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Abstract: First-principles calculations were carried out to study the structural and electronic proper-
ties of hydrocarbon chains of self-assembled monolayers with hydrogen dissociation. It was found
that the incoming hydrogen could lead to the formation of H2 molecules by stripping the nearby
hydrogen atoms in the chains and thereby leave the neighboring carbon atoms to be free radicals.
Two parallel hydrocarbon chains with dangling bonds can form a direct C-C bond, i.e., cross-linking
happens between the two chains, which is ascribed to a charge accumulation in the cross-linking
region. The polymerization of short molecules into long hydrocarbon chains through a different
cross-linking mode is also discussed.
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1. Introduction

Alkanes and other simple molecules based on carbon-hydrogen bonds are the building
blocks of complex organic molecules and materials. Functionalization of C-H bonds in these
kinds of materials are of great significance for environmental sustainability and economic
development [1–4]. Besides, ultrathin organic films have been studied extensively due
to their potential applications in materials science. For instance, they could be used as
organic microelectronic and optoelectronic devices [5–7]. To carry out the applications,
the technique of cross-linking between carbon atoms in different organic molecules is
crucial [8–11]. Take Liu et al.’s work as an example, it shows the evidence for cross-links
formed between the long-chain molecules on dotriacontane (C32H66) thin film [12]. The
cross-linking of organic materials can be realized through various methods. The most
common method is through using chemical additives or catalysts, the so-called wet proce-
dure [13–17]. However, this procedure may be harmful to microelectronic devices because
the chemical additives or catalysts may dramatically change the dielectric constant and
other electronic properties, and hence the electronic transport of the devices. To avoid
these disadvantages, a more physical method, a so-called dry procedure, was proposed
to realize the cross-linking, which is based on collision-induced hydrogen dissociation by
using electron beam or other charged particle beam bombardments [18–23]. This method,
however, still has some drawbacks, such as the defects induced by the electrons damaging
the original structure. The high energy cost is also a challenge for the charged particle
accelerator or control instrument. These factors restrict the application range of this method.
Therefore, a suitable method to realize the cross-linking of organic materials should have
following characters: (1) avoiding introducing extra dopants or elements; (2) selectively
dissociating the C-H bonds, without impact on C-C or other bonds; (3) low system com-
plexity and energy-cost, suitable for large-scale industrial applications. The research of
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Zhang et al. showed that a low-energy proton beam could be used to bombard the organic
thin film and realize the cross-linking of organic molecules by selectively cleaving C-H
bonds while keep other bonds unaffected [24–26]. As the proton is a positive charged parti-
cle, its application is restricted owing to the electronic insulating behavior of most organic
materials. For these materials, a surface charging problem, i.e., the accumulated charge on
the surface, will cause the irreversible change in the properties of the organic materials.
Trebicky et al. proposed that H2 molecules could be used as the incident particles to make
the cross-linking [27]. The employment of neutral particle beams provides a new perspec-
tive for the fabrication of ultrathin organic films. However, systematic investigations of the
role of H or H2 played in this procedure are limited so far.

In this article, we investigate the structural and electronic properties of hydrocarbon
chains with hydrogen collision [28]. The results are compared with the cases of the incidence
of H2 molecules. To the best of our knowledge, no such research has been reported from
ab-initio calculations up to now. In this research, we chose the alkane-type hydrocarbon
chain as the organic material because alkanes are a common polymer precursor and widely
used as a functional organic material by appending appropriate functional groups [29,30].
Furthermore, the structure of an alkane is quite simple (CnH2n+2). Here, we first study the
structural and electronic properties of infinitely long hydrocarbon chains with hydrogen
dissociations. The cross-linking of two adjacent hydrocarbon chains was then explored
and discussed. The case of C20H42, a finitely long molecule, was further investigated to see
what happens.

2. Materials and Methods

The calculations were performed based on density functional theory (DFT) with
exchange-correlation interaction described by the projector-augmented wave method
(PAW) [31,32] in generalized gradient approximations (GGA) [33] with PW91 form [34],
implemented in VASP software [35]. The employed cut-off energy of the plane waves was
500 eV. The convergent criterion of total energy was set as 10−5 eV per supercell. The force
convergence criterion was smaller than 0.02 eV/Å. For all calculations, Monkhorst–Pack
k-point sampling grids of 8 × 8 × 2 were used [36]. The supercell (seen Figure 1a) contained
20 carbon and 40 hydrogen atoms with a length of 25.38 Å in the z direction [37]. The lattice
constants of the supercell in the x and y axes were set to be a = b = 20 Å, which was large
enough to minimize the unwanted interactions between the adjacent chains. Three initial
adsorption sites were considered, labeled as s1, s2, and s3, as shown in Figure 1a. For site s1,
the H atom was located in the plane perpendicular to the z-axis of the hydrocarbon chain.
For site s2, the H atom was in the same plane but above the middle point of the C-H bond
(bridge site). While for site s3, the adsorbed H atom was in one of the hydrogen columns
along the z-axis. All these sites represent the configurations for the possible transition site.
The initial distance from the H atom to the nearest hydrogen atom in the hydrocarbon chain
for all the three cases was set to be 0.74 Å, i.e., the typical bond length of a H2 molecule.
The positions of the atoms were fixed for the calculations of the three initial configurations.

The stability of the three typical adsorption sites for H and H2 were explored by the
calculations of the adsorption energy, defined as:

Ea = Ehc+adatom − Ehc − Eadatom (1)

where Ehc+adatom is the total energy of a hydrocarbon chain with one H or H2 adsorbed
in the supercell. Ehc and Eadatom are the corresponding total energies of the hydrocarbon
chain and an isolated H or H2, respectively.
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and red balls denote the carbon, hydrogen, and the adsorbed H or H2, respectively. 
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Thus, one dangling bond was left on the carbon atom in the chain, which caused the 
nearby carbon and hydrogen atoms in the chain to distort slightly. The adsorption energy 
of the final state was −0.15 eV. The negative value means the final state formed with H2 
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slightly. These reductions of bond lengths can be ascribed to the enhanced charge density 
in the C-C and C-H bond area. In the process, the bond angle of C-C-C, in which the center 
atom is the carbon atom with the dangling bond, also changed from 113.6° to 120.8°, de-
viating much more from the regular tetrahedron angle (109.28°). The shortening of bond 
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Figure 1. (Color online) (a) Stereogram of an infinitely long hydrocarbon chain with one H atom
adsorbed at different sites. The two dotted lines show the borders of the supercell along the z direction.
(b–d) are enlarged views of the adsorption sites of s1, s2, and s3, respectively. The blue, pink, and red
balls denote the carbon, hydrogen, and the adsorbed H or H2, respectively.

3. Results and Discussions

As shown in Table 1, the hydrogen atom had the lowest energy compared with the
H2 molecule case for all three adsorption sites considered. Thus, in the following, we
will focus exclusively on the H adsorbed case. The most stable configuration was the
hydrogen located at the site s1 with the adsorption energy of 1.19 eV. It was found that
after the structural relaxation, all three initial adsorption sites transformed to the same
final configuration. Namely, the adsorbed hydrogen cleaved one hydrogen atom from the
hydrocarbon chain and a H2 molecule was formed, fleeing away from the hydrocarbon
chain. Thus, one dangling bond was left on the carbon atom in the chain, which caused the
nearby carbon and hydrogen atoms in the chain to distort slightly. The adsorption energy
of the final state was −0.15 eV. The negative value means the final state formed with H2
was more stable than the initial state of the hydrocarbon chain and the isolated H atom.
The bond lengths and bond angles of the carbon atoms with the dangling bonds in the
chain varied substantially during the process. Compared to the intact case (1.52 Å), the
bond length between the carbon atoms shrank about 0.05 Å, to 1.47 Å. The bond length
between the carbon atom with the dangling bond and the left hydrogen atom also reduced
slightly. These reductions of bond lengths can be ascribed to the enhanced charge density
in the C-C and C-H bond area. In the process, the bond angle of C-C-C, in which the
center atom is the carbon atom with the dangling bond, also changed from 113.6◦ to 120.8◦,
deviating much more from the regular tetrahedron angle (109.28◦). The shortening of bond
length and expansion of bond angle indicates that the characteristic of a C-C double bond
had emerged.

Table 1. The adsorption energies of an infinitely long hydrocarbon chain with one H and H2 adsorbed
at s1, s2, and s3 sites in the supercell, respectively.

Ea (eV)

s1 s2 s3

H 1.19 2.87 2.86
H2 2.39 4.61 5.56

The ability of the incident H atom to cleave one hydrogen atom from the chain can
be seen intuitively by the charge-density difference, calculated by the charge density of
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a H atom adsorbed at site s1 minus the charge density of the pristine hydrocarbon chain
(Figure 2a). For comparison, the charge density difference of the H2 molecule adsorbed
is given in Figure 2b. Figure 2a shows that the charge depletes in the C-H bond region,
while in the H-H bond region, the charge accumulates. This charge transfer weakens
the C-H bond and leads to the bond breaking eventually. While for the case of the H2
molecule, the strong H-H bond in the H2 molecule makes the splitting of the molecule
hard. Therefore, Figure 2b shows that there is no obvious charge depletion in the C-H bond
region. In Figure 2b, the left side of the charge distribution of the H2 molecule changes
slightly because of the attraction of the hydrogen atom in the hydrocarbon chain.
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Figure 2. (Color online) The difference of the charge densities between the hydrocarbon chain with H
(a) or H2 (b) adsorbed at site s1 and the pristine hydrocarbon chain. The blue and white spheres are
the carbon and hydrogen atoms, respectively.

Table 1 shows that the adsorption energies of the H adsorbed at all three sites are
positive, indicating that the states of the H located at these sites were less stable than the
state of the H far away from the chain. To understand the process clearly, the Nudged
Elastic Band (NEB) method [38] was applied to investigate the energy profile for the whole
reaction process of an incident H atom approaching the hydrocarbon chain and capturing
a hydrogen atom, then forming a H2 molecule and leaving the hydrocarbon chain. The
incident H atom approaches the chain along the x-axis (Figure 3). It must pass over an
energy barrier, about 1.4 eV, to reach the position where it can bond with the hydrogen
atom in the hydrocarbon chain. Note, that even if the H2 molecule reaches the bonding
position, it cannot cleave the H atom from the chain, as indicated by the above analysis
(Figure 2b). Therefore, the atomic hydrogen beam (AHB) [39,40] with a proper incident
energy could be used as a hammer to knock off the hydrogen atom from the hydrocarbon
chain, which offers better performance than H2 molecule proposed by Trebicky et al. [27].

In the next step, we built a model of two infinitely long hydrocarbon chains in parallel
along the z-direction to simulate the cross-linking effect. Each of the hydrocarbon chains
had one hydrogen atom removed in the supercell, called R2 configuration. The initial
and relaxed structures are shown in Figure 4a,b, respectively. After structural relaxation,
the two carbon atoms with dangling bonds approached each other and form a C-C bond
(Figure 4b). The bond length was 1.63 Å, comparable with the typical C-C single bond length
(1.52 Å) in alkane chains. The positions of the adjacent carbon atoms and their bonded
hydrogen atoms also deviated much from the ideal case, which made the cross-linking
possible. The total energy difference for the configurations in Figure 4a,b was −89.87 eV
(E4(b) − E4(a)), which shows that the cross-linking does help to stabilize the system. The
charge-density difference is illustrated in Figure 4b, indicating that the electron accumulates
in the cross-linking region, helping the formation of C-C direct bond. For comparison, we
also calculated the two hydrocarbon chains, in which only one chain has a hydrogen atom
removed (called the R1 configuration), and the two hydrocarbon chains with two hydrogen
atoms per supercell removed from each chain individually (called R4). The calculations
show that for the R1 case, no cross-linking was observed. Hence, the removal of at least
one hydrogen atom per supercell from each chain (R2) was the minimum requirement
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for the cross-linking between two hydrocarbon chains. While for the R4 configuration,
the cross-linking happens, however, owing to the higher energy needed to cleave four
hydrogen atoms totally per supercell, we suppose that this case is difficult to achieve in
experiments, compared with the R2 configuration.
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Figure 4. (Color online) The initial (a) and relaxed (b) structures of two infinitely long hydrocarbon
chains in parallel along the z-axis. The two dotted lines in (a) show the borders of the supercell
along the z direction. For each hydrocarbon chain, one hydrogen atom in the supercell is removed.
Brown and pink spheres represent the carbon and hydrogen atoms, respectively. The charge-density
difference is also given for the relaxed structure in (b). The green and yellow colors illustrate the
electron accumulation and depletion regions, respectively. (c,d) are the initial and relaxed structures
of two finitely long molecules (C20H42) in ‘head-to-head’ cross-linking mode. The charge-density
difference for the relaxed structure is also given in (d). For each molecule, one hydrogen atom
is removed.



Appl. Sci. 2022, 12, 6020 6 of 9

To further understand the cross-linking, partial densities of states (DOSs) of the carbon
atom with the dangling bond before and after the cross-linking are given in Figure 5 for the
R2 configuration. In the initial state, the pz hardly interacts with other three orbitals, while
s, px, and py hybridize to each other and form sp2 orbital. The unoccupied states above the
Fermi level (EF) indicate the existence of the dangling bonds. After structural optimization,
the recombination of carbon orbitals makes the three p orbitals mix well with each other.
The unoccupied states are pushed downward and filled.
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Above, we considered the H dissociation and cross-linking of infinitely long hydrocar-
bon chains. Now, a finitely long alkane molecule, icosane (C20H42), is taken as an example,
to observe what will happen in an experiment. The calculated binding energy shows that
the incident H atom residing at the two ends of the C20H42 was more stable than at the
position in the middle part of the molecule by 0.15 eV in energy. In the simulation of R2
configuration for C20H42 molecules, cross-linking also occurred as expected. Especially,
the two C20H42 molecules can align ‘shoulder-to-shoulder’ (as shown in Figure 4a) or
‘head-to-head’ (seen Figure 4c). The energy of the ‘head-to-head’ alignment is found to
be about 0.85 eV lower than the ‘shoulder-to-shoulder’ one because in the latter case,
the neighboring H atoms of the two molecules repel each other, resulting in the system
unstable relatively.

In the ‘head-to-head’ mode, the cross-linking caused the two C20H42 molecules to
connect and form a longer molecule C40H82, as illustrated in Figure 4d. We could see
from it that the charge also accumulated in the bond region. Vries et al. found that by
bombarding frozen methane molecules, much longer hydrocarbon molecules containing at
least 13 atoms were detected [41]. While Moore et al. investigated ion-irradiated water-ice
mixtures and found C2H6 could be yielded by CH4 dimerization [42]. Our calculations
indicate that hydrogen bombardment can also lead to the polymerization, thus benefit the
formation of long chain hydrocarbon molecules. These results are important to understand
the synthesis mechanism of complex organic molecules from quite simple hydrocarbon
molecules in organic chemistry and astrophysics.

The ‘shoulder-to-shoulder’ cross-linking may also happen when the dangling bonds
are in the middle of C20H42 molecules instead of at the two ends of the molecules. Al-
though the dangling bond is easier to form at the ends of the molecules, the incident H
atom may have a large probability to hit the H atom located in the middle part of the
target molecules, especially for long molecules. Thus, for longer hydrocarbon molecules,
‘shoulder-to-shoulder’ cross-linking may occur more easily. In experimental work dis-
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played for Dotriacontane C32H66, the ‘shoulder-to-shoulder’ cross-linking made the thin
film form perpendicular to the substrate and enhanced the mechanical properties of the
film [12]. For shorter molecules, longer molecules can be fabricated through the ‘head-to-
head’ cross-linking mode. However, we must emphasis the preference of the cross-linking
mode highly depends on the experimental conditions, such as the arrangement of the
molecules. Further investigation should be made to explore the abundant phenomena of
cross-linking in alkane molecules with different lengths. In addition, we should mention
that besides the hydrocarbon molecules with a chain structure, our conclusion may also
apply to the cross-linking of hydrocarbon molecules with a ring-like structure, such as
aromatic molecules, or complex hydrocarbon molecules with extra functional groups.

4. Conclusions

In summary, calculations of the structural and electronic properties of H incidence
induced hydrogen dissociation and cross-linking of hydrocarbon chains of self-assembled
monolayers were performed. At the three initial adsorption sites, the incident H can
detach one hydrogen atom from the hydrocarbon chains to form a H2 molecule and flee
away. Among H atoms and H2 molecules, H atoms may be the better candidate to cleave
the hydrogen atoms from the chains. The ‘head-to-head’ cross-linking was found to be
more energetically favorable than the ‘shoulder-to-shoulder’ mode. It is expected that
in experiments, the long molecules may prefer the ‘shoulder-to-shoulder’ cross-linking,
while short molecules may prefer the cross-linking mode of ‘head-to-head’. Our results
show that hyperthermal hydrogen can be a very efficient tool to produce large hydrocarbon
chains or even ultrathin organic films. Our study should be helpful for the enhancement of
mechanical and chemical strength of self-assembled monolayers and enlarge the scope of
the application of low-dimensional organic materials.
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