseline
convolution neural network to generate feature mapping, proposed a multi-level feature
fusion network to locate defect details, and then used a regional suggestion network (RPN)
to generate regions of interest. Huang et al. [17] developed an automatic system to detect
surface scratches on tubes of high curvature. The algorithm was divided into two steps,
respectively, designing a two-dimensional directional filter to enhance the contrast between
the scratches and background, and using an improved adaptive threshold method to
automatically detect the edges of scratches on the filtered image. He et al. [18] proposed
a semi-supervised learning method combing the convolutional autoencoder and semi-
supervised generative adversarial network to detect and classify the defects on the hot
rolled plates. Zhang et al. [19] utilized attention mechanism and unified detection to
address the challenging defects on an aluminum profile surface.

Although different kinds of machine vision methods have been proposed to detect
defects on material surface as mentioned above, none of them are suited to detect the
scratch defects of the aluminum flat tube due to the reasons explained above. In order to
address this problem, a new scratch detection and location system based on a cubic Bezier
curve fitting using a linear scan camera was proposed in this paper.

The novelties of the paper are:

• A new scratch detection and location system was proposed to find local maximums
based on Bezier curvature calculation and curve fitting. By using this technique, the
stability and accuracy of curvature peak localization in the complex clutter background
was improved significantly.

• Monte Carlo sampling was used to find the optimal four control points location of the
Bezier curves. By using the Monte Carlo scheme, the optimal control points can be
found in a less time-consuming way, which is important in real-time application.

• The scratch detection using the proposed method, achieved in real-time processing,
based on a linear scan camera.

The paper is structured as follows. The next section explains the details of the proposed
scratch detection method including image preprocessing, Bezier curve presentation, Monte
Carlo sampling and Bezier curve curvature and local maximums extraction. Section 3
introduces the parameters setting, experimental results and analysis. Section 4 outlines the
conclusions and future research.

2. The Proposed Method
2.1. Overview of the Proposed Method and Image Preprocessing

According to the characteristics of production technology, flat tubes are often narrow
and long. For example, the whole image size of Figure 3 is 600 × 23,000, and the scratches
are often longitudinal, and there will be a small deflection angle at the same time. In order
to detect the scratches effectively, appropriate image preprocessing methods are needed.
In this work, the input images are segmented into ten equal length sections (as seen in
Figure 3), and in every section, the scratch detection algorithm is applied, and then all the
ten results are fused together to yield the final result.
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For every section of the input image, OTSU thresholding [20] was used at the first
step, and then morphological filtering was applied to reduce the background clutters, as
seen (b) in Figure 4. After that, a novel method combing the cubic Bezier curve fitting
and Monte Carlo random sample was employed for scratch detection. The image after
preprocessing then used to construct a vertical projection histogram, as seen (c) in Figure 4.
Since it is still hard to locate the defect position in the histogram curve due to background
noise, the curvature of every point in the histogram curve was calculated by the Bezier
curve fitting and the construction of a curvature curve, as seen in (d) in Figure 4, which
is much easier for detecting the scratches. Figure 4 shows the overview of the proposed
method in processing the fifth section of the input image.
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2.2. Bezier Curve

Assume that the vertical projection histogram curve consists of a set of points
{CPm} 1 ≤ m ≤ M, where M is the number of total points in the curve. For every
point in curve, a point group of CPm including 2L + 1 points can be expressed as follows:{

CPs
m+j

}
1 ≤ m ≤ M − L ≤ j ≤ L (1)

The point CPm is the center point of the sub points set CPs
m+j, which means there

are L points before CPm, and also L points after CPm (see Figure 5). If we can construct a
smooth curve that fit all the sub points well, and the curvatures in the fitted curve can be
calculated precisely and easily, then all the curvatures of all sub points set can construct
a new “curvature curve”, which can be used to estimate the local maximums (normally
means the positions of scratches). In this situation, the key problem turns to find a curve
fitting algorithm to the points group CPs

m+j.
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In order to address this problem, a curve fitting method based on Bezier curve and
Monte Carlo sampling is proposed.

A Bezier curve, which is widely used in many applications, is a kind of parametric
curve, in which a group of discrete “control points” defines a smooth, continuous curve by
means of a formula.

A degree n Bezier curve can be formulated:

P(t) =
n
∑

i=0
PiBi,n(t) t ∈ [0, 1] (2)

where Pi means the control points of the curve, n means the degree, and t is the parameter to
control the smoothness of the curve. The basis function, Bi,n(t), is the Bernstein polynomials
of degree n defined explicitly by:

Bi,n(t) = Ci
nti(1− t)n−i =

n!
i!(n− i)!

ti(1− t)n−i (3)

In this study, the cubic Bezier (see Figure 6), that is n = 3, was used after considering
both the accuracy and efficiency. In a cubic Bezier curve, four points are required, including
two points which are not on the curve (control points) while the other two are on the ends
of the curve (end points).

The problem mentioned in the last section of finding the optimal curves of every sub
point set CPs

m+j, turned to finding four optimal control points that define the correspond-
ing Bezier curve. This is a typical proximity point optimization problem, which some
scholars have already studied in depth from a mathematical perspective [21,22]. Giving
2L + 1 points, an obvious way to find a group of four optimal control points is to perform
an exhaustive search of the whole space, but this method was not a good choice. In this
study, the Monte Carlo sampling method was used to optimize the location of the control
points quickly.
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2.3. Monte Carlo Sampling

The Monte Carlo method is a computational algorithm, the underlying concept of
which is using randomness to solve problems that might be deterministic in principle. It is
often used in optimization, numerical integration, and other related application.

The fitting problem associated with using the cubic Bezier curve in this application
can be formulated as:

min
x∈X
{ f (x) := E[F(x, ξ)]} (4)

where F(x, ξ) is the objective function of two vectors x ∈ Rn and ξ ∈ Rd. In this paper, x is
a given point set, and ξ means a candidate sub curve

{
P(ω, t)s

m
}

, the vector ω is a group of
randomly generated control points which can define a cubic Bezier curve, and x refers to a
given sub points set

{
CPs

m+j

}
. The function F(x, ξ) is formulated as:

F(x, ξ) =
2L+1

∑
j=0
|P(ω, t)s

m − CPs
m+j|2 (5)

The goal of this method is to calculate the optimal fitting Bezier curve of the given
point group through Monte Carlo sampling by using the least square method.

For every
{

CPs
m+j

}
, each candidate sub curve can be generated using the random

control points vector ωζ , ζ = 1, 2 . . . N where N is the total candidate number (or sam-
ple number, and the proof of minimum sample number can be found in next section).
A candidate curve can be expressed as the following:

Pζ(ω
ζ , t)s

m =
3
∑

i=0
Pi(ω

ζ)mBi,3(t) =
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




ω
ζ
0m

ω
ζ
1m

ω
ζ
2m

ω
ζ
3m

 (6)

The four control points ω
ζ
0m, ω

ζ
1m, ω

ζ
2m and ω

ζ
3m are random variables, and they have

different distribution areas:

ω
ζ
0m ∈

[
CPs

m−L − T0, CPs
m−L + T0

]
ω

ζ
1m ∈ [Tmin − T0, Tmax + T0]

ω
ζ
2m ∈ [Tmin − T0, Tmax + T0]

ω
ζ
3m ∈

[
CPs

m+L − T0, CPs
m+L + T0

] (7)
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where T0 is a tolerance interval threshold of the certain range, and Tmin, Tmax are described as:

Tmin = min
{

CPs
m+j

}
− L ≤ j ≤ L

Tmax = max
{

CPs
m+j

}
− L ≤ j ≤ L

(8)

Figure 7 explained Equation (7) in a more detailed way. P0 is the start control point
and P3 is the end control point, and they are expected to appear within a relatively small
region centered in the related point of the given points (CPs

m−L and CPs
m+L), while P1 and

P2 will have the chance to be in any position of the whole region defined by
{

CPs
m+j

}
.
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2.4. Minimum Sampling Number

Suppose n times of the independent random sampling are carried out, in which the
probability of correctly selecting the best fitting Bezier curve for each success is p, and the
probability of failure is 1− p; if X represents the success in n independent random sampling
times, then X is a binomial random variable with parameters (n, p), and its probability
density function is:

p(i) = Ci
n pi(1− p)n−i (9)

Then the mathematical expectation of the binomial random variable X is:

E[X] =
n
∑

i=0
ip(i) =

n
∑

i=0
iCi

n pi(1− p)n−i

=
n
∑

i=0

in!
(n− i)!i!

pi(1− p)n−i

=
n
∑

i=0

n!
(n− i)!(i− 1)!

pi(1− p)n−i

= np
n
∑

i=0

(n− 1)!
(n− i)!(i− 1)!

pi−1(1− p)n−i

= np
n
∑

i=0
Ck

n−1 pk(1− p)n−1−k

= np[p + (1− p)]n−1

= np

(10)
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That is, the average number of successes of n times of independent random sampling
is n multiplied by the probability of each success, so if n times of independent random
sampling are done, at least one success can be expressed as:

E[X] ≥ 1⇔ np ≥ 1⇔ n ≥ 1
p (11)

If a control point falls within a 5× 5 neighborhood centered on the correct control point
position, it is approximately correct, and the sampling points are uniformly distributed in
the sampling space. The minimum required sampling times are then:

n ≥ 1
p
=

Nw × Nh
5× 5

(12)

where Nw is the width of the sampling region and Nh is the height of the sampling region.

2.5. Bezier Curvature Calculation and Peak Location

By employing the method of the previous section, a group of control points that fit
the given sub points set

{
CPs

m+j

}
best can be found, represented as

{
Pbest

i , i = 0, 1, 2, 3
}

.
Having the optimal control points, the curvature at any point in the corresponding Bezier
curve can be calculated as following:

K(t) =
|P′(t)× P′′ (t)|
|P′(t)|3

(13)

where P′(t) represents the first derivative and P′′ (t) represents the second derivative of the
Bezier curve. They can be calculated by the following equations:

P′(t) =
n
∑

i=0
Pbest

i Bi,n
′(t) = n

n
∑

i=1
(Pbest

i − Pbest
i−1 )Bi−1,n−1(t) (14)

P′′ (t) = n(n− 1)
n−2
∑

i=0
(Pbest

i+2 − 2Pbest
i+1 + Pbest

i )Bi,n−2(t) (15)

They can be written more detailed as:

P′(t) = 3[(Pbest
1 − Pbest

0 )(1− t)2 + (Pbest
2 − Pbest

1 )t(1− t) + (Pbest
3 − Pbest

2 )t2] (16)

P′′ (t) = 6[(−Pbest
0 + 3Pbest

1 − 3Pbest
2 + Pbest

3 )t + (Pbest
0 − 2Pbest

1 + Pbest
2 )] (17)

Each points set has 2L + 1 points; the middle point is CPm and L points before CPm as
well as L points after CPm, which means the curvature at K(t = 0.5) is the curvature of the
points set we need.

After the curvature of every point in the histogram curve is calculated (as seen in
Figure 8), a curvature curve will be generated for finding the local maximum. The local
maximum can be easily found by comparing to a threshold Tm (in this work Tm was set
to 0.2):

Xm = 1
2 (Xm1 + Xm2) (18)

where Xm1 and Xm2 represent the position in the curvature curve that the curvatures of
these two points are equal to Tm (as seen in Figure 8).
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3. Experiments and Discussion
3.1. Experimental System

The experimental system consists of linear scan cameras, linear lights, industrial
computer, conveyor, and other necessary mechanical parts (as seen in Figure 9). The linear
scan camera is DALSA-LA-GM-02K08A, which has the resolution of 2048 × 1, a pixel size
of 7.08 µm, and a max line rate of up to 52 K. The proposed algorithm was implemented in
C++ using OpenCV library and ran on a computer with a i7-6700 CPU, 8G DDR memory.
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In the experiment, the conveyor belt moved at a constant speed of 2 m/s, the flat
aluminum tubes to be tested were placed on the conveyor belt one by one, and the pho-
toelectric sensor was used to detect whether the flat tubes reached the camera imaging
position. When defective products are detected, the follow-up mechanism will remove the
flat tubes.

In this experiment, two different types of flat tube (namely type A and type B) were
used to test the performance of the proposed method. These two kinds of tube have
different length, width, height, and interval time, as seen in Table 1. The flat tube samples
were put one by one on the conveyor, so the “interval time” in Table 1 means the time
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between two flat tubes. In order to achieve real-time detection, the time duration of the
algorithm should be less than the interval time.

Table 1. Parameters of Test Tubes.

Parameters Type A Type B

Length 800 mm 200 mm
Width 50 mm 10 mm
Height 2 mm 1 mm

Speed of Conveyor 2 m/s 2 m/s
Interval Time 500 ms 333 ms

For every type, 200 samples were used, in which there were 100 samples with no
defects and another 100 samples with scratch defects. All the defects’ samples were labeled
manually by quality inspectors of the manufacture factory.

3.2. Parameters Setting

In this proposed method, there are two parameters that may affect the algorithm per-
formance, including the length of sub points set length = 2L + 1 (fitting curve length) used
in Equation (1), and the total candidate number N (sample number) used in Equation (6).
In order to figure out how these two parameters influence the performance of the proposed
method, two corresponding experiments were introduced.

The experimental results of the relation between curve length and location of the local
maximums are shown in Figure 10. For the same input histogram image, when the length
was small, the curvature curve was as chaotic as the histogram and many of false positions
were detected. However, the local maximums were getting more and more obvious in the
curvature curves as the length got larger. When the length was up to 151, the second peak
that was detected in length 101/121/131 was not detected anymore. As a result, the best
choice of the length should depend on the application requirements: if in the application
the false positives are not allowed, then a larger length should be used, while in same
applications if a small percentage of false positives are allowed, the middle range of the
length (101/121/131) is better. In this work, the length is set to 131.

The sample number in Equation (6) indicates how many random control points will
be used to generate the corresponding Bezier curves. In this experiment, random uniform
distribution was used. General speaking, the more the sample number, the more accurate
the fitting result, and also the more time that was consumed, but actually, when the sample
number is larger than a certain number, the difference in accuracy is relatively small. As
seen in Figure 11, there were some small differences of the fitting results between six
different sample numbers (20, 40, 60, 80, 100, 120), but all of them can locate the local
maximums correctly with very small position errors. It can be proved that, in a sample
range of Nw × Nh, where Nw is the width of the sample area, and Nh is the height of the
area, if a control point falls within a 5 × 5 neighborhood centered on the correct control
point position, and it is considered to be approximately correct, then the minimum sample
number is N ≥ Nw×Nh

5×5 . The detailed proof can be found in Section 2.4. According to this
result, if Nw = 20 and Nh = 20, then the least sample number is N = 16, which was well
verified by the experiments. In this work, N = 60 was used.
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3.3. Experimental Results and Discussion

The experimental results can be seen in Table 2. In the table, NOK means the number
of samples that are detected as OK (no defect). For example, in column one, the number 93
means 93 out of 100 of “No Defects” in type A were detected as OK by our method, while
NNG in the same column means 7 out of 100 of “No Defects” in type A were detected as
NG (with defects) by our method.

Table 2. Experimental Results.

Results
Type A Type B

No Defects With Defects No Defects With Defects

Total sample number 100 100 100 100
NOK 93 2 95 1
NNG 7 98 5 99

Time consuming/ms 459.32 478.24 87.65 98.31
FN/% 1% 0.5%
FP/% 3.5% 2.5%

FN means false negative, which means it should be positive (with defects), but the
detection result of the algorithm is negative, while FP means false positive, which means
it should be negative (no defects), but the result of the algorithm is positive. In the
industrial application, FN is much more serious than FP. In our test, the FN is 1% and 0.5%
using samples of type A and type B, respectively, while FP is 3.5% and 2.5%. From the
results, we can find that there are still some cases that our method cannot detect correctly,
and after a recheck of these samples, we found that these are truly “hard samples” that
even experienced workers of the factory need to check very carefully from every possible
observation angle. The total FN and FP results are at the same level as experienced works,
while its efficiency is higher because it can work tirelessly.

The time duration of both type A and type B was less than the corresponding interval
time in Table 1, which means the system can achieve real-time detection in different sizes
of input flat tubes; furthermore, the time duration can be much less if a better computer is
used in the future.

Some more detailed experimental results can be found in Figures 12–15. In every
image of the results, there are four images: the first one is the input test image, the second
one is the result of vertical projection histogram images of 10 sections, the third one is the
curvature curves based on the histogram image, and the last one is the detection result,
in which the green line indicates the location of the scratches. The green circles in the
histogram images are the detected local peaks of the histogram by our algorithm. It can
be seen from the experimental results that, although the defects in some input images
were very weak, and some were even difficult for people to distinguish, after the method
proposed in this paper, the local peaks where the defects are located were highlighted, and
the background noise where it was located was suppressed. Eventually, all the defects were
detected effectively, and the locations of the defects were marked.

By analyzing and comparing the defects detected by the algorithm with the manually
marked defects, it can be found that common and obvious surface defects both can be
detected 100%, but when affected by the presence of volatile machine oil on the surface
of some incoming flat tubes, the image characteristics were similar to the morphology of
some of these surface scratch defects. Thus there will be a certain degree of misdetection,
as shown in Figure 16. At the same time, for a small part of the detection of subtle scuffing
defects, the algorithm did not detect them perfectly, that is, there was a certain degree of
false negatives, but at the same time, it must be noted that the same missed detection can
occur in this case, even for experienced workers.
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Figure 12Figure 12. Result 1. The green circles represent local maximums, red circles represent local valleys,
and the green lines represent the detected scratches.
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Figure 13. Result 2. The green circles represent local maximums, red circles represent local valleys,
and the green lines represent the detected scratches.
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Figure 14Figure 14. Result 3. The green circles represent local maximums, red circles represent local valleys,
and the green lines represent the detected scratches.
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Figure 16. Interference of oil to normal flat tube.

4. Conclusions

This paper proposed a scratch detection system based on a cubic Bezier curve fitting
using a linear scan camera in real-time under complex uncertain background noise. The key
point of the proposed method involved using the Monte Carlo sampling method to calculate
the best fitted cubic Bezier curves of every point in the vertical projection histogram curve,
and the scratches were detected by finding the local peaks of curvature curve. In the
experiment, a linear scan camera that captured the image of flat tubes on a moving speed
of 2m/s was used to test the validity of the proposed method. The experimental results
showed that the total FN and FP results are at the same level as experienced works, while
its efficiency is higher because it can work tirelessly, which means it is possible to substitute
the workers by our system in the future.

The experimental results of different fitting curve lengths showed that selection of this
parameter was important to the algorithm performance. The selection should depend on
application requirements, which means an adaptive selection of the fitting curve length
will be an issue worthy of study in the future.
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