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1. Introduction

Intelligent Transportation System (ITS) has evolved into a system for provision of
traffic information and traffic control with the help of advanced IT technologies. Congestion
and safety issues arise when the number of vehicles on the road increases, and has become
the bottleneck. The cost of congestion in the United States is estimated to be 115 billion
dollars, and in addition, it is estimated that more than 1.2 million deaths happen every
year due to road accidents. According to a survey by the Texas Transportation Institute,
commuters in the United States spend over 42 h per year trapped in traffic, and vehicles
waste more than 3 billion gallons of fuel every year, costing $160 billion, which is equal to
$960 per traveler [1]. Such issues will be exacerbated in the future because of the increasing
population and migration to metropolitan regions in many countries throughout the world.
The implementation of ITS to increase the efficiency and safety of transportation is one
possible solution to this challenge. This would be accomplished through the use of sensing
technologies, modern communications, information processing, and control technologies.

Data collection, data analysis, and data transmission are essential components needed
for the advanced technologies and applications of ITSs. In data collection, information
regarding the different parameters like traffic flow, road network, average travel time,
number of pedestrians passing a transit line, etc. is collected by using sensing devices.
Generally, in order to gather traffic information including vehicle speed and traffic volume,
inductive loop detectors and pneumatic tubes are used to detect the presence of vehicles
on the road using the induced current and pressure changes of the tube, respectively [2].
With the development of advanced sensing and imaging technologies, cameras and radio-
frequency identification (RFID) scanners are widely being used for data collection in ITS.
Typically, cameras are installed at different places within the network collecting motion
videos of traffic scenes. By analyzing the images of the video, image-processing software
is used to gather traffic information, such as traffic flow, vehicle types, and speed [3]. In
addition, automatic license recognition plates and matching technologies are employed
to obtain secondary traffic information such as traveling periods and routes [4]. With
advanced communication technologies, more stable and secure communication in ITS can
be established. Having cellular network equipment (GSM, GPRS, 3G, LTE) in the vehicle,
it is possible to communicate with the cloud server to gather information [5]. Sensors in
vehicles can form a wireless sensor network (WSN) and thus diverse applications [6,7] of
the WSN can be applied to the ITS. Moreover, in order to have communication between
the device of the vehicle and the bus stop used as a gateway, long-range technology
is used [8]. The aim of data analysis focuses on providing different traffic information
and control/management strategies from the collected data. For the evaluation of traffic
conditions and the supplement of necessary solutions, predefined and pre-calibrated
models, traffic flow models, and other models for intersection are usually used. With the
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improvements in computational performance and efficiency, agent-based models and micro-
simulation schemes have been developed to perform accurate and detailed evaluations [9].
As the operation of smartphones significantly increases, mobile phone data, media access
control addresses from wireless fidelity and bluetooth, and global positioning system (GPS)
data are provided to analyze the traveling behavior and traffic circumstances. With more
personalized and specified information from devices, a more detailed analysis of behavioral
information can be performed.

Vehicle detection, one of the essential tasks in ITSs, is typically used to collect and
provide information including identification of traffic accidents, vehicle counting, speed
measurement, and traffic flow prediction. Edge computing, which is a distributed com-
puting service that splits complicated computing tasks into multiple small components
and allocates the separate tasks to local devices, is utilized for vehicular applications in ITS.
Edge computing, an extension of cloud computing, has several characteristics including
dynamics, mobility, low latency, and location awareness. The nodes in edge computing
can implement allocation and cooperation for energy-efficient operation. Recently, various
machine learning models and technologies have been applied to the transportation domain
because a large amount of traffic information collected from GPS, road devices, and front
board cameras is available. Deep learning, which is one of the machine learning techniques,
has a significant role in computer vision-based applications. A study relevant to deep
learning technique was implemented to improve the performance and efficiency of trans-
portation safety, control, and management [10]. With computer vision-based applications,
the vehicle obtains a decision-making capability depending on its surrounding objects. Con-
volutional neural network (CNN), which is especially effective at image classification and
detection, can be applied to advanced driver assistance systems including object detection,
lane departure, collision detection, traffic sign detection, and pedestrian detection.

This special issue of “Future Intelligent Transportation System for Tomorrow and
Beyond” consists of recent research achievements from the experts in the field of ITS,
bringing together contributions to the enhanced transportation systems. The goal of this
special issue is to encourage research and development in future ITS while addressing their
validation by using experimental data as possible.

2. Contributions

Decreasing fuel utilization, carbon dioxide (CO2), and other air contamination emana-
tions has long been a pressing issue for the transportation area, particularly the automobile
business, which is currently mired in a deadlock over oil constraint and environmental
concerns. Along these lines, authorities and automakers have been testing a variety of tac-
tics and technologies to limit fuel utilization and emissions. The introduction of the model
predictive control (MPC) algorithm into the adaptive cruise control (ACC) system has lately
brought limelight to academic interest as a new research issue. The feasibility of adopting
a hybrid MPC framework to vehicle tracking control investigated in [11] is based on the
architecture of the intelligent ACC system. The ACC framework was proposed in view of
eco-driving in ref. [12], and the results showed the adequacy and modern feasibility of the
created algorithm. The MPC approach is used to develop a multi-objective coordinated
optimization strategy for the ACC system which includes tracking capabilities, driving
comfortability, and decreasing fuel usage. However, the distinctness of the cut-in driving
circumstances and related specifics of developing an MPC-based ACC system was not fully
defined. In addition to this, the suggested MPC-based ACC system’s specific fuel efficiency
performance gain over the classic controller-based ACC system was unclear. The MPC
method is used to develop the ACC system in order to achieve the goals of eco-driving,
driving safety, comfortability, and tracking capabilities. The proposed MPC-based ACC
framework was assessed and contrasted with the standard proportional-integral-derivative
controller-based ACC framework. Based on the simulation results, the MPC-based ACC
system improved the fuel economy by 12–13%.
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With the growth of urbanization, traffic congestion remains a major challenge for
large cities. Drivers’ route-based choices are primarily based on their limited perspectives
in the absence of complete real-time traffic information. As a result of these options on
improvident and non-cooperative routes, the efficiency of road network resource use is
degraded. Some nations are focused on enthusiastically fostering ITS to accomplish a profi-
cient traffic flow. Traffic prediction is an essential part of ITS, particularly on highways with
high traffic volumes and high-speed driving. To deal with the intricacy of gigantic traffic
information [13], robust traffic models are required, considering traffic information for the
space-time connection to predict the traffic circumstances. These techniques are rehearsed
to anticipate the traffic flow and volumes. All known machine learning approaches fail to
grasp the spatial-temporal aspects of a traffic network when dealing with large amounts of
data. Researchers used deep learning approaches to utilize historical traffic circumstances
for predicting future traffic situations due to their excellent feature learning capabilities.
A novel multi-branching technique to regulate the spatial-temporal aspects by modeling
traffic flow using spatial correlations and various 3D volume layers is presented in ref. [14].
This methodology is helpful for investigating temporal dependencies through the 3D CNN.

Mobile gadgets have exploded in popularity in recent years. The proliferation of smart-
phones and GPS-enabled portable devices have resulted in an unanticipated increase in
traffic trajectory data. Modeling the trajectory and forecasting the destination are important
not only for monitoring urban traffic but also for a variety of other exciting applications,
such as targeted advertising based on destination, location-based social networks (LBSNs),
intelligent traveling schedules, and reducing travel costs, as well as energy consumption-
optimized scheduling strategies [15]. The study of forecasting the future destination is a
well-studied human mobility application for minimizing traffic congestion and improv-
ing the performance of the electronic dispatching system. A neural network approach to
forecast the next destination according to taxi driver behavior is studied in ref. [16]. In this
method, encoder and decoder are the essential units of the transformer. With the assistance
of LBSN, the topographical data in view of visited semantic areas is encoded. The model is
specifically trained to anticipate the future destination, using exact longitude and latitude
data. The trials were run through two real-world datasets, Porto and Manhattan, and it
was found that functioning is far better than earlier models. This study has the potential to
minimize client wait times for rides and driver wait times to pick up customers.

People have become more connected as cellphones have turned out to be more
widespread, and this has made everyday order delivery service much more convenient.
Customers can be dropped/picked up by a cab at any time using apps like Kakao, Ola,
and Uber, and in the same way food can be transported to the address of consumers in a
relatively short time by utilizing food-ordering apps like Zomato, Meituan, and Freshhema.
The delivery service routing system, which directs automobiles and couriers to convey or-
ders, has played a critical role in serving large number of requests. A study on the delivery
service sharing (DSS) and flexible time windows (DSS-Fle) variation with adjustable time
frames, which allows orders to be shared and served at the same time, is carried out in
ref. [17]. The practical DSS-Fle problem was investigated in this study, where client orders
have variable drop-off time periods and can be served in a shared fashion. The suggested
results showed with thousands of regions and client orders that the DSS-Fle algorithm is
efficient in both enhancing order rate and adapting to city-scale scenarios.

Economy, mobility, environment, population, lifestyle, and organization are all cor-
nerstones of a city. The goal of a smart city is to save costs and improve organization and
the well-being of its residents. Unmanned aerial vehicles (UAVs) are now used in a wide
range of everyday applications and are acquainted further to develop street traffic effective-
ness [18]. The UAVs have a certain level of intelligence in most of applications, allowing
them to be utilized as high-performance sensors, data collectors, or even communication
relays, especially when ground cover is insufficient. The advancements in cooperative ITS
technology, as well as the intriguing qualities of UAVs, present an ideal background for
introducing a UAV into a use case involving a car and a pedestrian. In [19], the UAV is sup-
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posed to control the situation, gather data, and provide directions to the automobile driver
in order to avoid a collision between the car and the pedestrian. The authors underline that
the UAV might aid in improving both road safety and energy consumption.

Skyline localization is a crucial branch of optical geolocation, particularly in fields
with few feature points. The location of the observation can be established by extracting
features from photos or videos and comparing them to feature databases. The difficulties of
detecting the skyline in hilly terrain, including lush vegetation and proximity to the skyline,
is investigated in ref. [20]. This study proposes a new skyline localization approach that
includes the enhanced angle chain code and skyline lapel point, as well as other matching
technique that include the skyline pyramid and the skyline distance heatmap. The test
results showed that this technique has high localization precision in hilly regions. However,
the exactness of the technique is low when adjacent trees severely hide the skyline, or when
the mountain in front of the camera is too close.

Electric vehicles (EVs) have become a fundamental part in the transportation system
to diminish reliance on fossil fuel sources and grabbed the attention of researchers inves-
tigating different sorts of eco-friendly power assets in the microgrid (MG). Considering
time-varying load demand similar to the work in ref. [21], the power management strategy
of interdependent MG and EV fleets is presented in ref. [22]. This strategy is integrated
with a novel EV charging/discharging scheduling algorithm to reduce the expenses of
PV-based charging station. With the advancement of EVs on roads and parking stations,
the EV aggregator can be used to provide energy-efficient and cost-effective charging and
discharging solutions. Batteries installed in the EVs can act as an energy storage system,
shifting load demand from peak to off-peak hours and lowering the electricity bills.

Predictive mobility is a major component that can help traffic operators assess traffic
performance in smart cities. Using historical data from GPS, the authors incorporated the
self-attention long short-term memory (SA-LSTM) model with a Butterworth low-pass
filter to estimate the journey time on the road segments [23]. Initially, the LSTM is defined
as a standard in this study. Due to the relatively high mean absolute error (MAE) of
27.12 min per 100 km, the SA-LSTM model together with the Butterworth low pass filter
was implemented to reduce the MAE to 12.15 min per 100 km.

Visual odometry (VO)-based localization algorithms have been created as a result
of the information in images. The ability of a mobile robot or vehicle to locate itself is
a critical component in the advancement of autonomous robotics and vehicles. The use
of a gated recurrent unit (GRU) network trained on pose data acquired by an accurate
sensor is proposed in ref. [24] as a new pose estimation method. Reconstructing the rotation
matrix with a yaw angle that is the fusion of the yaw angles calculated from the proposed
GRU network and previous VO approaches improves performance in terms of translation
error and rotation error. The network was trained by using the KITTI dataset [25], and the
performance of the KITTI sequences increased by 1.426% in terms of translation error and
0.805 deg/100 m in terms of rotation error.

The future ITS will remain as an important aspect of urban planning and future cities,
as it will help to enhance road and traffic safety, transportation and transit efficiency, energy
efficiency, and pollution reduction. We believe that the articles in this Special Issue offer
significant understanding of different infrastructures within the transportation system
under different situations to ensure the efficiency and safety of the transportation system.
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