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Abstract: When processing track sequences, it is time-consuming and difficult to separate clusters
with substantial density variations to deal with the problem of classic clustering methods mining
common flight patterns in airspace. To overcome these issues, this research proposes a clustering-
based technique for mining air traffic trajectory operation patterns. The track data are first decoded
and rebuilt using a motion-based track training approach; next, a compression based on a deep
autoencoder (OFAE) is provided, allowing the model to deal with the high-dimensional trajectory
vector containing derived information. The compressed trajectory data are made as compact and
dense as feasible using the L21 norm constraint, which reduces the operation time and improves
the performance of the clustering process. The compressed trajectory is then analyzed using a
fast-clustering algorithm based on density peaks (DPCA). To save time, a more refined distance
measurement technique is added into the model in order to achieve the usual aircraft operation mode
in the terminal area. The accuracy of trajectory prediction can be improved by using the generated
unitized and high-class similarity trajectory data.

Keywords: air transportation; autoencoder; density peak clustering; operation mode mining;
terminal area

1. Introduction

Aircraft usually have fixed flight patterns in the terminal area, which is based on flight
procedures, fixed patterns, and other factors. Therefore, the mining of typical flight patterns
in the airspace uses unsupervised algorithms. Clustering has long-been a hot research
topic [1–5]. Gariel [6] transcoded ADS-B data and extracted trajectory feature points for
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering analysis,
and Wang [7] used a hierarchical clustering algorithm to identify the sample categories of
trajectories and the abnormal trajectories. Wang [8] analyzed the characteristics of the track
data, filtered the abnormal data, and extracted the track feature points by using the fuzzy
clustering method, while Zeng et al. [9] demonstrated the advantages of mining traffic flow
patterns in terminal areas using a deep autoencoder and a Gaussian mixture model with
intuitive display and separability, and shortened clustering time and improved clustering
efficiency. Bolic et al. [10] obtained through data mining analysis that the flight trajectory
largely depends on the airline’s strategy, flight type, and operating costs. Corrado [11]
proposed an air traffic flow identification method based on HDBSCAN clustering with a
weighted Euclidean distance function to more accurately identify arrival trajectories. The
anomaly detection aspect makes a new distinction between spatial and energy anomalies
in ADS-B data and provides key insights into the relationship between these two types
of anomalies.

However, when the traditional distance measurement DTW (dynamic time warping)
or the DBSCAN [12,13] model are used in the above literature, it takes a long time, the
cost is high, and it is difficult to distinguish clusters with large density differences. Some
tactical traffic flows with low trajectory density due to control or regional reasons are
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often classified as a high-density cluster of nearest neighbors by DBSCAN to reduce the
clustering effect. Therefore, here we explore the compression method of high-dimensional
trajectory features and the appropriate clustering algorithm.

The traffic flow in the terminal area is highly nonlinear, and the dimensionality reduc-
tion process of traditional principal component analysis (PCA) is essentially a simple linear
transformation of the original features, which cannot capture the nonlinear dependence
between the data. In dealing with small samples and nonlinearity in face recognition,
Fu [14] combined L21-normand kernel functions and introduced L21-normpenalty terms
to effectively improve the recognition rate. Liu [15] proposed a new orthogonal sparse
linear discriminant analysis algorithm, which first constructs the Kth nearest neighbor
graph to retain the local discriminant information of the sampled points. Then, the L21-
normconstraint on the projection matrix is used as a loss function to enhance the robustness
to anomalous data points. Wen [16] proposed a robust sparse LDA algorithm to obtain the
feature with the maximum discriminant through the L21-norm, combine the orthogonal
and sparse matrices to maximize the retention of the original data representation, and
enhance the robustness to noise.

Therefore, the autoencoder (AE) is used to learn the nonlinear track features, but if the
unconstrained conventional stack AE is directly used to compress the data, the result is
not ideal. The number of nodes and hidden layers needs frequent parameter adjustment,
which is time-consuming and cannot always be guaranteed to find effective parameter
groups. Therefore, this paper uses an L21-norm constrained autoencoder to learn the
low-dimensional manifold of high-dimensional track data, compress the track data, and
limit the model overfitting so that the clustering algorithm can use low-dimensional data
for operation. Then, a fast clustering algorithm based on density peaks (DPCA) is used to
mine the typical operation mode of aircraft in the terminal area through cluster analysis
and obtain the track data with a unit and high similarity between classes.

2. Data Analysis and Processing
2.1. Data Analysis

The trajectory position information of aircraft presents a high degree of autocorrelation
in time. To obtain the spatio-temporal characteristics and movement patterns of the
trajectory in the terminal area, it is necessary to explore and analyze a large amount
of historical operation data.

To facilitate the uniform management of data sending and receiving in the A-SMGCS
system, the European Organization for the Safety of Air Navigation has developed a
corresponding data interaction format—Asterix, which allows both communicating parties
to codify and decode aircraft trajectory data messages according to this format. The data
used in this paper is in Asterix category-062 format, hereinafter referred to as cat-062.

The fields contained in the cat-062 message are shown in Table 1.

Table 1. Overview of the cat-062 text field.

TFRN Data Item Information Length

1 1062/010 Data Source Identifier 2
2 - Spare -
3 1062/015 Service Identification 1
4 1062/070 Time of Track Information 3
5 1062/105 Calculated Track Position (WGS-84) 8
6 1062/100 Calculated Track Position (Cartesian) 6
7 1062/185 Calculated Track Velocity (Cartesian) 4

FX - Field Extension Indicator -

8 1062/210 Calculated Acceleration (Cartesian) 2
9 1062/060 Track Mode 3/A Code 2

10 1062/245 Target Identification 7
11 1062/380 Aircraft-Derived Data 1+
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Table 1. Cont.

TFRN Data Item Information Length

12 1062/040 Track Number 2
13 1062/080 Track Status 1+
14 1062/290 System Track Update Ages 1+
FX - Field Extension Indicator -

In this paper, the real trajectory of the terminal area of Guangzhou was selected,
the data were collected from the Eurocat-X system, and the trajectory information was
encoded in the cat-062 specification and packaged into a pcap file for communication
and transmission within the network. A pcap file is a common datagram storage format
consisting of a pcap header and timestamped packets, each consisting of a packet header
and a packet data. The file format is shown in Figure 1.
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Figure 1. File format of pcap.

The captured communication packets’ content information includes: capture time,
source IP, destination IP, port number, etc. Since some information cannot be obtained from
the message format, it is necessary to truncate the file header of pcap, use Python to read
the version number of the fixed position of the Asterix data stream header, and directly
obtain the target cat number to complete the analysis of the Asterix message. The parsed
data is the information of all aircraft within the radar receiving range at each time point.
It is necessary to re-aggregate the data in the sampling period according to the aircraft.
The flight number is obtained by reading field 390 as the unique identification code of
the aircraft, and then the aggregated data are saved in CSV in chronological order. The
aggregated single original track is shown in Table 2.

It is observed that time information duplication and some key columns are missing
from the data, which are marked with NA. Data loss will occur normally after the flight has
been running for a period of time, and its effectiveness will be maintained for a long time.
Therefore, while removing the repeated time, we extracted the trajectory with complete
key information, that is, removed the segmented NA data and retained the occasional NA
data in the effective date, because these accidental deficiencies can be compensated for by
the trajectory correction algorithm.

After the preliminary cleaning is completed, the trajectory can be drawn to observe
the general situation of the data. The large missing or non-conforming trajectory in the
dataset that is difficult to repair by the code as a whole can be manually screened, and then
the valuable trajectory can be smoothed and denoised.
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Table 2. Trajectory data.

1 25,751.42 23.38082 113.3027 NA 0 −5 NA 0 B763 NA NA

2 25,751.42 23.38082 113.3027 NA 0 −5 NA 0 B763 NA NA

3 25,751.73 23.3808 113.3027 NA 0 −5 NA 0 B763 NA NA

4 25,751.73 23.3808 113.3027 NA 0 −5 NA 0 B763 NA NA

5 25,751.42 23.30876 113.3027 NA 0 −5 NA 0 B763 NA NA

6 25,751.42 23.30876 113.3027 NA 0 −5 NA 0 B763 NA NA

7 25,751.73 23.30875 113.3027 NA −1 −5 NA 0 B763 NA NA

8 25,751.73 23.30875 113.3027 NA −1 −5 NA 0 B763 NA NA

9 25,751.42 23.30871 113.3027 NA −1 −5 NA 0 B763 NA NA

10 25,751.42 23.30871 113.3027 NA −1 −5 NA 0 B763 NA NA

11 25,751.73 23.3087 113.3026 NA −1 −5 NA 0 B763 NA NA

12 25,751.73 23.3087 113.3026 NA −1 −5 NA 0 B763 NA NA

13 25,751.42 23.30866 113.3026 NA −1 −6 NA 0 B763 NA NA

14 25,751.42 23.30866 113.3026 NA −1 −6 NA 0 B763 NA NA

15 25,751.73 23.30866 113.3026 NA −1 −5 NA 0 B763 NA NA

16 25,751.73 23.30866 113.3026 NA −1 −5 NA 0 B763 NA NA

Time, latitude, longitude, altitude, x-direction speed, y-direction speed, climb rate, takeoff and landing status,
heading, and wind direction are the columns from left to right. NA is used if the fields do not exist or are missing.

The approximate shape of the invalid track is shown in Figure 2. There are large
segments of missing and jumping that cannot be repaired by the reconstruction algorithm,
so they are directly eliminated.
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ment and other reasons, individual points have problems with missing values and are not 
smooth enough, which can be repaired by a reconstruction algorithm. 

Figure 2. Invalid trajectory. (A) Invalid trajectory at higher altitudes. (B) Invalid trajectory at
lower altitudes.

The general shape of the good trajectory is shown in Figure 3, which basically com-
pletely depicts the motion state of the aircraft in the whole terminal area. Due to equipment
and other reasons, individual points have problems with missing values and are not smooth
enough, which can be repaired by a reconstruction algorithm.
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2.2. Trajectory Correction Based on Operational Characteristics

Abnormal time points of trajectory caused by data errors in radar equipment and
network transmission, as well as aircraft trajectory under abnormal conditions, will affect
the operation law of aircraft under normal conditions of model learning [17,18]. The noise
data need to be filtered before generating a training trajectory set. The former are unreal
data caused by sampling error, which should be eliminated. To ensure that there is no lack
of timescale, it should be filled by numerical prediction. The latter come from real aircraft
operations, and the characteristics are not typical. The data belong to outlier samples that
cannot be learned by the model, so they should also be eliminated.

For the abnormal time points process, it is usually assumed that the aircraft operates
normally in a short period. The speed and heading remain stable. These two variables can
determine the reasonable range of three-dimensional coordinates of each time point and
mark the time points outside the range as abnormal points.

When detecting time point
⇀
x t0 (a three-dimensional vector of position) in a time series

with a time interval of ∆t, the current moment is denoted by t0, and the nearest time
window of length T is chosen, that is, T points before and T points after this point, if the
point on one side is selected, and as many points as possible if the number is fewer than T
(for example, for the starting point, select T points after it). The series is believed to be full,
and the sequence is obtained after selection as:

⇀
x t0−T∆t , . . . ,

⇀
x t0−∆t ,

⇀
x t0 ,

⇀
x t0+∆t , . . . ,

⇀
x t0+T∆t (1)

The displacement vector on magnitude and direction in detection is confined in the
maximum velocity and the boundary value of the heading angle. The detection time t0 has
the following relationship with the previous time point. If this time point is the starting
point, the latter time point is used to formulate the relationship:

⇀
x t0 =

⇀
x t0−∆t +

⇀
∆x =

⇀
x t0−∆t +

∫ t0

t0−∆t
|⇀v t|∆

→
θtdt (2)

where
⇀
∆x,

→
vt are the displacement vector and real-time velocity vector of the aircraft, and

→
θt

is the direction vector of the real-time heading. The detection of the point is the detection

of the mode and direction of the pair
⇀
∆x. Assuming the velocity maxima of the aircraft in
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this sequence is, respectively, vmax, vmin , then the range of displacement distance, |
⇀
∆x|,

can be determined:∣∣∣∣∫ t0

t0−∆t
|⇀v min|∆

→
θtdt

∣∣∣∣ < ∣∣∣∣∫ t0

t0−∆t
|⇀v t|∆

→
θtdt

∣∣∣∣ < ∣∣∣∣∫ t0

t0−∆t
|⇀v max|∆

→
θtdt

∣∣∣∣ (3)

|⇀v min|∆t < |
⇀
∆x| < |⇀v max|∆t (4)

The displacement vector is confined by two components, horizontal angle and vertical
angle. If the horizontal angle boundaries of this sequence are α1, α2, and the vertical angle
boundaries are β1, β2, then both are within the interval

(
−π

2 , π
2
)
.

If
⇀
∆x

|
⇀
∆x|

=

 n1
n2
n3

, the horizontal angle is αt and the vertical angle is βt:

After calculating the angle and distance range, Formula (5) is obtained:
|⇀v min|∆t < |

⇀
∆x| < |⇀v max|∆t

α1 < sin−1 n2
2
√

1−n3
2
< α2

β1 < sin−1 n3 < β2

(5)

Thus, the arc space area that
⇀
x t0 may fall into is determined, and higher-quality

trajectory data can be obtained by correcting the abnormal points outside the range.
After eliminating the anomalies that deviate from the trajectory, the corresponding

predicted values are estimated to fill in the eliminated moment points by the mean values
of velocity and heading in this time period, and this predicted value should also be able to
pass the anomaly test described above.

For the moment point to be corrected,
⇀
x t0 , the mean values of velocity, horizontal

angle, and vertical angle are calculated for each moment point within the proximity time

window of its length T. The estimated
⇀
∆x
∗

value of the displacement vector at that moment
point can be expressed as:

⇀
∆x
∗
= |

⇀
∆x
∗
|⇀n
∗

(6)

where |
⇀
∆x
∗
| is the displacement distance and

⇀
n
∗

is the displacement direction, which can
be expressed by the mean value as:

|
⇀
∆x
∗
| = v∆t

⇀
n
∗
=

 cos β cos α

cos β sin α

sin β

 (7)

where v, α, and β are the mean values of aircraft speed, horizontal angle, and vertical angle,

respectively. Then, the coordinates of the current time,
⇀
x∗t0 , can be determined according

to the coordinates of the previous time point. The corrected coordinates are:

⇀
x∗t0 =

⇀
x t0−∆t + v∆t

 cos β cos α

cos β sin α

sin β

 (8)

To sum up, the core idea of the methods of trajectory correction and reconstruction
is to deduce the possible position range of the next time step according to the possible
speed and heading range of the aircraft at the current time and adjust the reconstruction
degree by limiting the position range. The default range is from the maximum value, MAX,
to the minimum value, MIN. When the motion feature-based trajectory correction and
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reconstruction technique described in the preceding section is implemented in Section 2.1,
the reconstruction parameters λ and time window of length T are introduced to facilitate
model adjustment. The larger the time window of length T is set, the higher the smoothness
during reconstruction. λ is the coefficient limiting the reconstruction range, 0 ≤ λ ≤ 1,
and the larger the λ, the smaller the degree of re-configuration. The relationship between
the limit range and λ is as follows. Taking the speed range as an example, it refers to the
window mean value, AVR:

vAVR + λ(vAVR − vMIN) ≤ v ≤ vAVR + λ(vMAX − vAVR) (9)

It can be seen that the default range λ = 1 is used, that is, it is allowed between the
maximum values. The smaller the size of λ, the stricter the anomaly detection and the
greater the degree of reconstruction. λ = 0 represents the direct reconstruction of the
trajectory according to the mean value in the window.

In Figure 4, the original trajectory is the reconstruction target, and we selected dif-
ferent parameters, λ and T, to display the reconstruction results. For the convenience of
observation, the original trajectory is drawn in the form of scattered points.
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Figure 4. Original trajectory point.

Then, different parameter combinations were trialed for track reconstruction. The
following shows the reconstruction effect of parameter combinations λ = 0.5, T = 51 and
λ = 0.2, T = 91, which present the situations of lower and higher reconstruction degrees,
respectively. The trajectory segment where the aircraft is about to ground was effectively
smoothed on the left side of Figure 5A, but there was still significant jitter in the rest of the
segment. The excessive reconstruction on the right side of Figure 5B led to a large amount
of information loss and the destruction of the real motion state.

After the combination, the final selections, λ = 0.5, T = 51, were reconstructed, and the
original track points were drawn on the same canvas. The effect is shown in Figure 6. It can
be seen that the jitter of each track segment was smoothed without damaging the aircraft
motion situation, which provided a reliable data guarantee for the follow-up work.
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3. Clustering Analysis-Based Aircraft Operation Pattern Mining
3.1. Trace Feature Compression
3.1.1. Autoencoder of Trajectory Based on L21-Norm Constraints

The L1 regularization and relative entropy constraint method can effectively suppress
the overfitting of the autoencoder [19]. The RSPCA (robust principal component analysis)
method attempts to learn and express rather than resist the part of the original input
that cannot be learned by the model, which is called the deviation. The ability of the
autoencoder to restore the rest of the input data is improved by removing the deviation.
Inspired by this, this paper applied a similar constraint method to the AE model, removed
the abnormal trajectory, extracted the main features of the track data, and further reduced
the reconstruction error while constraining the fitting ability of the autoencoder.

The optimization objectives of the conventional AE model are:

min
θ
‖ X− Dθ(Eθ(X)) ‖2 (10)

where θ is the parameter matrix of the model (including two parts of encoding and de-
coding), Eθ(·) is the encoder whose parameter matrix is θ, and Dθ(·) is the decoder whose
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parameter matrix is θ. The coding network and decoding network of the default model are
multi-layer depth.

The input feature X consists of two parts: low-rank information matrix L and sparse
deviation matrix S, as follows:

X = L + S (11)

where L is a low rank with the same dimension of X and represents a low dimensional
manifold that can be well-restored in the encoder in the input data, and S is the deviation
that is difficult for the model to learn, which is usually caused by the characteristics of
the data itself or noise. Traditional AE models are prone to overfitting problems when
learning the deviation in the input. Some optimized AE models such as DAE (denoising
autoencoder) resist the deviation, S, through noise learning. The denoising autoencoder
adds noise to the input training data and makes the autoencoder learn to remove this noise
to obtain the real input that is not contaminated with noise, so that the most important
features can be extracted, and more robust representations of the input data can be learned.
The generalization capability is stronger than that of the general autoencoder. Here, convex
relaxation technology was used to learn and express the deviation, so that when the model
restores the information matrix, L, it can better extract the main traffic flow in the airspace,
non-linearly. In this paper, the coding model using this deviation extraction method is
called the filtered autoencoder (OFAE).

The optimization objectives of OFAE are as follows [20]:{
min
L,S

ρ(L) + λ‖ S ‖0

s.t. ‖ X− L− S ‖2
F = 0

(12)

where λ is the control parameter of medium sparsity, S, ρ(·) is the rank of the matrix, ‖ · ‖0
represents the number of non-zero elements, and ‖ · ‖F represents F-norm.

Then, the kernel norm and 1 norm were used to replace the rank operator and 0 norms
for optimization, to solve the NP-hard problem of the matrix rank operator and 0 norm
optimization. The compressed vector can obtain the linear mapping of the original input,
and the following optimization objectives were obtained:{

min
θ,S
‖ L− Dθ(Eθ(L)) ‖2 + λ ‖ S ‖1

s.t.X− L− S = 0
(13)

where θ is the parameter matrix of the model (including two parts of encoding and de-
coding), Eθ(·) is the encoder whose parameter matrix is θ, and Dθ(·) is the decoder whose
parameter matrix is θ.

The model obtained a feasible optimization objective, but further analysis is needed for
the task of reconstructing the track data. The AE-processed data are fed into a density-peak-
based clustering model. To make similar traces more easily identifiable, AE is needed to
remove traces with the anomalous patterns mentioned earlier and to make the reconstructed
trace denser. In this paper, we assumed that there are two types of deviations to be
separated: one is the deviation of dimensional track features to be compressed, and the
other is the deviation of anomalous tracks. By applying the deviation matrix, S, the
penalty term is constrained using the L21-norm, and both requirements can be achieved
simultaneously. The L21-norm is defined as follows:

‖ S ‖2,1 = ∑n
i=1 ‖ si ‖2 = ∑n

i=1 (∑
m
j=1 sij

2)
1/2

(14)

where si is the row vector of the i row of the matrix S, and sij is the element of the i row and
j column of the matrix. L21-norm found 2 norms for the row and 1 norm for the column of
the matrix and restricted the sparsity of the row and column at the same time.

When processing track data, the time-series characteristics of a track are tiled into
rows, and then the sample set is processed with equal length. All tracks are aggregated by
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columns to obtain the tracking matrix. For track data, the constraint of the L21-norm can
be expressed as that the time sequence points in the reconstructed track are as compact as
possible and the spacing between different tracks is as short as possible. The elimination of
rows and columns in the original track matrix during decoding represents the characteristics
of removing deviated tracks and compressing redundancy, respectively. Therefore, it
is confirmed that the optimization objectives of the track compression model based on
OFAE are: {

min
θ,S
‖ L− Dθ(Eθ(L)) ‖2 + λ‖ S ‖21

s.t.X− L− S = 0
(15)

The L2-norm constraint is used for the tiled track feature sequence to make the timing
points as compact as possible, and the distance function is defined to calculate the track
distance. However, the track characteristics after isometric processing and compression,
and the differential correlation characteristics of heading, speed, and other positions will
be distorted. Therefore, in the input track characteristics, this variable information needs to
be added directly, and the model is difficult to mine directly from the location data.

Since the optimization goal has no clear requirements for the codec function, sigmoid
is used as the activation function of neurons. The weight matrix of the decoder selects the
transpose of the encoder weight matrix, and the bias term is independent. The encoding
and decoding functions are as follows:{

Eθ(x) = EW,b(x) = sigmoid(Wx + bE)
Dθ(x) = DW,b(x) = sigmoid

(
WTEW,b(x) + bD

) (16)

where x is the input vector, W is the weight matrix from the input layer to the hidden layer,
bE is the bias matrix from the input layer to the middle layer, and bD is the bias matrix from
the middle layer to the output layer.

3.1.2. ADMM-Based Model Solving Algorithm

ADMM can decompose large-scale equality constrained optimization problems into
multiple independent subproblems for distributed optimization. When optimizing a sub-
problem, the rest of the optimization function should remain unchanged. The optimization
problem of OFAE can be divided into two parts: ‖ L− Dθ(Eθ(L)) ‖2 and λ‖ S ‖21.

Since the former optimization solution is differentiable, when the deviation matrix
remains unchanged, the classical back-propagation algorithm can be used to train it. The
latter optimization is relatively complex, and the near-end gradient method can be used to
solve the norm optimization problem.

When dealing with the optimization of min(λh(x)), for the function h(x) that is non-
differentiable at the point x, the near-end gradient method looks for an alternative point,
u, to make it as small as possible and close to the original non-differentiable point, x. u is
called the proximal operator, proxλ,h(x), at x. The proximal operator of L21-norm is:

proxλ,l2,1(s)i =

{
si − λ si

‖si‖2
, ‖ si ‖2 > λ

0 , ‖ si ‖2 ≤ λ
(17)

where si is the row vector of the i row of the matrix S, and λ is the sparsity parameter.
The near-end operator determines the next step of the iteration during L21-norm

optimization, and finally obtains the track data after OFAE compression and depolarization,
which provides a high-quality dataset with low dimension and low noise for the clustering
algorithm. The complete model solving algorithm based on the ADMM framework is
shown in Figure 7.
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3.2. Historical Track Clustering

The density peak clustering algorithm is a clustering algorithm proposed in recent
years. Compared with the traditional DBSCAN clustering algorithm, it has a faster solu-
tion speed, and can extract the points that are most likely to become the class center in
the global data through the two indicators of local density and similarity measurement,
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which solves the problem that it is difficult for the traditional algorithm to distinguish
low-density clusters.

Although DPCA can effectively identify some tactical traffic flows that form a much
lower density than normal flight patterns due to control or regional reasons, DPCA cannot
identify abnormal data, and abnormal trajectories that deviate significantly from normal
data are also directly classified into nearby cluster classes, so this paper used OFAE in
combination with DPCA, and removed the deviation points from the original data by
OFAE, reconstructing the trajectory. At the same time, the normal trajectory was condensed
to improve the local density, which makes up for the defect that DPCA cannot denoise.

After AE was used to compress the track, the time characteristics of the track were
erased, leaving only the spatial characteristics. Therefore, the Euclidean distance was used
to measure the similarity between the two tracks. The hard threshold was selected as the
distance threshold of the model parameter, and the step count function was selected as
the density statistical function, χ(·). Then, the local density of the track i was calculated
as follows:

ρi = ∑
j

χ
(
dij − dc

)
(18)

where χ(·) is the density statistical function, which specifies the calculation of density when
the condition is satisfied, and here the step counting function was chosen. dij is the distance
between the points i and j, and dc is the distance threshold, which specifies the condition
for density counting and can be determined by hard or soft thresholding (e.g., Gaussian
kernel function).

Next, the similarity distance, δi, of point i was calculated, and the rule is quite simple:
if point i is the point with the largest local density, then δi is the distance between that point
and the point farthest away from it; conversely, the shortest distance between that point
and all points with local density higher than itself is calculated. Then, we have:

δi =

{
min

j:ρj>ρi
∃ρj > ρi

max other
(19)

where ρj and ρi are the local densities at points j and i, respectively, min is the shortest
distance between point i and all points with a local density higher than i, and max is the
distance between point i and the farthest point from i when ρi is the local maximum.

As shown in Figure 8, the dataset contains two cluster classes, which are labeled in
red and blue in Figure 8A. The local density, ρi, and similarity distance, δi, were calculated
for all data points to obtain Figure 8B.
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In Figure 8B, points 10 and 1 have the maximum local density, ρi, and similarity dis-
tance, δi, which are the cluster centers of the two cluster classes, respectively, so the cluster
centers can be determined directly from these two metrics without iterations. However,
the more obvious drawback of DPCA is the high empirical component, which relies on the
subjective tendency of the user in the problem of cluster center selection. In this example in
Figure 8B, the classification result is clear, and points 1 and 10 can be clearly distinguished
from other points in Figure 8B. However, in practice, it is often necessary for the user to
define a function, γi(ρi, δi), to measure the centroids based on domain experience, balanc-
ing the tendency of the two metrics in determining the centroids. A simple choice is to use
the form of the product of the two, γi = ρiδi, and select those points with the largest γi as
class centers.

χ(·) with dij, specifically:

χ(x) =
{

1, x < 0
0, x ≥ 0

(20)

dij =‖ Li − Lj ‖2 (21)

where Li and Lj are the OFAE-compressed track vectors.
From the above equation, the local density, ρi, is the number of tracks in the track set

with a distance less than dc between the i-th track. The local density was calculated for all
points in the dataset in turn and sorted in descending order.

We assumed that the dataset contains M tracks in total, and {qn}M
n=1 is a subscript

sequence of {ρi}M
i=1 in descending order; that is, if ρq1 ≥ ρq2 ≥ · · · ≥ ρqM is satisfied, q1 is

the subscript of the track with the highest local density, and qM is the subscript of the point
with the smallest density.

Then, we calculated the similarity distance, δi, of the track data i. Assuming the rank
of i in the local density ranking is n, then i = qn. If i is not the track with the largest local
density, then δi is the minimum distance between the track and other tracks with higher
density than itself, and vice versa is the maximum distance, that is, δi:

δi = δqn =


min
l:l<n

(dqnql ) n ≥ 2

max(
l≥2

dqnql ) n = 1 (22)

where ql is the subscript j of the other track, and to reflect its density relationship with track
i, the uniform sequence of subscripts {qn}M

n=1 in descending order of density is expressed
as ql and qn.

We calculated the center measurement parameters γi = ρiδi. The points with high
local density and long-distance, and greater than the threshold γc, can be identified as
density peaks or cluster centers. The remaining points are assigned to the same cluster
adjacent to their nearest high density without iteration. The flow chart of the algorithm is
shown in Figure 9.
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4. Simulation
4.1. Experimental Design

After modifying and reconstructing the sample set in a single track, AE was used to
reconstruct it as a whole. The track correction method described in Sections 2.1 and 2.2 was
used to correct the track sample set of Baiyun Airport, and after removing the seriously
damaged invalid tracks, there were 1263 remaining tracks in the sample set. When estab-
lishing the clustering model, due to the relatively fixed operation mode in the terminal area
and strong overall regularity, a large number of samples was not required. At the same
time, to verify the feasibility of the algorithm, it was necessary to horizontally compare the
models measured by DTW. To avoid time consumption, 10% of the tracks will be randomly
selected for the analysis of typical operation modes.

Firstly, the sample set used by OFAE was constructed. The input of the autoencoder is
required to be a matrix with fixed dimensions, so the track samples cannot be directly used
as input and need to be isometric. The previous reconstruction fills in the vacancy value
of the timestamp, which is essentially an up-sampling, but in fact, the too-long sequence
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is not friendly to the autoencoder, so it was necessary to carry out down-sampling. The
length of the sequence was limited to 100, that is, each track contained 100 track points,
and the characteristics of the track points are as follows:

Pt = (x, y, z, vH , vV , sin θ, cos θ) (23)

where x, y, z are the three-dimensional position coordinates of the aircraft. For the horizontal
speed, vH , and vertical speed, vV , of the aircraft, the timestamp information of the original
track was lost in the process of up- and down-sampling, so the differential term was
introduced to describe the instantaneous state of the aircraft. Using θ as the heading, it
can describe the instantaneous motion state of the aircraft as the speed. Here, the sine and
cosine value was used instead of the angle itself. The sine and cosine value of the heading
combined with the speed can directly reflect the position change, but the angle value has
no actual physical significance.

The ith track in the clustering sample set is expressed as: Traili = {P1, P2, . . . , P100},
with 700 dimensions in total, and then the dimension of the sample matrix to be compressed
was 126 × 700. The numerical normalization was carried out according to the column, the
information matrix, L, was obtained after use of the autoencoder and compression, and
the reconstructed sample set, X̂, was obtained after decoding the information matrix. The
comparison effect of the two is shown in Figure 10, in which the green line on the left is the
reconstructed track and the blue line on the right is the original trajectory.
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Figure 10. Reconstruction of the sample set comparison.

Observing the general form before and after reconstruction in Figure 10, it can be seen
that OFAE has a good anomaly detection ability, which can remove the deviated track that
is difficult to classify into a specific mode, and better maintain the overall situation of other
normal tracks.

In Figure 11A, there are many scattered abnormal tracks in the red wireframe area
of the original track. Although these tracks may also come from the real operation, they
cannot be clustered due to their extremely low frequency. They are noise to the clustering
model, so they need to be identified and eliminated during reconstruction.

Figure 11B shows the horizontal projection of the reconstructed trajectory set. It can
be clearly seen that the scattered trajectory of the red dotted box in the original trajectory
is eliminated under the constraint of one norm between groups. At the same time, the
constraint of two norms within the group also makes the reconstructed trajectory more
condensed in clusters with low density.
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4.2. Validation of Density Peak Clustering Effect

The track set reconstructed by OFAE obtains two-way compression within and be-
tween different tracks. Similar tracks are more cohesive, and the deviated tracks are
removed. The Euclidean distance measurement can be directly used.

Since the data used are unlabeled sequences, the visual manual observation of the
clustering effect and the contour coefficient were used as the evaluation indexes of the
clustering effect.

The contour coefficient evaluates the clustering effect by two indicators: intra-cluster
dissimilarity, ai, and inter-cluster dissimilarity, bi. For the sample sequence i, ai is the
distance between the track and other samples in the same cluster. The higher the value,
the more similar the track is to the track in the same cluster, and the better the clustering
effect is. bi is the average distance between the track and the tracks of other clusters. The
larger the value, the greater the difference between the track and the tracks of other clusters,
and the better the clustering effect. The contour coefficient of the track, si, is expressed
as follows:

si =
bi − ai

max{ai, bi}
(24)

The effectiveness of the clustering algorithm can be reasonably evaluated by calculat-
ing the average contour coefficient of the entire sample set.

Firstly, we attempted to use the combination algorithm of DTW and DBSCAN to
cluster the trajectories, and after trying to combine multiple sets of hyperparameters, we
chose the scan radius µ = 4.3 and the minimum number of samples in the cluster η = 9.
The clustering results are shown in Figure 12.

Overall, DBSCAN made a good distinction between the main traffic flows in several
areas, but in the area of longitude >114◦, i.e., the red and yellow clusters, it can be seen
that there was not only one traffic flow in these two clusters, but the interior of these two
clusters cannot be separated only by parameter adjustment. This is because DBSCAN uses
the same scanning radius on the whole sample set. When the distance between clusters of
several clusters is quite different, the algorithm makes it easy to classify the clusters close
together, whereas the light blue cluster on the left in the Figure 12 is obviously far away
from all other clusters. In the process of parameter adjustment, it can be distinguished by
almost any combination of parameters. However, due to the close distance between the
red and blue clusters, if the scanning radius is too large, these tracks will directly become
a cluster; if the radius is reduced, a large number of abnormal tracks will appear. The
adjustment of the minimum number of samples in the cluster η is the same, and a large
number of abnormal tracks will appear if the clustering requirements are improved. If the
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requirements for clustering are reduced, unreasonable multiple small clusters will appear
in the main traffic flow. In addition, although DBSCAN has the ability to recognize noise,
in the yellow area with many abnormal tracks, the algorithm was unable to identify the
potential traffic flow from the abnormalities, but tended to directly classify the tracks in
this area into one category.
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In summary, the algorithmic shortcomings of DBSCAN mainly lie in the rigidity of
the parameters. However, even if the red and yellow clusters in Figure 12 were separated
and clustered separately, and the similarity matrix was iterated and clustered again using
DTW, DBSCAN still failed to distinguish these more similar trajectory clusters.

Next, the sample set reconstructed by OFAE was used to take the conventional Eu-
clidean metric to measure the similarity of the trajectories, and the trajectories were clus-
tered using DPCA. The truncation distance of DPCA was chosen as dc = 3.8, while the
choice of the center metric parameter is more flexible and was determined by the number
of target cluster classes. Combined with the original trajectory pattern, the number of target
cluster classes here should be 5 or 6. Figure 13 shows the clustering effect when the number
of clusters was 5.
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The OFAE depolarization autoencoder mainly reconstructs the upper area of Figure 13
with a longitude greater than 114◦ and a latitude less than 22.5◦. It can be seen that after
the removal of abnormal tracks and the condensation of normal tracks, the traffic flow
potential in this region was more obvious, and DPCA could well-extract the potential traffic
flow in this region. However, similar to DBSCAN, the red clusters on the right cannot be
further subdivided. Even if the number of target clusters was set to 6, the separated red
clusters were not the red clusters in the current Figure 13. This is due to the rough distance
measurement. In fact, after compression and reconstruction, the overall trajectory tends to
be more cohesive. At the same time, the DPCA algorithm is more flexible than DBSCAN,
which is essentially the identification of the center of clusters, and it is not necessary to
use the same scanning radius for each cluster class. Even if there are relatively similar
cluster classes, DPCA can effectively distinguish them as long as different centers can be
identified. Next, we attempted to use the DTW iterative distance measurement matrix
for the reconstructed sample set, and to cluster with DPCA again to further reduce the
truncation distance, dc = 3.2, to separate the red cluster. The number of cluster centers was
6, and the clustering results in Figure 14 were obtained.
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It can be seen that traffic flows with different densities were successfully distinguished
and extracted after compression and reconstruction of AE, fine measurement of DTW, and
the DPCA clustering algorithm.

As an example, we applied the standard instrument approach procedure and the
area navigation approach procedure under the runway configuration of Baiyun Airport
01/02L/02R, as shown in Figure 15, and the light blue and yellow clusters and the aero-
nautical chart approach from the left and right sides. The number of flights arriving at the
airport from the ATAGA and IGONO waypoints is large, the traffic flow is large, the track is
more scattered, and the remaining clusters can accurately correspond to the approach pro-
cedures arriving from these two waypoints. It can be seen that the OFAE + DTW + DPCA
algorithm proposed in this paper has strong robustness in the face of complex operating
scenarios in the terminal area.

Combined with the contour coefficient, the performance of each algorithm is summa-
rized in Table 3.

It can be seen that the combined algorithm of OFAE and DPCA took less time, had a
better clustering effect than the traditional combined algorithm, and did not conflict with
DTW. The reconstructed aggregation trajectory can also use fine distance measurement
to achieve a better effect. Finally, the combined algorithm of OFAE + DTW + DPCA was
successfully used to effectively extract each traffic flow.
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Table 3. Algorithm performance summary.

Algorithm Contour Factor Algorithm Time
Consumption Effectiveness Evaluation

DTW + DBSCAN 0.46 High It is not possible to distinguish between similar cluster
classes and extracted low-density cluster classes.

OFAE + DPCA 0.65 Low Unable to distinguish between similar cluster classes.

OFAE + DTW + DPCA 0.73 High Effectively extracted
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5. Conclusions

(1) In the cluster analysis, a combined model of OFAE + DPCA was proposed to make up
for the problem that DTW is time-consuming and DBSCAN finds it difficult to distin-
guish clusters with large density differences in the traditional model, DTW + DBSCAN.
The track compressed by OFAE can directly use the Euclidean distance measurement.
DPCA can extract the density peak and directly classify the adjacent tracks. The
combination of the two greatly saves time.

(2) In the process of solving the sparse autoencoder, the non-convex optimization objec-
tive was processed by convex relaxation, which was transformed into the optimization
problem of L21-norm, and the ADMM algorithm was used for the step-by-step so-
lution. Compared with the Lagrange solution with strong constraints, the ADMM
solution allowed the model to deviate from the constraints to a certain extent while
reducing the error function. When the deviation was limited, it was more conducive
to the optimal solution.

(3) In future research, we will consider high-quality datasets obtained by classifying and
identifying typical aircraft operating modes and establish a track prediction model to
make the prediction results more targeted. In the face of abnormal mode data with
few similar samples at the same time, it can also provide a comprehensive prediction
based on similar patterns and improve the accuracy of track prediction.
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