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Abstract: Automated environmental sound recognition has clear engineering benefits; it allows audio
to be sorted, curated, and searched. Unlike music and language, environmental sound is loaded with
noise and lacks the rhythm and melody of music or the semantic sequence of language, making it
difficult to find common features representative enough of various environmental sound signals.
To improve the accuracy of environmental sound recognition, this paper proposes a recognition
method based on multi-feature parameters and time–frequency attention module. It begins with
a pretreatment that relies on multi-feature parameters to extract the sound, which supplements
the phase information lost by the Log-Mel spectrogram in the current mainstream methods, and
enhances the expressive ability of input features. A time–frequency attention module with multi-
ple convolutions is designed to extract the attention weight of the input feature spectrogram and
reduce the interference coming from the background noise and irrelevant frequency bands in the
audio. Comparative experiments were conducted on three general datasets: environmental sound
classification datasets (ESC-10, ESC-50) and an UrbanSound8K dataset. Experiments demonstrated
that the proposed method performs better.

Keywords: environmental sound recognition; multi-feature parameters; attention mechanism

1. Introduction

In recent years, environmental sound identification technology has been paid more
and more attention due to its obvious engineering potential. This technology is chiefly
applied to recognizing specific sound events, such as engine sound, rain sound, and baby
crying, to achieve intelligent information interaction between environmental sound and
the computer. It has extensive applications in robot hearing systems [1], smart homes [2],
and audio monitoring systems [3], among others. For the traditional environmental sound
recognition, feature vectors are manually extracted, such as Mel Frequency Cepstral Co-
efficients (MFCC), Mel spectrogram feature, wavelet transform, etc., and then feature
classification is completed by machine learning algorithms, such as Support Vector Ma-
chine (SVM), K-Nearest Neighbor algorithm (KNN), matrix factorization, and Extreme
Learning Machine (ELM) [4–10]. These methods are not only cumbersome, but are also
of poor generalizability and pose stringent requirements on datasets, making it hard to
deploy them in practical applications. In recent years, data-driven deep learning methods
are developing fast and are widely used in image fusion, target detection, and gesture
recognition [11]. Deep learning achieves complex function approximation through nonlin-
ear mapping and demonstrates its powerful ability to extract essential features of datasets
from a few sample sets. The environmental sound recognition based on deep learning has
replaced the traditional manual feature extraction methods to become the mainstream re-
search direction. According to the type of neural networks, sound recognition methods can
be divided into the following two categories: environmental sound recognition based on
one-dimensional convolution (1D CNN) neural network [12–15] and environmental sound
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recognition based on two-dimensional convolution neural network (2D CNN) [16–20]. As
audio sequences are generally long and the number of sampling points is large, audio
sequences will be selected as input using a moving window for using 1D CNN, which is
relatively complex and prone to the influence of noise. If two-dimensional convolution is
employed to extract environmental sound features, the audio signal will be pretreated so
that the one-dimensional sound signal is mapped to a two-dimensional spectrogram. In
this process, the impact of noise on the entire system is mitigated, but the phase information
in the sound signal is ignored, and a lot of experiments are necessary to determine the
parameters in signal mapping.

To cope with noise interference and loss of phase information, this paper proposes
Log-Mel spectrogram, time–frequency spectrogram, and phase spectrogram as the input
of the recognition network to supplement the phase information of the sound signal and
a time–frequency attention mechanism be introduced into the input part of the network
to suppress the interference from irrelevant frequency bands and background noise in
the audio. The proposed method has been verified on three commonly used datasets and
achieves good performance.

2. Related Work
2.1. Traditional Methods

A support vector machine (SVM) [7] is able to categorize the training dataset correctly
through computation and able to separate hyperplanes at the largest geometric interval, and
ultimately achieve classification, but it has some difficulty with the problem of large samples
and multi-classification, such as environmental sound. K-Nearest neighbor (KNN) [8]
allows easy modeling, but to classify samples, in order to obtain K-Nearest neighbors, a
brute force search will be employed to scan all training samples and calculate the difference
between them and the samples to be classified, which heavily taxes the system resources.
An extreme learning machine [10] is incapable of a deep network structure and is therefore
unable to perform satisfactorily complex environmental sound classification tasks.

2.2. Deep Learning

One-dimensional convolution: Tokozume et al. [11,12] developed a one-dimensional
architecture of EnvNet v1/v2, which takes advantage of one-dimensional convolution ker-
nel length to extract time feature information; Daiet et al. [13] trained an 18-layer 1D-CNN
network using the original audio waveform as input, and its performance is comparable
to that of the contemporaneous 2D-CNN, which has two-dimensional spectrograms as
feature input. However, with the above two methods, their idea is limited to features on
one level or one scale of image classification. For audio, the recognition features are usually
on different levels or time scales. To address this problem, Zhu et al. [14], while drawing
on the fact that different sound categories differ greatly in different time scales and levels,
used different one-dimensional convolution kernels to extract the multi-scale temporal in-
formation of the original audio, which effectively improves the sound recognition precision.
However, the original audio data, containing a lot of noise, will affect the final recognition
accuracy if used directly as the input of the network. Abdoli et al. [15] initialized the first
layer of the 1D-CNN model as a Gammatone filter bank to simulate the processing of the
input signal by a human hearing response mechanism, which involves fewer network
parameters and further improves the recognition accuracy. Although Gammatone filtering
is performed on the input audio, this model remains prone to the interference by a large
amount of noise carried by the input audio. Extracting one-dimensional audio signals with
1D-CNN fails to consider the temporal structure and the frequency characteristics of the
environmental sound when features are extracted at the global level.

Two-dimensional convolution: Chu et al. [16] studied environmental sound recogni-
tion using the MFCC spectrogram as the input of the network. However, the MFCC relies
on discrete cosine transform (DCT) to extract coefficient features, which leads to insufficient
structural information of the audio signal, resulting in unsatisfactory performance when
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working with deep neural networks. Piczak [17] fed Log-Mel and its delta spectrogram
instead of MFCC as two-dimensional features into the network for classification, which
has significantly improved the recognition performance. However, limited by the number
of sound samples, the network cannot learn more features. Salamon et al. [18] proposed
several data augmentation strategies to generate new training samples by stretching time,
adding background noise, and transforming pitch. Its accuracy improves by 6% compared
with that proposed by Piczak [17]. To increase the number of samples further for network
learning, Zhang et al. [19] combined Log-Mel and Gammatone spectrogram features into
the network for feature extraction, and Dong et al. [20] constructed a two-way CNN model
to enter the original audio and Log-Mel spectrogram into two different CNN structures,
respectively, for time–frequency feature extraction.

3. Time–Frequency Attention Mechanism Model Based on Multi-Feature Parameters

Unlike music or language, environmental sound is devoid of the rhythm and melody
of music and the semantic sequence of language, so it is difficult to find common features
that are representative of various environmental sound signals. Environmental sound is a
common background sound and is full of daily noises. Therefore, its recognition is a huge
challenge. This paper proposes an environmental sound recognition method based on multi-
feature parameters and on an attention module for environmental sound classification.
It takes a variety of feature spectrograms as input, depicts the feature information of the
environmental sound, and extracts the feature information in the input spectrogram using
a network based on the time–frequency attention mechanism module.

Figure 1 gives the overall design scheme of environmental sound recognition. The
environmental sound is first pretreated, and in this process, the one-dimensional sound
signal is mapped to two-dimensional image features, which are then entered into the
residual network for training/testing, and the final result is the category information of
the sound.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 12 
 

Two-dimensional convolution: Chu et al. [16] studied environmental sound recogni-

tion using the MFCC spectrogram as the input of the network. However, the MFCC relies 

on discrete cosine transform (DCT) to extract coefficient features, which leads to insuffi-

cient structural information of the audio signal, resulting in unsatisfactory performance 

when working with deep neural networks. Piczak [17] fed Log-Mel and its delta spectro-

gram instead of MFCC as two-dimensional features into the network for classification, 

which has significantly improved the recognition performance. However, limited by the 

number of sound samples, the network cannot learn more features. Salamon et al. [18] 

proposed several data augmentation strategies to generate new training samples by 

stretching time, adding background noise, and transforming pitch. Its accuracy improves 

by 6% compared with that proposed by Piczak [17]. To increase the number of samples 

further for network learning, Zhang et al. [19] combined Log-Mel and Gammatone spec-

trogram features into the network for feature extraction, and Dong et al. [20] constructed 

a two-way CNN model to enter the original audio and Log-Mel spectrogram into two 

different CNN structures, respectively, for time–frequency feature extraction. 

3. Time–Frequency Attention Mechanism Model Based on Multi-Feature Parameters 

Unlike music or language, environmental sound is devoid of the rhythm and melody 

of music and the semantic sequence of language, so it is difficult to find common features 

that are representative of various environmental sound signals. Environmental sound is 

a common background sound and is full of daily noises. Therefore, its recognition is a 

huge challenge. This paper proposes an environmental sound recognition method based 

on multi-feature parameters and on an attention module for environmental sound classi-

fication. It takes a variety of feature spectrograms as input, depicts the feature information 

of the environmental sound, and extracts the feature information in the input spectrogram 

using a network based on the time–frequency attention mechanism module. 

Figure 1 gives the overall design scheme of environmental sound recognition. The 

environmental sound is first pretreated, and in this process, the one-dimensional sound 

signal is mapped to two-dimensional image features, which are then entered into the re-

sidual network for training/testing, and the final result is the category information of the 

sound. 

Multi-feature 
spectrum

Environment 
sound

pretreatment

Resnet model

Train/Test

classification

 

Figure 1. Overall design scheme of environmental sound recognition. 

3.1. Feature Extraction 

It is difficult to capture the useful information from original one-dimensional audio 

data due to a large amount of noise. In order to solve this problem, the popular method is 

mapping the audio data into Log-Mel spectrogram or MFCC spectrogram. Log-Mel spec-

trogram is designed by imitating the auditory system of the human ear. It takes the short-

time Fourier transform of the sound signal and maps its frequency to the Mel frequency. 

However, Log-Mel spectrogram does not contain the phase information, which is an im-

portant feature of the sound signal. Therefore, it will lead to incomplete sound features 

and is not the optimal solution using Log-Mel spectrogram as the input of the sound 

recognition system. For further improving the recognition ability, the phase spectrogram 

Figure 1. Overall design scheme of environmental sound recognition.

3.1. Feature Extraction

It is difficult to capture the useful information from original one-dimensional audio
data due to a large amount of noise. In order to solve this problem, the popular method
is mapping the audio data into Log-Mel spectrogram or MFCC spectrogram. Log-Mel
spectrogram is designed by imitating the auditory system of the human ear. It takes
the short-time Fourier transform of the sound signal and maps its frequency to the Mel
frequency. However, Log-Mel spectrogram does not contain the phase information, which
is an important feature of the sound signal. Therefore, it will lead to incomplete sound
features and is not the optimal solution using Log-Mel spectrogram as the input of the sound
recognition system. For further improving the recognition ability, the phase spectrogram of
the sound is used as additional information and combines the Log-Mel spectrogram and
time–frequency spectrogram as the input of neural network.

In order to obtain Log-Mel spectrogram and absolute phase spectrogram of the sound,
the sound signal is subjected to short-time Fourier transform and the steps are as follows:
first, the input audio signal x(n) is divided into multiple short-time parts, length of each
part is 43 ms, and the part shift is 21 ms. Then, each short-time part is multiplied by the
Hamming Window to improve the continuity. Finally, a 1024-point Fast Fourier Trans-
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form is performed on each part, and a feature map containing time, frequency, amplitude,
and phase is obtained, where magnitude and phase are combined in complex numbers.
Complex features cannot be directly fed into the neural network. Therefore, this paper
separates the complex-valued spectrogram D into its magnitude (S) and phase (P) com-
ponents. The matrix S and P are the time-spectrogram and the phase-spectrogram of the
signal, respectively. The matrix S is subjected to a Mel-filter and logarithmic operation to
obtain a Log-Mel spectrogram. Figure 2 shows three spectrograms of saw wood sound.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 12 
 

of the sound is used as additional information and combines the Log-Mel spectrogram 

and time–frequency spectrogram as the input of neural network.  

In order to obtain Log-Mel spectrogram and absolute phase spectrogram of the 

sound, the sound signal is subjected to short-time Fourier transform and the steps are as 

follows: first, the input audio signal x(n) is divided into multiple short-time parts, length 

of each part is 43 ms, and the part shift is 21 ms. Then, each short-time part is multiplied 

by the Hamming Window to improve the continuity. Finally, a 1024-point Fast Fourier 

Transform is performed on each part, and a feature map containing time, frequency, am-

plitude, and phase is obtained, where magnitude and phase are combined in complex 

numbers. Complex features cannot be directly fed into the neural network. Therefore, this 

paper separates the complex-valued spectrogram D into its magnitude (S) and phase (P) 

components. The matrix S and P are the time-spectrogram and the phase-spectrogram of 

the signal, respectively. The matrix S is subjected to a Mel-filter and logarithmic operation 

to obtain a Log-Mel spectrogram. Figure 2 shows three spectrograms of saw wood sound. 

0

512

1024

2048

4096

8192

M
e

l 
fr

eq
u

e
n

cy

0 1.5 3.0 4.5 6.0 7.5 9.0
Time/s

 80db

 70db

 60db

 50db

 40db

 30db

 20db

 10db

0db

 
0

64

128

256

512

1024

2048

4096

8192

0 1.5 3.0 4.5 6.0 7.5 9.0
Time/s

fr
e

q
u

e
n

cy

 40db

 30db

 20db

 10db

+0db

+10db

+20db

+30db

+40db

 
0

64

128

256

512

1024

2048

4096

8192

0 1.5 3.0 4.5 6.0 7.5 9.0

0db

+1db

+2db

+3db

fr
e

q
u

e
n

cy

Time/s

 3db

 2db

 1db

 
(a) (b) (c) 

Figure 2. Three characteristic spectra of saw wood sound. (a) Log-Mel spectrogram. (b) time spec-

trogram. (c) phase spectrogram. 

3.2. Residual Model 

The residual network bypasses some processing layers by means of additional Skip 

Connections, merges their input and output, and solves the gradient exploding problem 

and the gradient vanishing problem of deep neural networks. 

The proposed network structure (as shown in Figure 3) mainly consists of a time-

frequency attention module and four residual blocks. The input data is composed of Log-

Mel, Phase, and a time–frequency spectrogram connected in parallel in a new dimension. 

The size is (ℎ, 𝑡, 𝑐), where ℎ is the frequency dimension, 𝑡 is the time dimension of the 

feature map, and 𝑐 is the category dimension of the feature degree. The input data passes 

first through the attention module, where a preliminary processing of the feature map 

takes place to mitigate the influence of the noise and irrelevant frequency bands in the 

audio. After that, it is processed by the first Conv_layer (convolution kernel 3 × 3 × 24, 

stride [1,2]), and then features are extracted through four residual blocks, each of which 

consists of two Conv_layers (convolution kernel 3 × 3 × (24 × 2n), where n is the Residual 

block number, stride [1,2]), two Conv_layers (convolution kernel 3 × 3 × (24 × 2n), where 

n is the Residual block number, stride = 1), and one Average Pooling. To ensure that the 

dimension of the feature map passing through the Average Pooling branch is consistent 

with the main route, the channel axis is zeroized after Average Pooling. Finally, the cate-

gory information is obtained after going through two Conv_layers and one Global Aver-

age Pooling layer. 

Figure 2. Three characteristic spectra of saw wood sound. (a) Log-Mel spectrogram. (b) time
spectrogram. (c) phase spectrogram.

3.2. Residual Model

The residual network bypasses some processing layers by means of additional Skip
Connections, merges their input and output, and solves the gradient exploding problem
and the gradient vanishing problem of deep neural networks.

The proposed network structure (as shown in Figure 3) mainly consists of a time-
frequency attention module and four residual blocks. The input data is composed of Log-
Mel, Phase, and a time–frequency spectrogram connected in parallel in a new dimension.
The size is (h, t, c), where h is the frequency dimension, t is the time dimension of the
feature map, and c is the category dimension of the feature degree. The input data passes
first through the attention module, where a preliminary processing of the feature map
takes place to mitigate the influence of the noise and irrelevant frequency bands in the
audio. After that, it is processed by the first Conv_layer (convolution kernel 3 × 3 × 24,
stride [1,2]), and then features are extracted through four residual blocks, each of which
consists of two Conv_layers (convolution kernel 3 × 3 × (24 × 2n), where n is the Residual
block number, stride [1,2]), two Conv_layers (convolution kernel 3 × 3 × (24 × 2n), where
n is the Residual block number, stride = 1), and one Average Pooling. To ensure that the
dimension of the feature map passing through the Average Pooling branch is consistent
with the main route, the channel axis is zeroized after Average Pooling. Finally, the category
information is obtained after going through two Conv_layers and one Global Average
Pooling layer.

It is noteworthy that although the time–frequency attention structure is simple, requir-
ing no complex computations, it does improve the recognition ability of this model. Its
expression is:

Mc(F) = σ( f 1×1[ f 1×1(AvgPool(F))], f 1×1(AvgPool(F))])
= σ( f 1×1[ f 1×1(Fc

avg), f 1×1(Fc
avg)])

(1)

F, a feature vector of dimension (h, t, c), is input into the time–frequency attention
mechanism module. First, average pooling and maximum pooling are performed on this
vector F in the feature channel dimension, and then it goes through two-dimensional
convolution of a convolution kernel size of 1 × 1 × c, and this produces two feature maps
of size (h/2, t, c). The two feature maps are connected in parallel in the channel dimension,
and go through two-dimensional convolution of a convolution kernel of size 1 × 1 × c.
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This gives attention weight coefficients of size (h, t, c), which are multiplied by the input
feature to produce the feature vector, which has been extracted by attention.

Where, c is the number of neurons, and f is the convolution operation, whose formula
is shown (2).

fi = σ(Wi � Xi + b) (2)

where fi is the output of the convolution operation, δ is the activation functions, W is the
convolution kernel, � is the convolution operation, X is the current input feature, and b is
the bias.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12 
 

Conv2D

Batch Normalization

Activate Function

Residual block

Residual block

Residual block

Golbal Average Pooling

Conv_layer

Conv_layer

Conv_layer

Conv_layer

Average Pooling

Concatenate

Attention

Average Pooling Max Pooling

Conv_layer Conv_layer

Concatenate

Conv_layer

Nclasses

Input

Resnet Model

Residual block

Conv_layer

Conv_layer *2

Resnet_layer Attention

Residual block

 

Figure 3. Schematic diagram of the network model structure. 

It is noteworthy that although the time–frequency attention structure is simple, re-

quiring no complex computations, it does improve the recognition ability of this model. 

Its expression is: 

)])(),([(

))])(())],(([()(

111111

111111

c

avg

c

avg

c

FfFff

FAvgPoolfFAvgPoolffFM












 

(1) 

𝐹 , a feature vector of dimension (ℎ, 𝑡, 𝑐), is input into the time–frequency attention 

mechanism module. First, average pooling and maximum pooling are performed on this 

vector 𝐹 in the feature channel dimension, and then it goes through two-dimensional 

convolution of a convolution kernel size of 1 × 1 × 𝑐, and this produces two feature maps 

of size (ℎ/2, 𝑡, 𝑐). The two feature maps are connected in parallel in the channel dimension, 

and go through two-dimensional convolution of a convolution kernel of size 1 × 1 × 𝑐. 

This gives attention weight coefficients of size (ℎ, 𝑡, 𝑐), which are multiplied by the input 

feature to produce the feature vector, which has been extracted by attention. 

Where, 𝑐 is the number of neurons, and 𝑓 is the convolution operation, whose for-

mula is shown (2). 

𝑓𝑖 = 𝜎(𝑊𝑖⨀𝑋𝑖 + 𝑏) (2) 

where 𝑓𝑖 is the output of the convolution operation, 𝛿 is the activation functions, 𝑊 is 

the convolution kernel, ⨀ is the convolution operation, 𝑋 is the current input feature, 

and 𝑏 is the bias. 

4. Experiment and Analysis 

This section describes the details of the experiment, including the datasets, the divi-

sion between the training set and the validation set, and the actual parameters for the 

model training experiment. At the same time, several comparative experiments have been 

performed that demonstrate the superiority of the proposed method. The influence of fea-

ture map combination parameters, sampling rate, and time–frequency attention mecha-

nism addition position on the experimental results is also discussed. 

  

Figure 3. Schematic diagram of the network model structure.

4. Experiment and Analysis

This section describes the details of the experiment, including the datasets, the division
between the training set and the validation set, and the actual parameters for the model
training experiment. At the same time, several comparative experiments have been per-
formed that demonstrate the superiority of the proposed method. The influence of feature
map combination parameters, sampling rate, and time–frequency attention mechanism
addition position on the experimental results is also discussed.

4.1. Datasets

This simulation experiment made use of three recognized general sound datasets:
ESC10, ESC50 [21], and UrbanSound8K [22].

ESC10/ESC50: The ESC10 dataset consists of 400 environmental recordings from
10 categories, such as dog barks and rain sounds. Each sample lasts 5 s, with a sampling
frequency of 44.1 KHz. The ESC50 dataset consists of keyboard sounds, clock ticks, baby
crying, and more, with a total of 2000 environmental recordings from 50 categories and
each sample being 5 s at a sampling frequency of 44.1 KHz. These two datasets have
been divided into five parts by the authors, so 5-fold cross-validation [21] was followed in
this study.

UrbanSound8K: The UrbanSound8K dataset is in wide use for automatic urban sound
classification and recognition. This dataset consists of 8732 sound clips (mono and stereo),
with a duration of less than 4 s, from 10 categories, including air conditioner sound, hole
drilling, engine idling, gunshots, etc., at a sampling rate of 48K, 44.1 K, and 16 K. Due to the
different duration and sampling rate of each sound sample, for the purpose of this study,
all sound data were resampled at 44.1 KHz, and the duration of the samples were made
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equal to 4 s. The samples longer than 4 s were truncated, while those less than 4 s were
randomly complemented.

For the UrbanSound8K dataset, there are two ways of dividing the dataset: official
and unofficial. The final outcome is dependent on the way of division, which makes the
results of many papers incomparable to other papers [23]. The UrbanSound8K dataset
takes the data in the Freesound project by sliding windows, with each window providing
50% overlap. The officially divided sample training set and test set come from different
original audio files, so the training set and test set share nothing. In the case of unofficially
divided sets, it is hard to make certain that the intersection of the training set and the test
set is an empty set. In Figure 4, W1, W2, and W3 are training sets; C1, C2, and C3 are
test sets, and this division involves no overlap. On the other hand, if W1, C2, and W3 are
training sets, and C1, W2, and C3 are test sets, then W1 and W3 in the training set overlap
with W2 in the test set. This apparently increases the recognition accuracy of the network,
but this is not representative of the actual situation and should therefore not be applied to
the training data.
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4.2. Model Training

The experimental framework was TensorFlow and Keras. The entire network was
constructed with TensorFlow as the bottom layer and Keras as the backend. The models
and algorithms were implemented with the programming language Python3.6. Optimizing
iterative model parameters was performed on a GeForce RTX 2080Ti GPU. The initial
learning rate was set to be 0.001, and learning rate WarmRestart was performed with the
Cosine Annealing method [24]. The learning rate was dynamically adjusted. The learning
rate was initialized when 3, 7, 15, 31, 63, 127, 255, 511, or 1022 iterations were completed.
The loss function was expressed in binary cross entropy. The optimization function was
based on SGD. Each batch was trained on 64 data, and there were a total of 1024 rounds of
training. In the training phase, the following data augmentation methods were applied:
time-domain Random Cropping and Mixup [25]. The former effectively enhanced the
expression ability of individual samples, while the latter enhanced the expression ability
between multiple samples.

4.3. Comparative Experiment
4.3.1. Experimental Results of Feature Map Parameters

The two-dimensional convolution neural network calls for artificial extraction of man-
ual features from the waveform, unlike the one-dimensional convolution neural network,
which involves direct inputting of the waveform. The experimental parameters for ex-
tracting manual features have a great influence on environmental sound classification. In
order to find the best feature map parameters, the accuracy of the network under different
manual feature parameters was compared. The results with using different combinations
of feature map are listed in Table 1.
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Table 1. Comparison of different feature map types (accuracy, %).

Feature Map Types ESC-10 ESC-50 UrbanSound8K

Log-Mel spectrogram 92.75 83.25 80.47
Phase spectrogram 68.25 62.50 53.18

time–frequency spectrogram 90.25 80.75 78.15
Phase, time–frequency spectrogram 81.75 72.00 68.26

Log-Mel, time–frequency spectrogram 93.75 85.25 81.32
Log-Mel, phase spectrogram 95.00 86.75 81.63

Log-Mel, Phase, time–frequency spectrogram 97.25 89.00 83.45

The best performance happens when the Log-Mel, phase, and time–frequency spec-
trogram are combined as the feature map input. Individually, as the feature input, the
Log-Mel spectrogram behaves significantly higher than other types of feature maps. Com-
paring the results of the Log-Mel spectrogram, phase spectrogram and Log-Mel, phase, and
time–frequency spectrogram, it can be seen that the phase spectrogram alone is not enough
to support effective environmental sound recognition. Using the phase spectrogram in
conjunction with another spectrogram can improve the network’s recognition ability. Using
the phase spectrogram and time–frequency spectrogram as complementary features of the
Log-Mel spectrogram has the potential of achieving excellent results.

This paper evaluates the influence of audio sampling frequency on environmental
sound classification. With the Log-Mel, phase, and time–frequency spectrogram combined
as the network input, comparative experiments were carried out at sampling frequencies of
8 KHz, 16 KHz, 44.1 KHz, and 48 KHz. The results are shown in Table 2. At the sampling
frequency of 44.1KHz, the proposed network gives the best results, scoring 97.25%, 89.00%,
and 83.45% on the ESC10, ESC50, and UrbanSound8K datasets, respectively.

Table 2. Comparison of recognition ability under different sampling frequencies (accuracy, %).

Sampling Frequency /Hz ESC-10 ESC-50 UrbanSound8K

8 K 95.25 86.50 81.31
16 K 95.25 87.25 80.76

44.1 K 97.25 89.00 83.45
48 K 96.00 88.50 79.94

Using the Log-Mel spectrogram, time–frequency spectrogram, and phase spectrogram
as an input and at a sampling frequency of 44.1 KHz, this paper evaluates the influence of
different parameters on environmental sound classification in short-time Fourier transform.
The recognition differences are shown in Table 3 for processing the sound signal using
STFT with different parameters. An optimal result is yielded when the frame length is
2048 points (43 ms), the frame shift is 1024 points (21 ms), and the number of transformation
points N is 2048.

Table 3. Network recognition results of feature maps of different sizes.

Frame Length Frame Shift Number of Mel Filters Feature Map Size Network Accuracy % (ESC-50)

1024 512 40 (40, 431, 3) 86.25
1024 512 64 (64, 431, 3) 86.25
2048 512 64 (64, 431, 3) 86.75
2048 1024 64 (64, 216, 3) 88.25
4096 2048 64 (64, 108, 3) 84.00

4.3.2. Experimental Result Comparison of Network Models

The attention mechanism can better help the model to extract the feature information
from the spectral map. Taking advantage of the improved input feature map, the model
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improves on previous classification performance. The effect of the insertion position of the
attention mechanism is shown in Table 4.

Table 4. Influence of time–frequency attention mechanism position on model recognition ability.

Time–Frequency Attention Mechanism Insertion Position ESC-10 ESC-50 UrbanSound8K

None 95.25 84.25 80.35
model input 97.25 89.00 83.45

Between Residual blocks 95.75 86.25 80.35
model output 95.25 85.75 81.26

model input, output and Between Residual blocks 92.50 82.25 78.66

As is suggested by the experimental results in Table 4, when the attention mechanism
is put at the input end of the model, the recognition ability is the best. In this way, the
feature spectrogram is first treated by the attention mechanism, and then the residual net-
work comes in for feature extraction. The attention mechanism extracts high-dimensional
features, and this effectively reduces the interference of the noise and irrelevant frequency
bands in the spectrogram. When the attention mechanism is inserted into other places of
the network, the low-dimensional features that have been extracted by convolution are not
sensitive to attention. Additionally, the attention mechanism increases the complexity of
the model. If the positive effect achieved is not enough to compensate for the penalty of the
greater model complexity, the recognition ability of the model will deteriorate. Therefore,
when the attention mechanism is inserted between the residual blocks, the recognition
accuracy of the model decreases compared with the model without the attention mecha-
nism. When the attention mechanism is put at the output side of the model, the effect is
not significant.

Table 5 compares the proposed environmental sound recognition method and the
current advanced methods, both at the optimal feature combination and network model.
As can be seen in Table 5, the proposed method performs better than other methods on the
ESC10, ESC50, UrbanSound8K (official/unofficial) datasets. The proposed model possesses
outstanding recognition ability in environmental sound recognition.

Table 5. Comparison of algorithms in the ESC10, ESC50, and UrbanSound8K datasets.

Model ESC10 ESC50 UrbanSound8K (Official) UrbanSound8K (Unofficial)

EnvNet [11] 88.10 74.10 71.10 -
EnvNet v2 [12] 91.30 84.70 78.30 -
GoogLeNet [26] 86.00 73.00 - 93.00

VGG-like CNN + mixup [19] 91.70 83.90 83.70 -
TFNet (no aug.) [27] 93.10 86.20 - 88.50

ESResNet-Attention [23] 94.25 83.15 82.76 98.18
Ours 97.25 89.00 83.45 98.25

The confusion matrices of the experimental results on the ESC10 dataset, ESC50
dataset, and UrbanSound8K dataset are shown in Figure 5a–c, respectively. It can be seen
that with these three datasets, the network is more sensitive to instantaneous and short-
lasting sound signals, and is therefore more accurate in picking out such sound signals
like gunshots and car horns. It is less sensitive to sound signals widely distributed on the
time domain axis, such as engine roar, electric drill sound, and air conditioner sound. The
energy of these sounds is mostly concentrated in the low-frequency end, which makes it
difficult for the network to recognize them accurately.
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5. Conclusions

An environmental sound classification method based on attention mechanism and
multi-feature data enhancement is proposed. The phase spectrogram is added to the input
feature as the phase feature supplement of the Log-Mel spectrogram, which enhances the
feature expression ability and improves the robustness and generalizability of the network.
Regarding the neural network, a residual network model based on attention mechanism is
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proposed. The attention mechanism is inserted into the beginning of the network model, so
that the entire feature map is reconstructed at the input end of the network, which reduces
the impact of noise on the network.

Comparative experiments were performed on the ESC10, ESC50, and UrbanSound8K
datasets using the k-fold cross-validation technique. The experimental results suggest
that the proposed environmental sound recognition method is effective in improving the
accuracy of environmental sound recognition and possesses a prominent recognition ability
in the field of environmental sound recognition.
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