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Abstract: In comparison with vehicle-to-pedestrian collision, pedestrian-to-ground contact usually
results in more unpredictable injuries (e.g., intracranial, neck, and abdominal injuries). Although
there are many studies for different applications of such methods, this paper conducts an in-depth
analysis of urban traffic pedestrian accidents. The effects of pedestrian rotation angle (PRA) and
pedestrian facing orientation (PFO) on head and neck injury risk in a ground contact are investigated
by the finite element numerical models and different probabilistic analyses. It goes without saying
that this study provides a theoretical basis for the prediction and protection study of pedestrian
ground contact injury risk. In our experiments, 24 pedestrian-to-ground simulations are carried out
by the THUMS v4.0.2 model considering eight PRAs (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦, 360◦)
and three PFOs (x+, x−, y+). Each test was simulated with loading the average linear and rotational
velocities that obtained from real-world pedestrian accidents at the pedestrian’s center of gravity. The
results show that both PRAs and PFOs have significant impacts on head and neck injuries. Head
HIC value caused by PRA 0–135◦ is much higher than that caused by PRA 180–315◦. Neck injury
risk caused by PRA 180◦ is the greatest one in comparison with other PRAs. The PRAs 90◦ and 270◦

usually induce a relatively lower neck injury risk. For PFO, the risk of head and neck injury was
lower than PFOy+ and PFOx+ or PFOx−, which means PFOy+ was a safer landing orientation for
both head and neck. The potential risk of head and neck injuries caused by the ground contact was
strongly associated with the symmetry/asymmetric features of human anatomy.

Keywords: urban traffic accidents; smart cities; ground contact; injury risk; data analysis

1. Introduction

The World Health Organization (WHO) has released the Global Status Report on
Road Safety, which shows that approximately 1.35 million people die annually from road
traffic accidents. More than half of all deaths are among those with the least protection:
pedestrians (23%), cyclists (3%), and motorcyclists (28%) [1]. Recent trends in traffic safety
research show that scientists and industry are making tremendous efforts to find solutions
to improve the safety and performance of vehicle systems [2–4]. For decades, scholars have
focused on road safety research in vehicle-to-pedestrian collisions, and a variety of vehicle
safety protection devices and vehicle optimization designs have been proposed [5–13].
However, it should be noted that the injuries suffered by pedestrians in road traffic do not
only come from vehicles, but also from the ground.

The real-world accident data analysis has shown that ground contact plays a very
important role in the cause of pedestrian head injuries [14–16]. While there are still few
studies on pedestrian-to-ground contact [17–27]. The main reason is that it is difficult for
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accident investigators to obtain the impact traces between pedestrians and the ground,
compared to pedestrian-to-vehicle contact. In addition, the injury risk from ground was
correlated to a lesser extent with vehicle velocity [17,21], and the ground usually results in
more unpredictable injuries [28].

In recent years, some researchers have studied the kinematics of pedestrian landing
and have come up with several typical types of pedestrian landing kinematics [17,19,25,29],
this provided an understanding for pedestrian-to-ground contact; however, they did not
deeply analyze the influence mechanism of landing kinematics on landing injuries. In
2018, Shi et al. [21] proposed the concept of the pedestrian rotation angle ranges (PRARs)
to illustrate the relationship between pedestrian landing kinematics and landing injuries,
which demonstrated that any landing kinematics could be classified as one of the four
PRARs, and the PRARs are highly correlated with the ground contact mechanism and
head injury risk. However, pedestrian landing kinematics and injury risk are not only
affected by pedestrian rotation angle, but also by a variety of other factors, such as the
pedestrian facing orientations and the landing sequence of body parts, which they did
not analyze. Further study found that for the same pedestrian rotation angle, there were
significant differences in the risk of head injury during landing for different pedestrian
facing orientations [30]. However, they did not delve into the mechanism between this
factor and pedestrian injury risk.

Having a look at the literature review, it was found that the biomechanical mecha-
nisms of pedestrian injury is closely related to the symmetric/asymmetric phenomena
(structures, shapes, morphologies, geometry, direction, models, aesthetics, etc.) in life
sciences [31,32]. In response to this intriguing problem, this paper systematically and
quantitatively investigated the effect of human anatomy features on body landing injury
risk by considering two key kinematic parameters, pedestrian rotation angle (PRA) and
pedestrian facing orientation (PFO). To this end, six real-world pedestrian accidents were
reconstructed to derive the boundary parameters at the moment of body-to-ground impact.
Then, a total of 24 pedestrian landing simulations were carried out using the THUMS v4.0.2
model with considering eight PRAs and three PFOs. The kinematic-based injury criteria
such as the head injury criterion (HIC) and the maximum rotation angle of T1 relative to the
head were included in the analysis to investigate head and neck injury risk. Moreover, the
influence mechanism of human anatomical symmetry/asymmetry on the risk of landing
injuries was deeply analyzed. The results of this study are beneficial to provide theoretical
guidance for the research on pedestrian injury control strategies in the automotive industry
and traffic management departments.

The rest of this paper is summarized as follows: Section 2 establishes the proposed
methodology for the evaluation of urban traffic accidents. Section 3 defines our compu-
tational results. Section 4 talks about our main insights and significant results from our
experiments. Finally, Section 5 provides a summary of this paper with findings, limitations,
and future research recommendations.

2. Methodology

A set of pedestrian-to-ground impact simulations was implemented with the
THUMS v4.0.2 model. Each simulation initiated with the pedestrian in a different PRA and
PFO just above the ground. PRA is defined by Shi et al. [21], which was used in this paper
to explore the effect of asymmetric anatomical features divided by the transverse plane
on the risk of ground contact injuries. PFO is defined as the initial facing orientation of
pedestrians in the event of vehicle-to-pedestrian collision, aiming to explore the influence of
symmetrical and asymmetrical anatomical features divided by sagittal and coronal planes
on ground contact injuries.

2.1. Parametric Research Proposal

Figure 1 shows the extraction and loading process of boundary parameters for the
pedestrian-to-ground impact simulations. First, six real-world pedestrian traffic accidents
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were completely reconstructed with reference to the accident reconstruction method pro-
posed by Shi et al. [16]. The detailed workflow of accident reconstruction is depicted in
Figure 2. The key parameters related to accidents with vehicles, pedestrians, roads, and the
environment are summarized in Table 1. The reconstructed pedestrian kinematics were
compared with the video recordings, as shown in Figure A1 (Appendix A). The quantitative
validation of reconstruction results and the linear and angular velocity components at the
COG of the pedestrian’s body at the moment of 2 milliseconds before the body-to-ground
contact were extracted and summarized in Table 2. The average linear velocities along the
x, y, and z axes were calculated to be 2.4 m/s, −1.0 m/s and −5.6 m/s respectively, and
the average angular velocity around the y-axis was 4.7 rad/s2. Second, the average linear
velocity and angular velocity components were loaded into the COG of THUMS v4.0.2 for
body-to-ground collisions. To explore the effect of PFO on body-to-ground contact injury,
three PFOs were formed by rotating the initial orientation of a standing pedestrian around
the z-axis at 90-degree intervals, coding the PFOx+, PFOx−, and PFOy+, respectively. Third,
each PFO is rotated around the y-axis in 45◦ increments, resulting in eight different PRAs.
Finally, a total of 24 pedestrian-to-ground impact configurations were defined.
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Figure 1. Methodology implemented for the parametric study.

2.2. Impact Conditions

The ground surface was modeled utilizing a rigid body for representing the asphalt
ground [33]. The friction coefficient between pedestrian and ground was set to 0.58 [34]. All
numerical simulations were performed using the LS-DYNA MPP R9.3.0, LSTC (Livermore
Software Technology Co., Livermore, CA, USA).

2.3. Injury Criteria

In this study, the potential risk of head and neck injuries caused by the ground contact
was assessed using the HIC and the maximum rotation angle of T1 relative to the head,
respectively. The head criteria were selected based on [16], which shown that HIC has a
‘good’ assessment capability for severe head injuries caused by ground contact. The criteria
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value were calculated based on the simulation results using the THUMS v4.0.2 model in
the LS-DYNA code.
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Table 1. Key parameters related to these accidents.

Case ID

Vehicle Info Pedestrian Info Road and Environment Info

Type Velocity
(km/h)

Brake
before

Collision
Gender Age Height

(cm) State Location Obstacle Pavement Humidity

1 Sedan 67 No Male 36 179 Running Motor lane None Asphalt Wet
2 Sedan 90 No Female 51 162 Running Motor lane None Asphalt Wet
3 Sedan 63 Yes Female 37 164 Running Motor lane None Asphalt Dry
4 Sedan 29 No Female 73 142 Walking Motor lane None Asphalt Dry
5 E-bike 31 Yes Female 63 157 Walking Non-motor lane None Asphalt Dry
6 MPV 29 No Female 79 158 Walking Crosswalk None Asphalt Dry

Table 2. Validation and extraction of reconstruction results.

Case ID

Final Position Error %:
Reconstructed vs. Actual

Linear and Angular Velocity Components (2 ms before
Body-to-Ground Contact)

Pedestrian Vehicle Vx (m/s) Vy (m/s) Vz (m/s) ωy (rad/s)

1 3.1% 2.4% 2.8 −0.4 −5.8 4.6
2 3.6% 2.7% 4.7 0.1 −6.9 5.8
3 2.4% 1.7% 3.9 0.2 −6.1 5.2
4 0.9% 0.6% 1.3 −3.8 −5.5 6.5
5 1.2% 1.1% 0.9 −0.8 −5.2 3.8
6 0.6% 1.3% 0.6 −1.4 −4.3 2.4

3. Results
3.1. Pedestrian Landing Kinematics

For the 24 simulations, pedestrian landing kinematics were completely different due
to univariate differences in the PRA and PFO settings. Figures 3–5 show three typical
kinematic poses for each simulation in the process of body-to-ground contact. Notably,
PRA mainly causes changes in the sequence of body parts and ground contact; while PFO
mainly caused changes in specific positions of body parts in contact with the ground. For
PRAs 0◦, 45◦, 90◦, and 135◦, the pedestrian’s upper body suffers a linear velocity component
(Vz) perpendicular to the ground and an angular velocity component that rotates toward
the ground. The superposition of the two velocity components increases the severity of the
head-to-ground contact. Whereas for PRAs 180◦, 225◦, 270◦, and 315◦, the angular velocity
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component causes the head to rotate away from the ground, which can effectively reduce
the severity of head-to-ground contact.
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According to SE, the steps of social engineering optimizer are established according to
the above process.

3.2. Head Injury Caused by Ground Impact

Figure 6 shows the distribution of HIC values for the head-to-ground contact simula-
tions. It can be seen that the HIC caused by PRA 0–135◦ is significantly higher than that
caused by PRA 180–315◦, the result is consistent with the findings of [21]. In addition, there
are significant differences in head HIC values caused by different PFOs even under the
same PRA. For example, at PRAs 0◦, 45◦, 90◦, and 135◦, the HIC values caused by PFOy+
are much lower than those of the other two PFOs. While at PRA 180◦ and 225◦, there was
no significant difference in PFO-induced HIC values.
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3.3. Neck Injury Caused by Ground Impact

Figure 7 shows the maximum rotation angle of T1 relative to the head. For PFOx+
and PFOx−, the rotation direction of T1 relative to the head is opposite no matter which
PRA the pedestrian lands with. When the PRA is in the range of 0–180◦, PFOx+ subjects
the neck to buckling loads, while PFOx− subjects the neck to extension loads. Conversely,
when the PRA is in the range of 225–315◦, PFOx+ subjects the neck to extension loads,
while PFOx− subjects the neck to buckling loads. It is important to note that the risk of
neck injury is greatest in each PFO when the PRA is 180◦, followed by 315◦ and 135◦. For
PFOy+, it primarily subjects the neck to lateral flexion loads. For PRA 180◦, the risk of neck
lateral flexion injury was greatest, followed by 135◦. When the PRA is approximately 45◦ or
270◦ (i.e., the body is more parallel to the ground), the risk of neck injury from the ground
contact is almost minimal regardless of which PFO the pedestrian lands.
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4. Discussions of Results

Combined with pedestrian landing kinematics, the biomechanical mechanisms of
pedestrian injury under different ground impact conditions is deeply analyzed as follows.

• For PRA 0◦

When pedestrians land in the orientation of PFOx+, the feet contact the ground first.
Due to the counterclockwise rotational momentum of the body, the pedestrian’s knees
will bend forward until kneeling. Meanwhile, the upper body leaned backward and
eventually the back of the head collided with the ground. In addition to serious head
injuries, this landing position would also lead to the risk of waist injury due to excessive
reverse stretching of the tissues and organs.

When pedestrians land in the orientation of PFOx−, the feet also contact the ground
first. Different from the PFOx+ condition, the change of pedestrian kinematics is not
only affected by the counterclockwise rotational momentum, but also the front-to-back
asymmetry of the body anatomical structure. Restricted by the physiological bending
direction of the knee joint, the impact energy (i.e., rotational momentum energy and landing
potential energy) suffered by the lower limbs in this landing orientation is much larger than
that in the PFOx+. This can easily lead to reverse traction injuries of the knee joint, and also
subject the meniscus, tibia, and femur to greater longitudinal impact. Subsequently, the
upper body rotates counterclockwise under the residual rotational energy until the head
collides with the ground without any body part protection. In conclusion, this landing
orientation is prone to serious head injuries, strained knee ligaments, ruptured menisci,
and even fractures of the tibia and femur.

When pedestrians land in the orientation of PFOy+, the right lower limb becomes the
main weight-bearing region with the load of the impact energy (i.e., rotational momentum
energy and landing potential energy). It would cause the risk of right knee joint medial
collateral ligament strain and tibia fracture. Eventually, the right side of the pedestrian’s
upper body collides with the ground, which could cause injury to the right shoulder and
chest and abdomen organs, but the posture could supply a certain buffer effect on the
head-to-ground contact.

• For PRAs 45◦, 90◦, 225◦, and 270◦

When pedestrians land at these four PRAs, the torso and lower limbs remained
relatively straight during the ground contact, indicating that the impact energy was less
absorbed by these two parts. As for the head, when pedestrians land in orientation of
PFOx+ and PFOx−, the head collides with the ground directly; that is, the torso provided
no protection on the head. However, when pedestrian lands in the orientation of PFOy+,
the shoulder could protect the head to a certain extent, which is why the HIC values in
orientation PFOy+ are lower than the other two orientations (see Figure 6).

• For PRAs 135◦ and 180◦

Although the head is the first ground impact region for these two PRAs, the HIC
values show significant differences. For PRA 135◦, the head has—in addition to its linear
velocity component perpendicular to the ground—an angular velocity component that
rotates toward the ground. Whereas for 180◦, the head angular velocity component is
parallel to the ground. Therefore, pedestrian landing at PRA 135◦ would result in a higher
HIC value than PRA 180◦. In addition, when pedestrians land with PRA 135◦ in PFOy+,
the shoulder has a certain protective effect on the head, resulting in a lower HIC value than
the other two orientations.

It should be noted that no matter which PFO the pedestrian lands in, the neck bending
caused by these two PRAs would be very severe. Especially PRA 180◦, although the HIC
value of the head is low, the risk of injury is very high due to the extreme bending of the
neck caused by the downward pressure of the body.
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• For PRA 315◦

Figure 6 shows that PRA 315◦ is friendly to the head-to-ground contact injury risk.
However, the kinematic performance (Figures 3–5) suggest that the PRA 315◦ may cause
serious injuries to the pedestrian’s chest, neck, and abdomen. In Figure 3, PFOx+ re-
sults in over-extension of the neck, increasing the risk of whiplash injury. In Figure 4,
PFOx− results in hyper buckling of the neck, along with excessive compression of the chest
and abdomen, increasing the injury risk to the internal organs. In Figure 5, PFOy+ causes
the lateral hip to strike the ground, potentially resulting in pelvic injury and crush injury to
abdominal organs.

5. Conclusions, Limitations, and Future Works

This study demonstrated that pedestrian landing kinematics and injuries are signif-
icantly influenced by the symmetrical/asymmetrical features of human anatomy. PRA
mainly works by changing the sequence of contact sites between the body and the ground.
PFO mainly works by changing the specific location of the contact site between the body
and the ground.

The head HIC value caused by PRA 0–135◦ was much higher than that of PRA
180–315◦. The head HIC values caused by PFOx+ and PFOx− were not significantly
different, but significantly higher than that of PFOy+. That is, PFOy+ is a safer landing
orientation compared with PFOx+ and PFOx−.

For the neck, both PRA and PFO shows significant effect on neck injury risk. For PRA
180◦, the pedestrian would suffer the greatest neck injury no matter which PFO they land
in. For PRA 90 or 270◦ (that is, the body falls parallel to the ground), the risk of neck injury
caused by ground is relatively low. In general, the risk of neck injury caused by PFOy+ is
significantly lower than that caused by PFOx+ and PFOx−, indicating PFOy+ is a friendly
landing orientation for neck.

The results show that PRA and PFO can be used to analyze landing injury risk. In the
follow-up, it should be combined with the artificial intelligence methods [35,36] to jointly
provide theoretical support for the formulation of active and passive security protection
strategies. This would help to predict the risk of urban traffic accidents and make optimal
decisions in future smart cities.

Although this study reported a significant contribution for the evaluation of urban
traffic accidents, there are many limitations which can be considered for our future works.
First of all, there is a limited number of reconstructed pedestrian accident cases, this results
in a lack of statistical significance for the average velocity components in representing
the boundaries of pedestrian landing. Therefore, in future research, we need to collect
more real-world pedestrian accident data to optimize this research result. In addition, the
pedestrian model currently involved in accident reconstruction lacks data validation from
ground impact experiments. Therefore, this study only focuses on the distribution trend
of pedestrian injury values, rather than the absolute value. Last but not least, in 2020, the
COVID-19 pandemic increased the urban traffic as most of people prefer to use their cars
instead of public transport [37]. In this regard, the consideration of urban traffic before
and during the COVID-19 pandemic is another future research recommendation. Finally,
a combination of our prediction model with novel heuristics, metaheuristics, and exact
reformulations can be considered for our future work [38–41].
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