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Abstract: In this paper, we designed a methodology to classify facial nerve function after head
and neck surgery. It is important to be able to observe the rehabilitation process objectively after a
specific brain surgery, when patients are often affected by face palsy. The dataset that is used for
classification problems in this study only contains 236 measurements of 127 patients of complex
observations using the most commonly used House–Brackmann (HB) scale, which is based on the
subjective opinion of the physician. Although there are several traditional evaluation methods for
measuring facial paralysis, they still suffer from ignoring facial movement information. This plays
an important role in the analysis of facial paralysis and limits the selection of useful facial features
for the evaluation of facial paralysis. In this paper, we present a triple-path convolutional neural
network (TPCNN) to evaluate the problem of mimetic muscle rehabilitation, which is observed by
a Kinect stereovision camera. A system consisting of three modules for facial landmark measure
computation and facial paralysis classification based on a parallel convolutional neural network
structure is used to quantitatively assess the classification of facial nerve paralysis by considering
facial features based on the region and the temporal variation of facial landmark sequences. The
proposed deep network analyzes both the global and local facial movement features of a patient’s face.
These extracted high-level representations are then fused for the final evaluation of facial paralysis.
The experimental results have verified the better performance of TPCNN compared to state-of-the-art
deep learning networks.

Keywords: rehabilitation; House–Brackman scale; functional data analysis; multi class classification;
deep learning; Kinect

1. Introduction

Deep learning has emerged as a potential and promising tool in biomedical signal
analysis. It is employed in early diagnosis, onco-surgery and rehabilitation. A number of
systematic reviews can be found in the literature, starting with a review of the applications
of deep learning in rehabilitation by [1] and ending with a review of assistive technologies
for patients in [2]. A systematic review of deep learning methods in biomedicine can be
found in [3]

We can also find references dealing with specific software tools (based on deep learn-
ing) that help in biomedical image analysis. For example, a deep learning approach has
been used in breast tumor histopathological images analysis [4,5], where the authors in-
troduce a convolutional neural network to detect tumor targets from pathological images.
Deep learning algorithms have recently been shown to be reliable and time-efficient in
segmenting pathological lungs and quantification of aeration of the chest [6]. Deep neural
networks also play an important role in data augmentation for brain tumor detection in
magnetic resonance imaging [7].
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Surgical treatment of a specific brain tumor can result in damage to the facial nerve.
This leads to either complete paresis or, at best, increased fatigue of the facial muscles.
Consequently, the patient’s daily life is affected by misinterpretation of their emotions
through facial expressions [8]

1.1. Facial Nerve Function Analysis

Some evaluation methods are based on facial regions, and the facial nerve function
is evaluated by comparing the difference of the texture and shape features between the
two symmetric regions. For example, [9] proposed a classification approach that is based
on Gabor feature and SVM. Ref. [10] quantitatively evaluated facial nerve function using
Gabor and LBP features. In addition, several evaluation approaches are based on dynamic
and 3D extracted features to solve the problems in these. For example, approaches based
on the facial image only consider the facial asymmetry information and ignore the features
of the movements of the facial muscle.

Ref. [11] employed a 3D model to quantitatively study facial movements by directing
patients to perform facial activities. Furthermore, Ref. [12] used the extracted facial
temperature distribution features in the particular facial regions to evaluate facial nerve
function. From previous related research, we have found a few researchers who pay
attention to the deep features of facial muscle movements, where conventional methods
have mainly been applied to extract the artificial features from static facial images by
considering the facial asymmetry.

Recently, deep learning approaches have had many successful applications in facial
expression and recognition [13]. Several works are presented to evaluate facial nerve
function based on deep learning methods. Automatic facial paralysis feature point detection
methods based on deep convolutional networks have been proposed [14]. In [15], the
authors employed the GoogleNet model [16] to drive transfer learning and reported good
results. However, these approaches usually apply a classical network for facial paralysis
analysis with few modifications to the original network. Therefore, the evaluation approach
for facial nerve function based on deep learning has a more expansive opportunity for
development.

1.2. Main Aims

Our work concentrates on a very special type of tumor in the inner ear (so called
Vestibular Schwannoma) and the reconstruction and analysis of muscle rehabilitation after
the surgical treatment. We focus on both: (i) data acquisition in a clinical environment; and
(ii) advanced data analysis.

We previously introduced a methodology for the reconstruction and analysis of
mimetic data [17], and to compare basic classification methods [18]. In these previous
works, feature engineering and feature selection were applied to train by traditional algo-
rithms. It has shown that the most algorithms have reached less than 50 percent accuracy.

In this work, we were inspired by the neural network with convolutional layers (CNN)
architecture, and our goal was to do whole process necessary to achieve higher accuracy
than previous models in our system. So, the whole process included the data processing
with our raw dataset, augmentation, and design of a suitable deep learning algorithm
for classification. Our goal was to make it more applicable in our system by improving
the accuracy. We will now focus on the deep learning methodology to make full use of
its capacity.

Compared with the existing evaluation approaches, the main contribution of TPCNN is
that it evaluates the global and local movement features of the patient’s face from their facial
activities, which are fused for the evaluation of facial nerve function. Another contribution
of this paper is that we have applied data augmentation methods for facial nerve function
classification to increase our dataset size and to improve the accuracy of classification. No
previous study has applied data augmentation methods for time series facial nerve function
classification. For instance, Ref. [19] only compares jittering, permutation, scaling, and
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time-warping using a Fully Convolutional Network (FCN) and a Residual Neural Network
(ResNet).

2. Materials and Methods

During diagnosis, clinicians evaluate the severity of facial paralysis when the patients
perform several standard facial actions. They also focus on the asymmetry that occurs
around specific facial regions. Based on the patient’s facial action, the asymmetry of the
texture changes and the facial shape would be taken from the whole face, and the largest
asymmetry of the changes appears around a particular facial region. For example, the
largest asymmetry of changes occurs around the mouth when the patient purses their lips
or bares their teeth.

Based on these facts, to evaluate facial paralysis, we proposed a triple-path CNN
(TPCNN) to evaluate the high-level movement features of facial muscles from the facial
diagnostic actions. The TPCNN employs one CNN sub-network to evaluate the global
movement features from whole faces and another two CNN sub-networks to evaluate the
local movement features from the relevant facial regions. The extracted features by TPCNN
are fused for final evaluation.

2.1. Measurement Scheme

A typical patient is shown in Figure 1. Facial data in the form of facemarks (facial
landmarks) were obtained during the patient’s rehabilitation of mimetic muscles.

Figure 1. Typical patient (A)—HB6, (B)—HB3. Reader may notice movement improvement in the
forehead part of the face—more pronounced wrinkles in (B).

The rehabilitation has been standardized by Prof. Janda [20] and consists of the
mimetic exercises that are presented in Table 1.

Table 1. Hospital control rehabilitation exercises using Prof. Janda’s methodology.

Order Exercise Order Exercise

1 Raising eyebrows 6 Pursing the lips
2 Frowning 7 Blowing out the cheeks
3 Closing eyes tightly 8 Closing eyes tightly and baring the teeth
4 Smiling 9 Raising eyebrows and pursing the lips
5 Baring the teeth

The physician evaluates each rehabilitation (set of nine exercises in Table 1) using the
HB classification Table 2 [21].
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Table 2. House-Brackmann (HB) scale for facial movements.

Grade Characteristic

I normal facial function in all areas

II slight weakness on close inspection

III obvious but not disfiguring

IV obvious weakness and disfiguring asymmetry

V only barely perceptible motion

VI no movement

The patient is scanned at the same time with the Kinect v2 camera during the exercises.
The camera computes the facemarks online from the acquired depth frames using an Active
Appearance Model (AAM) based algorithm [22].

The space coordinates of the facemarks, the time, and name of the exercise are stored
in data files for further analysis. These facemarks are 21 tracked facial points mapped as
described in Table 3 and shown in Figure 2.

Table 3. Indices of points of interest (facemarks), p is an internal index number.

p Kinect Position p Kinect Position

0 1104 left eye, bottom 11 849 left eyebrow, centre
1 241 left eye, top 12 18 nose tip
2 210 left eye, inner corner 13 8 mouth lower lip, centre-bottom
3 469 left eye, outer corner 14 91 mouth, left corner
4 346 left eyebrow, inner 15 687 mouth, right corner
5 222 left eyebrow, centre 16 19 mouth upper lip, centre-top
6 1090 right eye, bottom 17 4 chin, centre
7 731 right eye, top 18 28 forehead, centre
8 843 right eye, top 19 412 left cheek, centre
9 1117 right eye, outer 20 933 right cheek, centre

10 803 right eyebrow, inner
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Figure 2. Points of interest illustration.

2.2. Dataset

The research was approved by the Ethics Committee of the University Hospital
Královské Vinohrady Prague (EK-VP/4310120), where measurements were made. Each
patient signed their informed consent to the research conditions.
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Up to February 2022, the dataset contained 236 successful rehabilitations of 127 pa-
tients. More detailed information on the study cohort can be found in Table 4.

Table 4. Dataset overview.

Start Date 22 January 2019
End Date 20 January 2022

Number of Patients 127
Number of Sessions 236

Male 71
Female 56
Average Age (years) 58.4

The patients had been performing nine exercises using the mimetic muscles during
the examination. The samples in Figure 3 are the amount of data that totalled around
2214 samples (236 measurements where each measurement included nine exercises). Time
steps are expressed as the number of frames (sequences) recorded by the camera. Facial
points are the number of features in every frame (time step) recorded from measurements
that are the input of our network instead of images.

Figure 3 shows both the grade score distribution (classes) and the time steps distribu-
tion of our dataset. Data size is a very important factor in training deep neural networks.
Larger datasets can help deep networks learn the model parameters better. A deep neural
network trained with small datasets generally exhibits a poorer performance than that of
conventional machine learning methods [18].

Figure 3. Classes and time step distribution in our dataset.

2.3. Data Preprocessing

A more detailed description of the registration technique that we used can be found
in [17]. As can be seen in Figure 3, the class distribution is imbalanced and the time steps
for each subject in our dataset vary widely. There are many more patients with class 1
(HB1) than patients with other classes, and classes 4 (HB4) and 5 (HB5) are worse with a
minimum number of samples. To tackle unbalanced datasets, there are various techniques:
under-sampling is not applicable in our case because of a small dataset; over-sampling can
work, but there is a risk of model over-fitting, especially in our dataset, which is very small.
To overcome these problems, we applied some techniques such as data augmentation and
optimum weights for each class in the training process.
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Furthermore, due to variation in time steps, all sequences are padded with zeros at
the beginning according to the length of the longest sequence or a length chosen longer
than the longest length, as shown in Figure 4.

Figure 4. Pre-Sequence Padding.

Pre- and post-padding do not matter much to CNN because it tries to find the pattern
in the given data, but, generally, pre-padding would be more useful when multiple types
of neural networks are fused to execute a task [23]. In addition, as the accuracy is not
consistent for different iterations in the unbalanced dataset, we applied the F1 score metric,
which is the harmonic mean of precision and recall and is appropriate for an unbalanced
data set.

Data Augmentation Strategies

A deep neural network has millions of parameters to learn, which means that it re-
quires many iterations before it discovers the optimum values. If there are small volumes
of data, the execution of many iterations can result in overfitting. A large dataset helps
the network to avoid overfitting with a better performance. Data augmentation is a useful
method for dealing with a small dataset without overfitting. Furthermore, data augmen-
tation can boost the generalization ability of trained models by expanding the decision
boundary of the model and decreasing overfitting [24]. The need for generalization is
necessary for real-world data and can help designed networks, especially deep learning
networks, to overcome datasets with imbalanced classes [25] or small datasets [26]. Most
data augmentation strategies for time series classification are based on random transfor-
mations of the data, such as adding jittering [27], slicing [28], scaling, magnitude warping,
and time dimension warping [29].

Jittering is one of the effective data augmentation methods [30], which can be defined as:

x
′
= x1 + ε1, · · ·+ xt + εt, · · ·+ xT + εT , (1)

where ε is the Gaussian noise added to each time step.
In [30], the authors report that rotation data augmentation can increase accuracy when

combined with other augmentation methods, where rotation is defined as:

x
′
= Rx1, . . . , Rxt, . . . , RxT , (2)

where R is a rotation matrix for flipping for univariate time series and angle for multivariate
time series.

By a random scalar value, scaling can change the global intensity of a time series [30],
where the scaling is defined as:

x
′
= αx1, . . . , αxt, . . . , αxT , (3)

where the scaling parameter α can be determined from a random value from a predefined set.
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Magnitude warping is a technique that warps the magnitude of a signal by a smoothed
curve [30], which is defined as:

x
′
= α1x1, . . . , αtxt, . . . , αTxT , (4)

where α1, . . . , αt, . . . , αT is a sequence built by inserting a cubic spline S(u) with knots
u = u1, . . . , ui, . . . , uI .

Slicing augments the data by slicing time steps off the ends of the pattern [30], where
slicing is defined as:

x
′
= xϕ, . . . , xt, . . . , xW+ϕ, (5)

where W is the size of a window and ϕ is a random integer.
Time warping is the perturbation of a pattern in the temporal dimension using

a smooth warping path [30], which is defined as:

x
′
= xτ(1), . . . , xτ(t), . . . , xτ(T), (6)

where τ() is a warping function that warps the time steps based on a smooth curve.
Only a few works have applied data augmentation methods for time-series classifi-

cation data. In this paper, the data augmentation strategies that we used include jittering,
scaling, magnitude warping, time warping, slicing, and rotation as shown in Figure 5.

Figure 5. A sample of data augmentation strategies in our dataset.

2.4. Classification Methodology

Facial landmarks are an important part of facial expression analysis and facial recogni-
tion [31]. A patient who has a sign of facial nerve palsy will probably also have signs of
deformation in important regions, such as the inability to close the eye, bare teeth, or the
inability to purse the lips [32,33]. Facial nerve function can be recognized by extracting the
position and distance between the salient points. Reference [34] demonstrated that the fea-
tures of the mouth region had a direct correlation with the HB scores. Meanwhile, Ref. [35]
used the boundaries of the eye region as a region-based feature for the classification of
facial nerve function. In this paper, the facial landmarks of these two regions of interest,
including the mouth region and the eye region, are selected for different subnetworks. The
proposed parallel networks can learn the spatial features of the regional nerve function
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from sequences of different facial expressions. We introduce two types of subnet networks
for global and regional areas: a subnetwork for the whole face, and two subnetworks for the
regions of the eyes and mouth. Figure 6 illustrates the framework of the proposed TPCNN.

Figure 6. The overall framework of TPCNN.

For the region of the whole face, there are 21 key points in each sequence and each key
point has three axes of data, this means that there is a total of 63 variables for each time
step. Furthermore, each series of data has been partitioned into 891 time steps (891 are
sequences), and there are also nine exercises for each labeled case. This means that the
total time steps is around 891× 9, or 8019 steps. Therefore, a row of data has (801× 63 as
is shown in Figure 7, the input of the subnetwork on the right side) or 505,197 elements.
This is exactly how we loaded the data, where one sample is one window of the time series
data, each window has 8019 time steps, and a time step has 63 features. The output of the
model will be a six-element vector that contains a given window that belongs to each of the
six classes. For the mouth and eye regions, the process is similar but with the number of
features of their regions.
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Figure 7. Graphical representation of TPCNN.

3. Results

To evaluate facial nerve function, we extracted and analyzed temporal features in
changes in facial texture. We used a convolutional neural network to learn the dynamic
features of facial movements to extract sequential features. In addition, we not only focused
on the features of the movement on the overall faces, but also on the detailed facial regions
corresponding to facial activities. Hence, a new network structure that is included with
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the triple-path CNN was designed to extract the temporal features of the facial feature
movements of the whole face and the detailed facial regions to evaluate facial nerve function.
For the one path of the TPCNN, a recorded sequence of facial movements was used as
input data.

As shown in Figure 7, there are three network subnets for each region of the face region.
The network consists of single convolutional layers, average pooling layers, and a fully
connected layer (FC). These piles of convolution layers are used to learn the asymmetry
from low-level features to semantic-level features of the different sequences for each subject.
These extracted features are then flattened to feature vectors in regional networks and in
a global network. The ReLU function is used for the activation function of each subnet.
In addition, the dropout is set to 0.2 to avoid the overfitting problem. Finally, the global
temporal features and the local temporal features are concatenated to form a new vector of
features for the final evaluation of facial nerve function.

The full features of the mouth, eye regions, and whole face sequences are used to analyze
spatial position changes and temporal features among different facial movements. As shown
in Figure 7, the feature vector for evaluation consists of global and regional features. In the last
layer, weighted cross-entropy and soft-max are the loss and activation functions, respectively.
The evaluation score according to the HB provided by a clinician is used as a basis for training,
and the fused feature vectors of TPCNN are used to evaluate the severity of facial paralysis. As
can be seen from Figure 3, the results of the analysis of the dataset show that the distribution
of patients with different HB scores (classes) is quite unbalanced. Due to this problem, we
introduce a class weight coefficient ki, and the optimal weights wi for each class in the training
process are calculated using the following equations:

ki =
nc

∑
i=1

1
ncnsi

nc

∑
j=1

nsj (7)

wi =
nc

∑
i=1

k2
i .min(eki , max(1.5ki)), (8)

where nc is the number of classes, nsi or nsj are the number of samples in a particular class.

3.1. Experiment Set-Up

To test the models for the multiclassification tasks, the K-fold cross-validation process
is applied in our experiment, where the value of k is determined as 5. This allows us to test
on unseen facial feature samples while, accordingly, decreasing the possibility of overfitting
to previously seen samples. The five-fold cross-validation technique divides the dataset
into five subsets. Each subset is included as validation data and the other four subsets
are used as training data. This can guarantee that the test data are not touched on in each
evaluation. This procedure is repeated five times, and each class has the same probability
for validation.

We modified the existing training algorithm to consider the skew distribution of
classes. This required different weights to be assigned to the minority and the majority of
samples. In the training stage, the disparity in weights will affect the classification of the
class. The goal here is to compensate for the misclassification of classes with a few samples
by assigning higher weights and lessening the weights for classes with higher samples.

In the training process, we assign a higher weight to the minority class in the training
method. Therefore, training can focus on decreasing the error of the minority class. Fur-
thermore, given that the F1 score is the key to measuring classification imbalance, the F1
score was used as an evaluation metric rather than accuracy because the F1 score is just a
harmonic mean of recall and precision.

A batch-based ADAM algorithm is used to optimize the model. Adam optimization
is a replacement method for stochastic gradient descent (SGD) for training deep learning
models. For the training cycle, the batch size is set to 64 for each session. Finally, the best
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model is chosen after 50 epochs to test the performance of the network in classifying the
classes of facial nerve function sequences.

3.2. Evaluating the Experiment

The proposed method can solve the classification of facial nerve function with
21 landmark key points in the whole face that are detected by facial landmark detection. We
also separate the eye region and the mouth region following the detection results for other
networks. These features of the sequences are then fed into the TPCNN for classification
purposes. The 21 point landmarks include 12 marks for the top region (e.g., four marks for
the eyebrow and eight marks for two eyes) and nine marks for the down region (e.g., three
marks for the nose and six marks for the lip and chin). In the model training procedure,
facial, eye, and mouth features are used as inputs to the proposed parallel subnets. Each
parallel subnet in TPCNN is a CNN structure with a low number of parameters and hidden
layers, which can speed up the model’s training procedure.

The first and second subnets are CNNs that focus on region-based, while the third
CNN only focuses on the whole face. Performance metrics, such as the F1 score, are used
to evaluate the performance of the proposed methodology, which are defined as follows:

F1 =
2PR

P + R
, (9)

where P stands for precision and R stands for recall. The precision represents the fraction
of correctly predicted positive samples from the positive predicted samples, and the recall
represents the ratio of real positive samples that are truly found by the model. The F1 score
is the harmonic mean of precision and recall, which is a meaningful criterion (specifically
in unbalanced data).

To demonstrate the prediction ability of the proposed method with parallel inputs, it
has been compared with CNN-LSTM [36], ResNet [37], and FCN [37]. Table 5. As can be
seen, most F1 scores are greater than 80% with the proposed method (see the Supplementary
Material for more information). The classification average F1 score compared to different
network structures in a five-fold cross-validation experiment is shown in Figure 8. The F1 score
of the proposed model shows the percentage of correctly predicted samples. The proposed
model is found to have achieved an excellent performance in the classification of facial nerve
functions. The average rates in the five-fold cross-validation experiment with TPCNN are
88.31%, 81.18%, 81.76%, 83.73%, 85.02%, and 76.34%, as shown in Table 5 and Figure 8.

Figure 8. Average F1-score comparison.
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Table 5. Average F1-Score comparison.

HB by a Clinician TPCNN CNN-LSTM LSTM FCN ResNet
[%] [%] [%] [%] [%]

1 88.31 65.32 0 0 0
2 81.18 58.63 13.42 7.1 27.58
3 81.76 68.10 14.56 9.26 29.93
4 83.73 65.96 19.93 15.44 27.22
5 85.02 61.69 16.67 13.46 29.11
6 76.34 56.30 25.24 20.82 26.51

4. Discussion

We also compare the performance of deep learning models with the test dataset, which
is shown in Tables 6–10. The precision, recall, and F1 score are considered in comparison to
the models by HB grades (classes). It is evident from the overall F1 score of the classification
that the TPCNN classification method also produces the best results of all the selected deep
learning methods on the test dataset.

When analyzing the confusion matrix, it is obvious that the proposed approach can
predict the palsy classes (HBs) satisfactorily. The highest classification F1 score is 93%,
which is attributed to face palsy class 1 (HB1), while the lowest classification F1 score is
67%, which is attributed to classes 4 (HB4) and 5 (HB5). The precision, recall, and F1 score
metrics for our proposed method are shown in Table 6.

Precision and recall metrics describe the cases that correctly predicted overall positive
predictions and observations, respectively. The precision and recall values of the proposed
approach for face palsy class 1 (HB1) are 92% and 94%, compared to face palsy class 4 (HB4)
with 100% and 50%, respectively. It can be seen from Tables 6–10 that the prediction F1
score of our classification model is better than that of the deep networks presented.

The proposed grading classification is robust and more effective because TPCNN has
been used with automatic face features representation to achieve excellent classification
accuracy across a range of facial palsy severities. By data augmentation, our model demon-
strated that the classification model is appropriate for learning the most discriminative
characteristics of the expected task. Furthermore, data augmentation makes our model ca-
pable of learning varying palsy severities, which can substitute the repeated measurements,
and hence is useful in the repeatability of the classification method.

As can be seen in Figure 9, the proposed TPCNN also has the highest classification
accuracy in the test set experiment, which is 89% compared to 69% and 13% for CNN-LSTM
and LSTM, respectively. Other deep learning models have shown very poor performance
in the test set. This is due to the proper design of TPCNN with merged global and local
features for facial nerve function evaluation, rather than only operating on the extracted
facial motion features of the entire face. These selected features of the facial nerve function
characteristics for evaluation are compatible with the subjective evaluation of a clinician.

Table 6. Best TPCNN model result on the test set.

HB by a Clinician Precision Recall F1-Score
[%] [%] [%]

1 92 94 93
2 85 100 92
3 92 85 88
4 100 50 67
5 75 60 67
6 75 75 75
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Table 7. Best CNN-LSTM model result on the test set.

HB by a Clinician Precision Recall F1-Score
[%] [%] [%]

1 100 67 80
2 64 82 72
3 69 69 69
4 33 50 40
5 30 60 40
6 43 75 55

Table 8. Best ResNet model result on the test set.

HB by a Clinician Precision Recall F1-Score
[%] [%] [%]

1 0 0 0
2 0 0 0
3 0 0 0
4 3 50 6
5 4 20 7
6 6 25 10

Table 9. Best LSTM model result on the test set.

HB by a Clinician Precision Recall F1-Score
[%] [%] [%]

1 0 0 0
2 0 0 0
3 67 31 42
4 6 50 11
5 13 80 22
6 0 0 0

Table 10. Best FCN model result on the test set.

HB by a Clinician Precision Recall F1-Score
[%] [%] [%]

1 0 0 0
2 0 0 0
3 5 8 6
4 0 0 0
5 0 0 0
6 50 25 33

Hypothetically, TPCNN (inspired by CNN architecture) is better at capturing local
feature and neighborhood information more robustly, and it also considers features in the
feature vector sequentially. In addition, the hyperparameters of the comparison methods
are not tuned in this work and may be one reason for their failure cases. Zero padding
should have a negative effect on its performance, where the TPCNN will identify patterns
locally around the kernel. Therefore, the long sequences with zero padding should not
have a negative effect on TPCNN. This will be added in our future work to investigate
different deep learning methods in the imbalance dataset for failure cases.

We also provide a brief evaluation to illustrate the effect of architecture hyperparame-
ters on the floating point operations (FLOPs) consumption to compare with the presented
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methods. The performance of deep neural networks is highly dependent on the complex-
ity of the model, which is measured by the size of a model’s parameters multiplied by
accumulating operations (MAC) or the number of floating-point operations. FLOPs are
often used to illustrate how many operations are required to run a single instance of a
given model. MACs contain multiplication and addition, so they can be counted as two
separate floating-point operations. In other words, the Macs are approximately half of the
FLOPs by ignoring bias terms, as the number of bias addition operations is much fewer
than that of the MACs. A general trend is that the larger the model, the higher the accuracy
it can achieve in a given task. Table 11 shows the comparison of the model parameters,
MACs, and FLOPs of the methods presented. For the proposed model, the total number
of FLOPs is given as 8480 K. As shown in the table, the LSTM variant requires the least
number of model parameters, FLOPs, and MACs, but it is among low-accuracy methods.
The proposed model has shown a larger number of parameter sizes, FLOPs and MACs,
but, significantly, the highest accuracy among the other methods.

Figure 9. Accuracy comparison.

Table 11. Metrics of model efficiency.

Models Parameters MACs FLOPs Accuracy
[K] [K] [K] [%]

TPCNN 2117 4240 8480 89
CNN-LSTM 1217 2470 4940 69

FCN 330 657.37 1314.74 3
ResNet 151 298.61 597.22 4
LSTM 42 115.71 231.42 13

5. Conclusions

In this paper, a region-based parallel network model is introduced to classify the
facial nerve function of sequences based on facial regions. Due to an imbalanced data
sample, different time step length, and lack of enough data samples for training, we
applied techniques such as prepadding, data augmentation, F1-score metric evaluation,
and optimum weights for each class in the training process. Based on the TPCNN network,
this method automatically learns region features to distinguish the difference between
normal faces and a face with facial nerve palsy. This shows an improvement in robustness
and consistency as a result of the classification of facial nerve functions.
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We compare our algorithm with other deep networks in terms of accuracy and evalua-
tion of the F1 score. The other methods could not achieve good performances in evaluating
facial nerve function. This may happen because the design of their architecture is just not
suitable for data augmentation, where our TPCNN method considers the features of global
and local facial movements and could therefore improve accuracy, precision, recall, and F1
score over other methods.

Future Work

The current study has some limitations. Most importantly, the lack of various facial
expressions and the varying distributions of the patients’ facial sequence lengths with
different HB grades have limited the optimization of the deep network and the learning of
the dynamic features of muscle movement.

Our results are promising, and there are many areas in which this research can be
pursued. First, if we have enough data, then there is the possibility to analyze the effect
of different sequence lengths on the model’s accuracy. Furthermore, because our method
uses a supervised deep network and is dependent on labels prepared by the subjective
opinion of the clinician, it will be worth testing the unsupervised method where the data
samples will be processed independently of the clinical procedure. Finally, the effects
of each data augmentation strategy on the accuracy of the model can be considered as
future research problems. Because time-series data augmentation is not used as much
as image data augmentation, there is good potential for time-series data augmentation
to grow, especially in the domain of facial nerve function. There are other advanced
data augmentation methods (e.g., metalearning, filters, and style transfer) that have been
applied in the image domain but are still not used by time series. Therefore, there is a good
opportunity for new research to work on the augmentation of time-series data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12125902/s1, Table S1. F1-Score of TPCNN. Table S2. F1-
Score of CNN-LSTM. Table S3. F1-Score of ResNet. Table S4. F1-Score of LSTM. Table S5. F1-Score
of FCN.
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Abbreviations
The following abbreviations are used in this manuscript:

Adam Adaptive Moment Estimation
CNN Neural Network with Convolutional layers
FC Fully connected
FCN Fully Convolutional Network
FLOPs Floating-point operations
HB House–Brackmann facial nerve grading system
LSTM Long short-term memory
MACs Multiply-accumulate operations
ReLU Rectified Linear Unit
ResNet Residual Network
SGD Stochastic gradient descent
TPCNN Triple-path convolutional neural network
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