
Citation: Gulzar, Y.; Khan, S.A. Skin

Lesion Segmentation Based on Vision

Transformers and Convolutional

Neural Networks—A Comparative

Study. Appl. Sci. 2022, 12, 5990.

https://doi.org/10.3390/

app12125990

Academic Editors: Hyuntae Park,

Do-Young Kang and Sangjin Kim

Received: 17 May 2022

Accepted: 10 June 2022

Published: 12 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Skin Lesion Segmentation Based on Vision Transformers and
Convolutional Neural Networks—A Comparative Study
Yonis Gulzar 1,* and Sumeer Ahmad Khan 2,*

1 Department of Management Information Systems, College of Business Administration, King Faisal University,
Hofuf 31982, Saudi Arabia

2 Biological and Environmental Sciences and Engineering, King Abdullah University of Science and
Technology, Jeddah 23955, Saudi Arabia

* Correspondence: ygulzar@kfu.edu.sa (Y.G.); sumeer.khan@kaust.edu.sa (S.A.K.); Tel.: +966-545-719-118 (Y.G.)

Abstract: Melanoma skin cancer is considered as one of the most common diseases in the world.
Detecting such diseases at early stage is important to saving lives. During medical examinations,
it is not an easy task to visually inspect such lesions, as there are similarities between lesions.
Technological advances in the form of deep learning methods have been used for diagnosing skin
lesions. Over the last decade, deep learning, especially CNN (convolutional neural networks), has
been found one of the promising methods to achieve state-of-art results in a variety of medical
imaging applications. However, ConvNets’ capabilities are considered limited due to the lack of
understanding of long-range spatial relations in images. The recently proposed Vision Transformer
(ViT) for image classification employs a purely self-attention-based model that learns long-range
spatial relations to focus on the image’s relevant parts. To achieve better performance, existing
transformer-based network architectures require large-scale datasets. However, because medical
imaging datasets are small, applying pure transformers to medical image analysis is difficult. ViT
emphasizes the low-resolution features, claiming that the successive downsampling results in a lack
of detailed localization information, rendering it unsuitable for skin lesion image classification. To
improve the recovery of detailed localization information, several ViT-based image segmentation
methods have recently been combined with ConvNets in the natural image domain. This study
provides a comprehensive comparative study of U-Net and attention-based methods for skin lesion
image segmentation, which will assist in the diagnosis of skin lesions. The results show that the
hybrid TransUNet, with an accuracy of 92.11% and dice coefficient of 89.84%, outperforms other
benchmarking methods.

Keywords: melanoma; lesion; segmentation; transformers; convolutional neural networks

1. Introduction

Cancer is one of the deadliest diseases in the world. According to WHO, in 2020,
nearly 10 million people have died due to cancer. According to 2020 data, among the
new cancer cases found, the most common cases were breast cancer (2.27 M), lung cancer
(2.21 M), colon and rectum (1.93 M), skin cancer (1.2 M) and stomach (1.09 M) [1]. Skin
cancers are distinguished into two categories, namely non-melanoma and melanoma. Non-
melanoma is a more common type of skin cancer whereas melanoma is a less common
skin cancer. However, melanomas are the most dangerous ones and have a high spread
rate. Even though the amount is only 5% of skin malignancy, the mortality rate is over
75% [2]. Skin cancers can spread to other parts of the body and are often not curable;
detection at a very early stage can help them from spreading as they may be curable.
Melanoma skin cancers are a highly aggressive type of cancer, and their incidence has
dramatically increased over the past three decades [3]. To stop their spread and treat
them, it is important to detect such cancers at a very early stage. For melanoma skin
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cancer, the five-year survival rate is 98% if detected at an early stage; however, it drops
by 14% if detected in later stages. Due to the nature of melanoma, it is very important to
detect it in a timely and accurate manner. The best way to detect skin lesions is through
dermatoscopy. This technique is used as a primary examination to detect skin lesions. Due
to the high resolution and quality, and enhanced visualization competence of dermoscopic
images, these images help dermatologists to examine the skin lesions with naked eyes.
Nevertheless, good expertise and deep knowledge are required to make the right diagnosis
and such diagnoses/interpretations may differ from one dermatologist to another.

It is evident from the literature that skin lesion (melanoma) detection based on CNN
(Convolutional Neural Networks) has obtained better performance than dermatologists’ [4].
Incorporating AI in smartphones has become a trend and is proven productive in terms
of accuracy. Advancement in image processing and incorporating the deep learning
techniques, especially CNN, has given a different edge to use in medical science. Processing
of images using CNN and its automatic analysis methods can be proven a powerful tool
and can provide a user-friendly intelligent system to scan the lesion images to detect
melanoma outside the clinic [5,6]. As a result, automatic analysis of skin lesions has become
an important step in computer-aided diagnosis [7].

Using dermoscopy images, different approaches have been proposed to detect melanoma
skin lesions based on the appearance of colour and texture patterns of skin for instant
classical pattern analysis [8], ABCDE rules [9] and a seven-point checklist [10,11]. In ABCDE
rules, an easy and general framework has been provided in order to identify melanoma.
The defined rules are border irregularity, un-uniform colour, 6 mm diameter or above,
and growing lesions in colour, shape or size. Usually, it is the borders of the melanoma
which are uneven and may contain rough edges, which are imprecisely defined. Hence,
skin segmentation is performed at an early stage to get the border information or regions
of interest (ROI). Such approaches have been proven to be beneficial for the subsequent
classification or detection task [11,12].

It is a challenging task to perform automatic skin lesion segmentation on some skin
lesions where lesions are not that clear or have a light pigment. It gets complicated when
colour or visual patterns are similar, and the boundaries are alike for different melanomas.
In such cases, skin segmentation becomes enormously difficult. It gets more complicated
for computers to read images directly which are of high resolution, and resource intensive.
Having such properties make the process slow. To expedite the process, the image size
is reduced using down-sampling, which in turn has a negative effect on the textures and
subtlety. Due to that, it gets more complicated to differentiate the boundaries of these
skin lesions. Moreover, the colour and texture distribution gets affected by some elements
present in skin lesions such as blood vessels, colour illumination and hair artefacts, which
have a negative impact on learning.

Figure 1 shows some sample images of the ISIC dataset [13]. ISIC contains the digital
skin images of melanoma. The aim of keeping such images publicly available is to educate
the public/professionals about melanoma, examine them and provide some diagnoses
through teledermatology, clinical decision support and automated diagnosis. Applying
skin lesion segmentation on such a dataset is a challenging task due to the characteristics of
these images. As it can be seen from the figure some images are covered with hair, some
lesions have blood vessels around them and some lesion images have fuzzy boundaries,
which makes skin lesion segmentation difficult. Different approaches have been proposed
for skin lesion segmentation by incorporating different CNN architectures with multi-
scale information [12,14,15] and multi-task learning frameworks [16,17] with auxiliary
information [18]. The aim of these proposed approaches is to utilize as much data available
to detect skin lesions and make the right diagnosis. Nevertheless, such methods either
require extra labelling or use extensive parameters which are impractical in real situations.
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Figure 1. Sample of Skin Lesion Images.

Although CNNs have achieved the best results on various vision tasks, they have
still shown limited performance on skin lesion segmentation tasks due to a lack of un-
derstanding of long-range spatial relations in skin lesion images. In order to overcome
this limitation, the recently proposed Vision Transformer (ViT) [19] for image classification
employs a purely self-attention-based model that learns long-range spatial relations to focus
on the image’s relevant parts. To achieve better performance, existing transformer-based
network architectures require large-scale datasets. However, because medical imaging
datasets are small, applying pure transformers to medical image analysis is difficult. ViT
emphasizes low-resolution features, claiming that the successive downsamplings result in
a lack of detailed localization information, rendering it unsuitable for skin lesion image
classification. To improve the recovery of detailed localization information, several ViT-
based image segmentation methods have recently been combined with ConvNets in the
natural image domain. Furthermore, different architecture called UNet [20], based on CNN
with few changes in its architecture, has been developed and incorporated into biomedical
images not only to just classify the disease but also to identify the area of infection. Due to
its success rate on medical images, many researchers [21–24] have adopted this model and
use it for skin segmentation. This study provides a combined architecture that combines
ViT and ConvNet to provide an efficient skin lesion image segmentation, which will assist
in the diagnosis of skin lesions.

Recently, some of the feature extraction studies have shown some improvement in
terms of accuracy [25–27]. Such studies mainly follow parallel-based and serial-based
approaches. The aim of these studies is to enrich the information related to the subject
gathered from different sources. Nevertheless, incorporating this technique gives the rise
to the number of predictors, which in turn has a negative impact on computational time.
Due to this reason, many researchers only focus on introducing techniques that select
only the best features. Feature-based techniques are of two types: heuristic-based and
meta-heuristic technique. Meta-heuristic techniques are more valuable for the selection
process and provide a fewer number of predictors.

In this paper, a detailed comparative analysis based on the properties of the Trans-
formers and CNNs is carried out. The following points summarize the contribution of
the paper:

• We discuss the challenges in the skin lesion segmentation.
• We provide a detailed comparative analysis of the state-of-the-art methods for the task

of skin lesion segmentation.
• We evaluate the efficacy of the state-of-the-art methods, and the experiments demon-

strate the effectiveness of the U-Net and Transformer-based methods for skin lesion
segmentation.
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The rest of the paper is organized as follows: related works to this research are reported
in Section 2. In Section 3, the details about the comparative methods are presented. Section 4
shows the experimental details and performance evaluation of the comparative methods
and the benchmarking models. Finally, Section 5 concludes the paper.

2. Related Work

In different computer vision tasks, the convolutional neural network models have
made exceptional progress [28–32], and have been proven to be the best in solving seg-
mentation problems. Skin lesion classification accuracy directly depends on the lesion
segmentation. The more accurate the lesion segmentation is, the better the result of lesion
classification. Lately, a lot of research has been done to develop such models, which can
automatically conduct the lesion segmentation in such a way that differentiates the normal
area of skin from the lesion. Different techniques have been used, such as region growing,
threshold, edge detection, etc. to develop such models.

Segmentation problems have been treated as classification problems by some re-
searchers, such as Jafari et al. [33]. They proposed an automatic skin segmentation model
for non-dermoscopic images. For better performance, this model uses the guided filter
technique [34] as a pre-processing technique to reduce the noise artefacts on the input
images. A window around the pixel is placed to identify whether it belongs to a lesion
area or not and then is fed to a CNN and output labels pixel in the centre of the patch. A
segmentation map is generated with the label as 1 (lesion) and 0 (normal) for each pixel of
the pre-processed images and then the segmentation mask is generated by selecting the
largest connected component of an image. The output of this model is the predicted labels
of the pixels. Nonetheless, such a model requires a dense prediction because it is based on
pixel-level prediction. U-NET is a well-known model proposed by Ronneberger et al. [20].
It has a good success rate for medical images when it comes to segmentation problems. Due
to its popularity, many models have been proposed [21–24] adopting U-NET architecture.
They have used it for melanoma skin segmentation and classification. In [23], the authors
have modified the original U-NET by widening the kernel at each convolutional block
using a dilated convolution technique in order to expand the receptive field of the proposed
model; whereas in [24], the authors have utilized colour transformation to select different
colour bands in order to improve the performance of the proposed approach. Another
model proposed by Yuan et al. [35] incorporated the deconvolution method and replaced
the regular cross-entropy function with a loss function based on Jaccard distance; whereas
a full resolution CNN model is proposed by Al-masni et al. [36], in which models directly
learn the full resolution features of every single pixel from the input images without re-
ducing the size of input images. However, there is an issue of using full resolution CNN
as an overfitting of the model, which is likely to happen on the features of non-melanoma
skin lesions. In that case, such models perform poorly when it comes to complex features
of melanoma skin lesions due to their inconsistent boundary appearance and different
textures. Bi et al. [37] proposed a new model to overcome the limitation of full-resolution
CNN. Their model learns the necessary skin lesion characteristics for each class (be it
melanoma or non-melanoma) individually. They incorporated a new probability-based,
stepwise integration to combine the segmentation output generated from each class. In
another study [38] of skin lesion segmentation, a dilated residual network has been used
along with pyramid pooling networks. To attain sharp boundaries, they have used a
negative log-likelihood and endpoint error loss together. In a recent study, a bootstrapping
CNN method was proposed by Xie et al. [17] for both skin lesion segmentation and skin
classification problem. In this method, one task aids another in a bootstrapping way where
a coarse segmentation network is trained, and then a predicted coarse mask is utilized
to guide the classification network. Simultaneously, localization maps are generated to
increase the prediction of masks outperforming the coarse mask. Recently, another model of
CNN architecture using auxiliary information has been proposed [18]. The model does not
need any pre-post-processing of data. This model predicts edges and does the classification
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of skin lesions simultaneously by using two parallel branches. Predicting edges helps the
neural network to pay attention to segmentation mask boundaries.

In brief, the aforementioned methods focused mainly on feature extraction. They
used pre-trained CNN models in order to achieve it. Furthermore, they incorporated CNN
segmentation models for lesion detection. Their primary aim is to improve the model’s
accuracy in terms of performing skin segmentation. However, hardly anyone has focused
on reducing the systems’ time in terms of prediction.

3. Methods

In this work, we selected convolution-deconvolution based, (U-Net [20], V-Net [39])
and Attention-based (Attention U-Net [40], TransUNet [41], Swin-UNet [42]) medical image
segmentation models based on their documented performance on the existing medical
image segmentation datasets.

Since the task of skin lesion segmentation is quite different from multiorgan segmenta-
tion, as in skin lesion segmentation, the task is to predict the binary mask rather than the
multiclass pixel-wise segmentation. Therefore, we modified the implementation of these
models in order to apply these models for this specific task of skin lesion segmentation.
The following subsections outline a brief overview of these methods and the architectural
changes that were carried out for this specific task of skin lesion segmentation.

3.1. U-Net

As stated in [20], U-Net consists of contracting and expansive path (downsampling
and upsampling) as shown in Figure 2. For this particular task, we used four downsampling
and upsampling levels with one bottom level. Two convolutional layers per downsampling
level and one convolutional layer after concatenation per up sampling level. Gaussian Error
Linear Unit (GELU function) was used as an activation function with batch normalization
and Softmax as an output function. GELU multiplies its input by the cumulative density
function of the normal distribution. The reason for using GELU is that it provides a well-
defined negative gradient to prevent neurons from dying while also limiting how far into
the negative regime activations can have an effect, allowing for improved feature mixing
between layers. In addition to this, max pooling was used for downsampling and reflective
padding for upsampling.
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3.2. V-Net

V-Net [39] originally proposed for 3d MRI images was modified to 2d inputs of skin
lesion images as shown in Figure 3. The same number of downsampling and upsampling
levels were used as in U-Net implementation, i.e., four with one bottom level. The number
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of stacked convolutional layers in the residual path increases from one to three down-
sampling levels (symmetrically decreasing with upsampling levels). Unlike U-Net, the
Parametric ReLU (PReLU) activation function was used with batch normalization and
Softmax as an output activation function. PReLU is a type of LeakyReLU that instead
of having a predetermined slope, makes it a parameter for the neural network to figure
out itself, which helps in the better adaption to other parameters such as weights and
biases. Downsampling was carried through stridden convolutional layers and upsampling
through transpose convolutional layers.
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3.3. Attention U-Net

Attention U-Net [40] was proposed for multi-class CT abdominal image segmentation
as shown in Figure 4. We modified this model for skin lesion image segmentation. We used
four downsampling and upsampling levels with two convolutional layers per downsam-
pling level and two convolutional layers after concatenation per upsampling level. We
used the ReLU activation function with batch normalization. In addition to this, we used
additive attention and ReLU attention activation. We used stridden convolution layers for
downsampling and bilinear interpolation for upsampling.
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3.4. TransUNet

The TransUNet [41] architecture has been used for the medical image segmentation on
the Synapse multi-organ segmentation dataset for segmenting the abdominal CT images
into eight abdominal organ classes as shown in Figure 5. Since the task of skin lesion seg-
mentation is quite different from multiorgan segmentation, as in skin lesion segmentation,
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the task is to predict the binary mask rather than the multiclass pixel-wise segmentation.
Therefore, we modified the basic architecture of the TransUNet, which is a combination of
the Transformer and U-Net architectures in order to address the challenges in skin lesion
image segmentation. For an image, instance i ∈ RH×W×C, with a spatial resolution of
H ×W and a channel count of C is determined. The goal is to forecast the label map with
size H ×W that corresponds to the related ground truth label map. The most common and
conventional method is to train a CNN (such as U-Net) to encode images into high-level fea-
ture representations, which are subsequently decoded back to full spatial resolution. Unlike
other approaches, this method uses Transformers to incorporate self-attention mechanisms
into the encoder architecture.
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The input to the model is (512, 512, 3) images. The model has four down and upsam-
pling levels-two convolutional layers per downsampling and upsampling layers, respec-
tively. We used 12 transformers blocks and the number of attention heads was set to 12.
The other changes that have been made to the basic architecture of the TransUNet are the
number of nodes in the multi-layer perceptron (MLP) and the embedding dimensions. In
the proposed model, each transformer has 1536 multi-layer perceptron (MLP) nodes that
embed the images into 384 dimensions. The reason for modifying these was to make the
network focus on more precise localization and produce accurate binary masks as com-
pared to the multiclass segmentation in the base TransUNet. For the transformer, an MLPs
Gaussian Error Linear Unit (GELU) was used as an activation function and upsampling
through bilinear interpolation was carried out. Sigmoid was used as an output function.

3.5. Swin-UNet

Swin-UNet [42] is transformer-based U-shaped architecture with an encoder, bottle-
neck, decoder and skip connections as shown in Figure 6. The encoder, bottleneck and
decoder are all built using the Swin-Transformer block. The inputs are divided into non-
overlapping image patches. Each patch is treated as a token and fed into the Transformer-
based encoder to learn deep feature representations. The extracted context features are
then up-sampled by the decoder with a patch expanding layer and fused with the multi-
scale features from the encoder via skip connections to restore the spatial resolution of the
feature maps and further perform segmentation prediction. Three downsamplings and
upsampling with one bottom level were used. Two Swin transformers per downsampling
level and two Swin transformers per upsampling level were used. Two by two patches
were extracted from the input and then embedded into 64 dimensions. In addition to this,
512 nodes per Swin transformer, shift attention windows and Softmax output function
were used.
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4. Experimental Results

The implementation details of the comparative methods are presented in this section.
After that, the dataset and evaluation metrics are described. Finally, the performance of the
different methods is assessed and compared to state-of-the-art approaches.

4.1. Implementation Details

All the models are trained using ISIC 2018 [18] training data, and their performance
is assessed using testing data. A dermoscopic image (input), its matching ground-truth
segmentation mask and an edge (contour) image (outputs) are required for training the
proposed model. By using a contour detection technique, the ground truth of the edge
picture may be automatically extracted from the ground truth of the segmentation mask.
We trained all the models with stochastic gradient descent (SGD) with a learning rate of
0.001, momentum = 0.9 and decay = 0.0005. The batch size is set to 1 and the models were
trained for 100 to 200 epochs with early stopping criteria. The models were trained with
binary cross-entropy loss.

The methods were implemented in Keras with the TensorFlow backend. All the
experiments were carried out on Nvidia Tesla V100 GPUS with 32 GB memory.

4.2. Dataset

ISIC 2018 Dataset: ISIC dataset [13] contains of three parts—skin lesion segmentation,
attribute detection and classification of the skin lesion into type. For segmentation, the
dataset contains 2594 and 1000 number of images for training and testing, respectively.
The training set is provided along with ground truth images. The images were resized to
a uniform dimension of 512 by 512 as a pre-processing step in order to have a uniform
evaluation of all the methods. The images present in dataset have illumination variations
as well as different artefacts such as hair, colour-marks, rulers and glue. Figure 7 shows
some of the image samples of dataset ISIC 2018.



Appl. Sci. 2022, 12, 5990 9 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 7. Example images from ISIC 2018 dataset. 

4.3. Evaluation Metrics 

For the evaluation, different matrices have been used in this research work, such as 

Intersection over Union (IoU), Precision (P), Recall (R) and Accuracy (ACC). These require-

ments are as defined as follows: 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

wherein TP (True Positive) denotes the number of correctly recognized foreground pixels 

(interest region), the number of background pixels accurately recognized as a background 

is referred to as TN (True Negative) (skin region), the number of background pixels la-

belled as the foreground is known as FP (False Positive) and the number of foreground 

pixels incorrectly labelled as background is known as FN (False Negative). 

The ratio of overlapping and union areas between the expected segmentation mask 

and the ground truth mask is represented by IoU. The IoU metric measures how similar 

the prediction mask is to the ground truth mask. The percentage of correctly identified 

pixels in the total number of pixels is represented by ACC. The fraction of successfully 

segmented foreground pixels versus the total number of foreground pixels is represented 

by recall (R). 

4.4. Qualitative Results 

A qualitative examination of the different method’s performance is undertaken in 

this section. The segmentation and edge prediction branches’ final results are shown in 

Figures 8–12. In most cases, as illustrated in Figures 8, 9 and 11, the attention-based meth-

ods combined with the properties of U-Net can appropriately segregate the pigment re-

gions as compared to the U-Net based methods when used separately. The first row shows 

the output predictions given an input image, which is a simple scenario because the colour 
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4.3. Evaluation Metrics

For the evaluation, different matrices have been used in this research work, such
as Intersection over Union (IoU), Precision (P), Recall (R) and Accuracy (ACC). These
requirements are as defined as follows:

IoU =
TP

TP + FP + FN

P =
TP

TP + FP

R =
TP

TP + FN

ACC =
TP + TN

TP + TN + FP + FN
wherein TP (True Positive) denotes the number of correctly recognized foreground pixels
(interest region), the number of background pixels accurately recognized as a background
is referred to as TN (True Negative) (skin region), the number of background pixels labelled
as the foreground is known as FP (False Positive) and the number of foreground pixels
incorrectly labelled as background is known as FN (False Negative).

The ratio of overlapping and union areas between the expected segmentation mask
and the ground truth mask is represented by IoU. The IoU metric measures how similar the
prediction mask is to the ground truth mask. The percentage of correctly identified pixels
in the total number of pixels is represented by ACC. The fraction of successfully segmented
foreground pixels versus the total number of foreground pixels is represented by recall (R).

4.4. Qualitative Results

A qualitative examination of the different method’s performance is undertaken in
this section. The segmentation and edge prediction branches’ final results are shown
in Figures 8–12. In most cases, as illustrated in Figures 8, 9 and 11, the attention-based
methods combined with the properties of U-Net can appropriately segregate the pigment
regions as compared to the U-Net based methods when used separately. The first row
shows the output predictions given an input image, which is a simple scenario because
the colour contrast between the foreground and background regions of the input image is
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high. As a result, the attention-based approaches can accurately detect the pigment region.
The input images in the bottom rows have hairs and low contrast and deformed shapes,
which can distort the textures of the skin lesions and make learning difficult. Despite this,
the attention-based methods (TransUNet and Attention U-Net) succeed in segmenting
the pigment regions. To put it another way, the attention-based methods show robust
performance to the distortions and exhibit good overall performance.
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segmentation mask and (c) the output probability map of the segmentation prediction.

It can be clearly seen in the output results from U-Net and Attention U-Net that these
two methods generate larger segmentation maps with unclear boundaries as compared to
the TransUNet method, whereas the Swin-UNet completely fails to segment the lesions,
thus depicting the efficacy of the hybrid method for skin lesion segmentation.
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Figure 11. The Attention U-Net output visualizations: (a) input test image; (b) the corresponding
ground truth segmentation mask and (c) the output probability map of the segmentation prediction.

To quantitatively evaluate the prediction results, we have used Intersection over Union
(IoU), Precision (P), Recall (R) and Accuracy (ACC) metrics. The training and testing results
are shown in Tables 1 and 2, respectively. The accuracy rate of the TransUNet model
reached 50–55% within the 10–12 iterations and the accuracy rates constantly increased up
to 120 iterations. From 120 iterations, the accuracy remains almost consistent and reaches
92%. It is due to the fact that the hybrid CNN-transformer, as the hybrid CNN-transformer
encoder with long range dependencies, retains the high-level features and passes directly to
each stage of decoder and thus results in better output predictions and precise localizations,
whereas when compared with other models, it can be seen that there is not much consistency
found in terms of accuracy while training the other models (U-Net and Attention U-Net). It
can be seen that the accuracy reached 89% and 87% in Attention U-Net and U-Net models,
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respectively. The results in Tables 1 and 2 summarize the performance of the different
benchmarking architectures in terms of (IoU), Precision (P), Recall (R) and Accuracy (ACC)
metrics and validates the efficacy of the TransUNet as compared to the other benchmarking
architectures. In addition to the evaluation metrics, we also compared the performance
of these models on the basis of training time, inference time and dataset size as shown in
Table 3. It can be seen in the results that the hybrid architectures take more time to train
than the U-Net and V-Net architectures and take more time for the inference as well.
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Table 1. Comparative results of the different methods on train set.

Method IoU Dice Coeff Precision Recall Accuracy

U-Net [20] 80.93 82.18 86.27 98.40 87.64

V-Net [39] 15.95 17.31 21.52 52.04 28.02

Attention
U-Net [40] 81.21 83.27 86.75 98.71 88.74

TransUNet
[41] 86.72 89.13 89.44 99.02 91.02

Swin-UNet
[42] 13.25 17.12 14.32 21.20 14.58

Table 2. Comparative results of the different methods on the test set.

Method IoU Dice Coeff Precision Recall Accuracy

U-Net [20] 83.77 84.12 86.31 98.61 87.93

V-Net [39] 16.75 18.13 23.00 53.32 39.24

Attention
U-Net [40] 82.01 84.16 87.46 98.17 89.02

TransUNet
[41] 87.96 89.84 89.93 99.38 92.11

Swin-UNet
[42] 13.23 16.98 14.35 21.22 12.21

Table 3. Comparative results in terms of training time, inference time and dataset limit.

Method Training Time
(s)

Inference Time
(s) Dataset Limit

U-Net [20] 24,588 12 2594

V-Net [39] 1172 6 2594

Attention U-Net [40] 34,380 15 2594

TransUNet [41] 77,976 38 2594

Swin-UNet [42] 62,568 27 2594

During the training, it can be depicted from the Table 1 that the TransUNet model
outperforms U-Net, V-Net, Attention U-Net and SwinUNet in terms of IoU, Precision and
Recall. The accuracy of TransUNet is significantly better than U-Net and Attention U-Net.
During testing, again TransUNet performs better than U-Net and Attention U-Net. The
accuracy rate increased to around 12% when compared to other models.

5. Conclusions

Skin cancer is considered as one of the deadliest cancers. It is important to detect skin
lesions at a very early stage to control its spread as well as to cure it. In this paper, the differ-
ent methods were evaluated on an ISIC 2018 skin lesion image dataset. Experimental results
on the ISIC 2018 data have shown that the hybrid architecture of TransUNet, combining
the properties of transformers and U-Net, outperforms other benchmarking methods both
qualitatively and quantitatively in terms of various evaluation metrics. Furthermore, it has
been shown that the TransUNet method is robust for various deformations, low contrast
and noise. As a future avenue, the results of skin lesion segmentation can be combined with
skin lesion classification for further diagnosis of lesion areas of skin in terms of identifying
the possible progression of the lesion. Malignant skin lesions are considered fatal, and in
order to identify such lesions at the right time, early diagnosis is highly recommended.
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For that reason, incorporating the clinical knowledge into the lesion image identification
system to automatically analyse and diagnose the current state of skin lesions with a high
accuracy rate is crucial.
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