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Abstract: Current state-of-the-art parallel codes used to calculate the maximum number of pairs for a
given RNA sequence by means of Nussinov’s algorithm do not allow for achieving speedup close up
to the number of the processors used for execution of those codes on multi-core computers. This is due
to the fact that known codes do not make full use of and derive benefit from cache memory of such
computers. There is a need to develop new approaches allowing for increasing cache exploitation in
multi-core computers. One of such possibilities is increasing the dimension of tiles in generated target
tiled code and assuring a similar size of generated tiles. The article presents an approach allowing
us to produce 3D parallel code with tiling calculating Nussinov’s RNA folding, i.e., code with the
maximal tile dimension possible for the loop nest, executing Nussinov’s algorithm. The approach
guarantees that generated tiles are of a similar size. The code generated with the presented approach
is characterized by increased code locality and outperforms all closely related ones examined by us.
This allows us to considerably reduce execution time required for computing the maximum number
of pairs of any nested structure for larger RNA sequences by means of Nussinov’s algorithm.

Keywords: compiler; RNA; nussinov; source code generation; shared memory algorithms; bioinformatics;
dynamic programming; RNA folding; loop nest tiling; parallel code

1. Introduction

The goal of this article is to show a way to create 3D parallel tiled code from serial
dynamic programming code executing Nussinov’s RNA folding algorithm. There exist dif-
ferent serial implementations of that algorithm, but the main drawbacks of those programs
are poor performance and cache efficiency for a large problem size. Parallelization and loop
tiling transformations are used to enhance serial code performance. Loop tiling is often
applied to optimize both serial and parallel programs. It increases parallel code granularity
and data locality for multi-core architectures. Our goal is to generate code enumerating tiles
whose dimension is maximal because the greater the tile dimension is, the more tiled code
locality is reached. On the other hand, we aim to generate tiles of a similar size because
such tiles allow us to better balance thread load, which improves parallel code performance.
The maximal tile dimension of a loop nest is defined with the number of loops in that nest.
Nussinov’s algorithm is implemented with a nest including three loops, so for that nest,
the maximal tile dimensions are 3D. There are known codes implementing 2D tiling for
Nussinov’s algorithm, for example [1,2]. The articles [3,4] introduce 3D tiling for Nussi-
nov’s algorithm, but generated tiles are of different sizes and some tiles are parametric,
i.e., their size is unlimited. This makes it very difficult to balance thread load and as a
consequence reaching the maximal performance of those parallel tiled codes is impossible.
In this article, we present a method of creating the 3D parallel tiled program with tiles of a
similar bounded size, implementing Nussinov’s algorithm and showing the advantages of
that code. The major contributions of the article are the following.
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• Proposition of a modification of Nussinov’s algorithm to a form allowing us to produce
3D parallel tiled code with tiles of a similar bounded size.

• Presentation of a way to produce 3D parallel tiled code implementing Nussinov’s algorithm.
• Demonstration of the generated 3D parallel tiled code performance on different plat-

forms and the comparison of its performance with that of known implementations of
Nussinov’s algorithm.

The rest of this article is organized as follows. Section 2 introduces background and no-
tations. Section 3 shows a method of generation of 3D parallel tiled code. Section 4 presents
related work. Section 5 discusses experimental results. Section 6 includes conclusions.

2. Background

The algorithm by Nussinov et al. [5] aims at computing the maximal number of
base pairs for any nested structure or a given RNA sequence. For this purpose, dynamic
programming is applied. Recursions are used to fill table S, where an entry S(i, j) holds the
maximal number of base pairs for the subsequence from position i to j. The entry S(0, n− 1)
(adapted to an implementation in the C language) provides the overall maximal number
of base pairs for the whole sequence of length n. Let S be an n× n Nussinov matrix and
sigma(i, j) be a function which returns 1 if (xi, xj) match and i < j, or 0 otherwise; then,
the following recursion S(i, j) (the maximum number of base-pair matches of xi, . . . ., xj) is
defined over the region 0 ≤ i < j < n, i ≤ k < j as follows [5].

S(i, j) = max
0≤i<j<n

S(i, j− 1)

max
i≤k<j

(S(i, k− 1) + S(k + 1, j− 1) + σ(i, j)) (1)

There are different semantically identical codes implementing Nussinov’s recurrence.
In this article, we use the popular C code introduced in article [1] and presented in Listing 1.
Despite the fact that the code does not use the same statements as those in the original
Nussinov recurrence, it carries out the same calculations as the original recurrence; there-
fore, it produces the same output that the original recurrence does. The reason for the usage
of that code is its property relying on decrementing the value of index i; this allows us to
build a calculation model used for deriving the proposed approach for the generation of
3D tiles.

Listing 1. Nussinov’s loop nest.

1 for ( i = n−1; i >= 0 ; i −−) {
2 for ( j = i + 1 ; j < n ; j ++) {
3 for ( k = i ; k < j ; k++) {
4 S [ i ] [ j ]=max( S [ i ] [ k ] + S [ k + 1 ] [ j ] , S [ i ] [ j ] ) ; / / s1
5 }
6 S [ i ] [ j ]=max( S [ i ] [ j ] , S [ i + 1 ] [ j −1]+ sigma ( i , j ) ) ; / / s2
7 }
8 }

Program code can expose dependences among instances of loop statements. A depen-
dence takes place when two statement instances access the same memory cell and at least
one of these accesses is write. Each dependence available in an original code should be
respected in the code generated from the original one.

To transform the code implementing original Nussinov’s algorithm, we use the iscc
calculator [6], which implements operations on polyhedral sets and relations according to
the article [7].

To transform the code implementing original Nussinov’s algorithm, we form a set of
the form {[input list] | formula}, where input list is the list of expressions used to describe a
set tuple; formula describes the constraints imposed upon the set tuple. It is a Presburger
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formula including constraints represented by affine expressions connected with logical and
existential operators.

3. Materials and Methods, 3D Tiled Code Generation

To implement the calculations represented with Listing 1, we use a calculation model
based on a network of computational cells suggested by Figure 1 for n = 7, that is, a
triangle of cells. Each cell runs instances of statement S1 and statement S2. Cells use shared
memory for reading and writing results produced with them. So, results calculated by cells
are held in shared memory. At a particular time unit, cell (i, j) updates the value of S(i, j)
running an instance of statement S1 when the values produced with instances of S1 by
means of cells (i, k) and (k + 1, j), which we call the horizontal and vertical mates of cell
(i, j), respectively, are ready (already updated). In Figure 1, the mates of cells 01, 02, 03, and
06 are connected with those cells with the arrows in the same color. The rest of the arrows
connecting a cell with its mates are skipped in order to not clutter the drawing.

0200 0301 04 05 06

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

MEMORY

Figure 1. Calculation model to update cells.

Taking into account that before calculation, i.e., in time unit 0, for a given
i, i = 1, 2, . . . , n − 1, S(i, i) = 0 and supposing that each cell requires one time unit to
complete the execution of an instance of statement S1, from Figure 1, we conclude that for
a cell (i, j) and a given k, the time unit of completing the calculation of a horizontal mate is
the following t1 = k− i, whereas the time unit of completing the calculation of a vertical
mate is as follows: t2 = j− k− 1. For example, for cell 01 its mates 00 and 11 are ready at
time 0 because for cell 01, k = 0.

As far as statement S2 is concerned, it is to be executed at the time unit when the
value of S(i, j) produced with statement S1 by means of loop k has already been completed
(completing the execution of loop k for given values of i and j).

From Figure 1, it is clear that for cell (i, j), the time unit of completing the calculation
of S1 with loop k is equal to j− i, for example, for cell 01 that time unit is 1, for cell 02 that
time unit is 2, and so on.

To guarantee that statement S2 is executed at the time unit when loop k completes
the calculation of S1, but after statement S1, we introduce the second time unit dimension
whose value is 0 for statement S1 and 1 for statement S2, i.e., the time of completing S1 for
cell 01 is (1,0), whereas the time of completing S2 for cell 01 is (1,1).

Table 1 presents time units t1, t2 of completing the calculations of S1(i, k) with state-
ment S1 (a horizontal mate) and S1(k + 1, j) (a vertical mate) with statement S1 as well as



Appl. Sci. 2022, 12, 5898 4 of 14

the time units of completing the execution of statements S1 and S2 for cells 01 to 06. The
time of the execution of statement S1 for given i, j and k is calculated as max(t1, t2) + 1,
where t1 and t2 state for the completing time of the horizontal and vertical mates, respec-
tively, i.e., next time after all the operands of statement S1 are ready. It is worth noting that
statement S2 is executed only when all the iterations of loop k are already finished.

It is worth mentioning that at the same time unit, a cell can combine two or more pairs
of values produced with mates for statement S1. For example, at time unit (2,0), cell 02
updates two times; at that time unit, it combines values generated with mates 00 and 12 as
well as 01 and 22 because at time unit (2,0) all those mates complete their updating. In such
a case, output dependences arise, which we will respect due to serial updates performed
with the corresponding cell as described below in this section.

Table 1. Time units t1, t2 and the time units of completing S1, S2 for cells 01 to 06; i ≤ k < j.

Cell k/Horizontal Mate/
t1 = k − i

k/Vertical Mate/
t2 = j − k − 1

j − i Time of
S1

Time of
S2

01 0/00/0 0/11/0 1 1, 0 1, 1
02 0/00/0

1/01/1
0/12/1
1/22/0

2 2, 0
2, 0

2, 1
2, 1

03
0/00/0
1/01/1
2/02/2

0/13/2
1/23/1
2/33/0

3
3, 0
2, 0
3, 0

3, 1
-
3, 1

04
0/00/0
1/01/1
2/02/2
3/03/3

0/14/3
1/24/2
2/34/1
3/44/0

4
4, 0
3, 0
3, 0
4, 0

4, 1
-
-
4, 1

05
0/00/0
1/01/1
2/02/2
3/03/3
4/04/4

0/15/4
1/25/3
2/35/2
3/45/1
4/55/0

5
5, 0
4, 0
3, 0
4, 0
5, 0

5, 1
-
-
-
5, 1

06
0/00/0
1/01/1
2/02/2
3/03/3
4/04/4
5/05/5

0/16/5
1/26/4
2/36/3
3/46/2
4/56/1
5/66/0

6
6, 0
5, 0
4, 0
4, 0
5, 0
6, 0

6, 1
-
-
-
-
6, 1

Table 2 presents the time units of the completion of all cells shown in Figure 1—the
time units of the completion of statement S2.

Table 2. Time units of the completion of all cells—the completion of S2.
Cell Time Unit of Completing Cell (i, j)-Completing S2

01, 12, 23, 34, 45, 56 1, 1
02, 13, 24, 35, 46 2, 1

03, 14, 25, 36 3, 1
04, 15, 26 4, 1

05, 16 5, 1
06 6, 1

To generate code, we form the following set CODE whose constraints take into account
the consideration mentioned above.

CODE := [n]→ {[t, i, j, k, s] | ∃t1, t2 s.t. (

0 ≤ i ≤ k < j < n & t1 = k− i & t2 = j− k− 1

& t = max(t1, t2) + 1 & (s = 1 & t = j− i ∨ s = 0 & t ≤ j− i))}.
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In the set above, [n] means that n is the parameter; [t, i, j, k, s] is the set tuple where
variable t = max(t1, t2) + 1 defines a time unit when cell (i, j) completing the execution
of all instances of statement S1 using the values produced with cells (i, k) and (k + 1, j),
the value 0 of variable s (s = 0) means that statement S1 should be executed, whereas
the value 1 of variable s (s = 1) means that statement S2 should be executed; variables
t1 = k− i and t2 = j− k− 1 hold the time units of completing the calculations of horizontal
and vertical mates, respectively; 0 ≤ i ≤ k < j < n is the constraint of Nussinov’s recursion;
the constraint s = 1 & t = j− i means that statement S2 (s = 1) is to be executed when
t = j− i whereas the constraint s = 0 & t ≤ j− i defines the condition when statement
S1(s = 0) should be executed; & and ∨ denote the operators AND and OR, respectively.

Set CODE allows us to generate target code that executes statement instances in the
lexicographic order of vector (t, i, j, k, s)T , i.e., the outermost loop is to enumerate the
values of variable t; the next two loops are to enumerate the values of variables i and
j. Because iterator k is dependent from variables t, i and j, a code generator will skip a
loop for enumerating k. The value of variable s points out what statement (S1 or S2) is to
be executed.

Applying the iscc codegen operator [7] to CODE set, we acquire the pseudo-code
shown in Listing 2. It is worth noting that the value of variable s (0 or 1) implements
also two-dimensional time units presented in Tables 1 and 2. Because the code generator
produces code that enumerates statement instances in lexicographic order, in the generated
code, at the same time the unit defined with iterator c0 statement S2 is executed after
statement S1.

Listing 2. Pseudo-code implementing tranformed Nussinov’s algorithm.

1 for ( i n t c0 = 1 ; c0 < n ; c0 += 1)
2 for ( i n t c1 = 0 ; c1 < n − c0 ; c1 += 1)
3 for ( i n t c2 = c0 + c1 ; c2 < min ( n , 2 * c0 + c1 ) ; c2 += 1)

{
4 i f (2 * c0 + c1 >= c2 + 2) {
5 ( c0 , c1 , c2 , −c0 + c2 , 0 ) ; / / pseudo − s t a t e m e n t
6 i f ( c2 == c0 + c1 )
7 ( c0 , c1 , c0 + c1 , c1 , 1 ) ; / / pseudo − s t a t e m e n t
8 }
9 ( c0 , c1 , c2 , c0 + c1 − 1 , 0 ) ; / / pseudo − s t a t e m e n t

10 i f ( c2 == c0 + c1 )
11 ( c0 , c1 , c0 + c1 , c0 + c1 − 1 , 1 ) ; / / pseudo − s t a t e m e n t
12 }

We transform that pseudo-code to C code, taking into account that in the pseudo-code
c0 and c1 correspond to t and i, respectively, in the tuple of set CODE; the third expression
in each pseudo-statement relates to j, whereas the fourth one corresponds to k in the tuple
of set CODE; the fifth element in each pseudo-statement defines the statement: 0 denotes
statement S1 whereas 1 denotes statement S2. In the pseudo-code above, depending of
the value of the fifth element of the corresponding pseudo-statement, we replace each
pseudo-statement with the statement

S[i][j] = max(S[i][k] + S[k+1][j], S[i][j]); // S1
or the statement

S[i][j] = max(S[i][j], S[i+1][j-1] + sigma(i, j)); // S2
(S1 and S2 are the statements of the code in Listing 1) replacing variables i, j, and k with the
second, third, and fourth expressions of the corresponding pseudo-statement and insert
the definitions of the functions used in generated C code. The implementation of function
sigma is presented at: https://github.com/piotrbla/nuss3d (last accessed on 7 June 2022).

The target C code is presented in Listing 3.

https://github.com/piotrbla/nuss3d
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Listing 3. Transformed Nussinov loop nest.

1 # define min ( x , y ) ( ( x ) < ( y ) ? ( x ) : ( y ) )
2 # define max( x , y ) ( ( x ) > ( y ) ? ( x ) : ( y ) )
3 # define f l oo rd ( n , d ) ( ( ( n ) <0) ? −(( −(n ) +(d ) −1) /(d ) ) : ( n ) /(d ) )
4 i n t sigma ( int , i n t ) ;
5
6 for ( i n t c0 = 1 ; c0 < n ; c0 += 1) {
7 for ( i n t c1 = 0 ; c1 < n − c0 ; c1 += 1) {
8 for ( i n t c2 = c0 + c1 ; c2 < min ( n , 2 * c0 + c1 ) ; c2 += 1) {
9 i f (2 * c0 + c1 >= c2 + 2) {

10 S [ c1 ] [ c2 ] = max( S [ c1 ][ − c0 + c2 ] + S[ − c0 + c2 + 1 ] [ c2 ] , S
[ c1 ] [ c2 ] ) ; / / s1

11 i f ( c2 == c0 + c1 )
12 {
13 S [ c1 ] [ c2 ] = max( S [ c1 ] [ c2 ] , S [ c1 + 1 ] [ c2 −1] + sigma ( c1 ,

c2 ) ) ; / / s2
14 }
15 }
16 S [ c1 ] [ c2 ] = max( S [ c1 ] [ c0 + c1 − 1] + S [ c0 + c1 ] [ c2 ] , S [

c1 ] [ c2 ] ) ; / / s1
17 i f ( c2 == c0 + c1 ) {
18 S [ c1 ] [ c2 ] = max( S [ c1 ] [ c2 ] , S [ c1 + 1 ] [ c2 −1] + sigma ( c1 ,

c2 ) ) ; / / s2
19 }
20 }
21 }
22 }

The transformed Nussinov’s code is within re-ordered transformations. It runs the
same calculations as those performed with Nussinov’s algorithm whose code is presented
in Listing 1 but in a different order. A re-ordered transformation of an algorithm is legal
if it runs the same calculations as those ran with the original one and honors all the
dependences of that algorithm. The transformed Nussinov’s code is legal because (i)
it runs the same calculations as those ran with the original one and (ii) honors all the
dependences available of the original Nussinov’s algorithm as we explain below. There
exists two classes of dependences in the program in Listing 3: data flow dependences
(some statement instance first produces a result, then that result is consumed with another
statement instance; those instances are included in different time units defined with iterator
c0) and output dependences (two or more statement instances write results to the same
memory cell). Data flow dependences are honored because the execution of a statement
instance that is the target of a data dependence begins only when all its operands are already
calculated, i.e., the execution of all the statement instances producing those operands has
already terminated; the source of each data dependence is ran after its destination. Output
dependences are respected due to the lexicographical order of their running within each
time partition defined with of iterator c0. In the generated code, at the same time unit,
statement S2 is executed after statement S1 due to the fact that S1 is associated with the
value 0 of variable s whereas S1 is associated with the value 1 of that variable. When a cell
updates, running S1 two or more times, and those updates belong to the same time unit
defined with variable c0, instances of S1 are executed serially in lexicographical order of the
value of iterator k—the fourth element in the tuple of set CODE. We also experimentally
confirmed that both loop nests (Listings 1 and 3) produce the same results for the same
input data generated in deterministic and non-deterministic ways. The code in Listing 3
can be parallelized and tiled automatically by means of affine transformations; details can
be found in the article [8]. To generate tiled code, we applied the optimizing compiler
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DAPT available at https://sourceforge.net/projects/dapt/files/ (last accessed on 7 June
2022) to the code presented in Listing 3. The tile size 116 × 42 × 54 was chosen from many
different tile sizes, examined by us, as the one exposing the highest code performance. That
compiler automatically generates parallel tiled code from a serial source code by means of
finding and applying affine transformations. The target parallel tiled code is presented in
Listing 4.

Listing 4. Tiled transformed Nussinov loop nest.

1 for ( i n t c0 = f loo rd ( −31 * n + 115 , 3132) + 2 ; c0 <= f l oor d (79
* n − 158 , 2436) + 2 ; c0 += 1) {

2 #pragma omp p a r a l l e l for
3 for ( i n t c1 = max( − c0 − ( n + 52) / 54 + 2 , −((n + 114) /

116) ) ; c1 <= min ( min( − c0 + ( n − 2) / 42 + 1 , c0 + (( −4 *
c0 + 3) /31) − 1) , ( −21 * c0 + 20) /79) ; c1 += 1) {

4 for ( i n t c2 = max( − c0 + c1 + f lo ord (21 * c0 − 17 * c1 −
21 , 48) + 1 , −c0 − c1 − ( n − 42 * c0 − 42 * c1 + 136) /

96 + 1) ; c2 <= min ( min( −1 , −c0 − c1 ) , −((27 * c0 − 31
* c1 + 54) / 69) + 1) ; c2 += 1) {

5 for ( i n t c5 = max(27 * c0 − 31 * c1 + 27 * c2 − 83 , −42
* c2 − 41) ; c5 <= min ( min ( n + 54 * c0 + 54 * c1 + 54
* c2 − 1 , −42 * c2 ) , 54 * c0 − 62 * c1 + 54 * c2 ) ; c5
+= 1) {

6 for ( i n t c6 = max( −54 * c0 − 54 * c1 − 54 * c2 , −116 *
c1 − 2 * c5 − 114) ; c6 <= min ( min( −54 * c0 − 54 *

c1 − 54 * c2 + 53 , n − c5 − 1) , −116 * c1 − c5 ) ; c6
+= 1) {

7 for ( i n t c7 = max( −116 * c1 − 115 , c5 + c6 ) ; c7 <=
min ( min ( n − 1 , −116 * c1 ) , 2 * c5 + c6 − 1) ; c7
+= 1) {

8 i f (2 * c5 + c6 >= c7 + 2) {
9 S [ c6 ] [ c7 ] =MAX( S [ c6 ][ − c5 + c7 ] + S[ − c5 + c7 +

1 ] [ c7 ] , S [ c6 ] [ c7 ] ) ;
10 i f ( c7 == c5 + c6 ) {
11 S [ c6 ] [ c5 + c6 ] = MAX( S [ c6 ] [ c5 + c6 ] , S [ c6 +

1 ] [ c5 + c6 − 1] + sigma ( c6 , c5 + c6 ) ) ;
12 }
13 }
14 S [ c6 ] [ c7 ] = MAX( S [ c6 ] [ c5 + c6 − 1] + S [ c5 + c6 ] [ c7

] , S [ c6 ] [ c7 ] ) ;
15 i f ( c7 == c5 + c6 ) {
16 S [ c6 ] [ c5 + c6 ] = MAX( S [ c6 ] [ c5 + c6 ] , S [ c6 + 1 ] [

c5 + c6 − 1] + sigma ( c6 , c5 + c6 ) ) ;
17 }
18 }
19 }
20 }
21 }
22 }
23 }

In that code, the first three outer loops enumerate tiles while the next three inner loops
scan statement instances within a tile defined with the iterators of the first three outer loops.
The parallelism of that code is represented by means of the OpenMP API [9]. The second
loop is parallel: before it, the directive #pragma omp parallel for is inserted.

https://sourceforge.net/projects/dapt/files/
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4. Related Work

There are many parallel implementations of Nussinov’s RNA folding to be run on
CPUs, GPUs, co-processors, and FPGA platforms [2,3,10–15]. However, increasing the
performance of code implementing Nussinov’s algorithm is still a challenging task, most
of all for optimizing compilers, which automatically generate target parallel code. Code
implementing Nussinov’s folding exposes non-uniform data dependence, which is more
difficult for optimization [3].

In this article, we focus mainly on related works that automatically parallelize the
Nussinov code and which can be adapted to similar codes such as Zuker’s RNA folding [16]
or Smith–Waterman’s [17] sequence alignment algorithms without manual corrections.

Li and et al. [18] introduced a manual implementation of Nussinov’s algorithm. They
suggested using the lower and unused part of Nussinov’s matrix and changing the column
reading to the more cache efficient row one. In the target code, scanning diagonal elements
is possible in parallel—see Listing 5.

Listing 5. Li’s implementation (transpose) of the Nussinov loop nest.

1 #pragma omp p a r a l l e l for
2 for ( i =0 ; i <=N−1; i ++)
3 S [ i ] [ i ] = 0 ;
4
5 #pragma omp p a r a l l e l for
6 for ( i =0 ; i <=N−2; i ++)
7 S [ i ] [ i +1] = 0 ;
8
9 for ( diag =1; diag <=N−1; diag ++) {

10 #pragma omp p a r a l l e l for p r i v a t e ( row , col , _max , t , k )
shared ( diag , RNA)

11 for ( row=0; row<=N−diag −1; row++) {
12 c o l = diag + row ;
13 _max = S [ row +1 ] [ col −1] + bond (RNA, row , c o l ) ;
14 for ( k=row ; k <=col −1; k++) {
15 t = S [ row ] [ k ] + S [ c o l ] [ k + 1 ] ;
16 _max = max( _max , t ) ;
17 }
18 S [ row ] [ c o l ] = S [ c o l ] [ row ] = _max ;
19 }
20 }

Zhao et al. [19] revised the transpose method discussed above, derived the energy-
efficient code, and carried out experiments with that code demonstrating higher perfor-
mance in comparison with that based on Li’s transpose. Their code requires about half as
much memory as does Li’s transpose. However, the authors do not present any parallel
code. We observed that the ByRow strategy can be multi-threaded. The innermost loop
does not carry any dependence, hence it can be parallelized, see Listing 6.

Pluto [8] is one of most popular state-of-the-art source-to-source optimizing compilers.
It converts serial C programs to parallel code. Unfortunately, Pluto is not able to tile the
innermost loop of the code implementing Nussinov’s algorithm. This loop is crucial for
improving code locality [1,2]. As a result, Pluto fails to produce 3D tiles that make the
target tiles unbounded along axis k. This does not allow us to reach maximal code locality
and performance.

The PPCG optimizing compiler generates code for GPUs; it applies Boungduhla’s
and Feauture’s time partition schedules [20]. Mullapudi and Boungduhla introduces
dynamic tiling for Zuker’s optimal prediction for the RNA secondary structure [1]. Their



Appl. Sci. 2022, 12, 5898 9 of 14

implementation is based on 3D iterative dynamic tiling technique, which eliminates cycles
in the inter-tile dependence graph.

Listing 6. Zhao’s implementation (parallel version of ByRow) of the Nussinov loop nest.

1 #pragma omp p a r a l l e l for
2 for ( i =0 ; i <=N−2; i ++) {
3 S [ i ] [ i ] = 0 ;
4 S [ i ] [ i +1] = 0 ;
5 }
6 S [N− 1] [N−1] = 0 ;
7
8 for ( i =N−3; i >=0; i −−) {
9 for ( j = i +2; j <=N−1; j ++)

10 S [ i ] [ j ] = S [ i + 1 ] [ j −1] + bond (RNA, i , j ) ;
11 for ( k= i ; k <=N−2; k++)
12 #pragma omp p a r a l l e l for p r i v a t e ( j )
13 for ( j =k +1; j <=N−1; j ++)
14 S [ i ] [ j ] = max( S [ i ] [ j ] , S [ i ] [ k ] + S [ k + 1 ] [ j ] ) ;
15 }

Wonnacott et al. proposed 3D tiling of “mostly-tileable” code for RNA secondary-
structure prediction [2]. Their technique forms non-problematic statement instances in
source code. Such instances can be directly tiled. The reminding statement instances are
not tiled and should be run serially. Their serial execution honors all the dependences
that present in the source code. However, the authors do not propose any parallel code to
implement their technique.

In the past, we developed two techniques able to automatically tile all Nussinov
loop nests based on the polyhedral model. Those techniques are implemented in the
TRACO compiler. The first technique is discussed in the article [3] . It forms original
rectangular tiles and then if original tiles are not valid (there exist cycles in the inter-tile
dependence graph), corrects them into valid target ones. Tile correction is fulfilled, applying
the transitive closure of dependence graphs. The wave-fronting technique is used to extract
code parallelism. Experimental results demonstrate higher speedup of produced tiled
code in comparison with that achieved for code generated with well-known techniques.
However, the discussed technique can generate irregular tiles; this complicates thread
work balancing and does not allow us to gain maximal code performance [4]. The second
technique is space-time loop tiling [4]. It is based on the observation that dependences
along both i and j axes spread in the forward direction, i.e., the elements of all distance
vectors corresponding to those axes are non-negative. In such a case, the loop nest iteration
space is split into two types of sub-spaces of fixed widths. They are placed in parallel with
the planes along axes (j, k) and (i, k), respectively. The intersection of those sub-spaces
results in valid target space tiles. The next time, slices are formed. Each such slice is the set
of a particular number of time partitions obtained by means of applying any valid time
schedule. Target tiles are formed as the intersection of space tiles and time slices.

5. Results

To carry out experiments, we used two machines with a processor Intel i7-8700
(3.2 GHz, 6 cores, 12 threads, 12 MB Cache) and a processor Intel Xeon E5-2699 v3, 2.3 GHz
(3.6 GHz turbo), 18 cores, 36 threads, 45 MB Cache. All examined codes were compiled by
means of the Intel C++ compiler version 19 with the -O3 flag.

Experiments were carried out for ten RNA randomly generated sequence lengths of
the problem defined with parameter N from 1000 to 10,000. The results presented in the
articles [18,19] show that cache efficient code performance does not change based on strings
themselves, but it depends on the size of a string.
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We compared the performance of 3D tiled code generated with the presented approach
with that of:

1. Pluto parallel tiled code (based on affine transformations) [8].
2. Tiled code based on the space-time technique [4].
3. Tiled code based on the correction technique [3].
4. Li manual cache efficient implementation of Nussinov’s RNA folding (transpose) [18].
5. Zhao manual cache efficient implementation ByRow (parallel version) [19].

All source codes used for carrying out experiments as well as a program allowing us to
run each parallel program for a random or real RNA strand in the FASTA format and obtain
a target Nussinov table can be found at the address https://github.com/piotrbla/nuss3d
(last accessed on 7 June 2022).

For the Pluto code [8], the tile size 16 × 16 × 1 was chosen empirically (Pluto does not
tile the most inner loop) as the best among many sizes examined. For the tile correction
technique, the tile 1 × 128 × 16 was chosen as the best according to the article [21]. For the
space-time tiled code, we chose the tile size 16 × 16 × 16 used in the experimental study
whose results are presented in the article [4]. For the code generated with the presented
approach, the tile size 116 × 42 × 54 was chosen from many different tile sizes, examined
by us, as the one exposing the highest code performance. Table 3 presets examined code
execution times in seconds for ten sizes of an RNA sequence on Intel i7-8700. Output
codes are executed for 12 threads. We can see that the presented approach allows for
obtaining cache efficient tiled code, which outperforms significantly the other examined
implementations for each RNA strand with a length greater than 2000. For longer RNA
strands, only the 3D tiled code speedup is super-linear (greater than 12).

Table 3. Time in seconds for Intel i7-8700 and 12 threads (ST, TC, and TP denote the
codes generated on the basis of the space-time, tile correction, and transpose approaches,
respectively); best results of each row in bold.

N Serial Pluto ST TC TP ByRow 3D Tiled

1000 0.26 0.08 0.09 0.14 0.11 0.56 0.13
2000 3.66 0.91 0.71 0.88 1.19 2.62 0.82
3000 16.92 4.23 3.11 2,93 4.65 7.29 2.57
4000 49.31 15.87 9.56 7,34 12.11 14.76 5.83
5000 113.73 43.12 22.08 14.36 22.94 26.17 10.44
6000 226.44 73.61 39.74 24.63 41.03 40.45 18.51
7000 388.72 133.29 65.86 40.36 63.94 59.06 30.54
8000 610.64 224.13 102.57 58.66 95.38 82.83 45.68
9000 1142.03 501.54 191.91 106.05 134.94 114.11 64.51

10,000 1521.17 628.74 244.81 133.33 182.67 149.88 96.26

For shorter problem sizes, data are moved only among the different levels of cache,
not to RAM, hence neither tiling approach allows for significant speedup of generated
code [2]. Figure 2 depicts the speedup calculated on the basis of the times presented
in Table 3. Under speedup we mean the ratio of the serial code execution time to the
corresponding parallel code execution time. The second in terms of efficiency is the code
generated with the correction approach implemented within the TRACO compiler. The
ByRow code outperforms the codes generated with transpose and space-time tiling; the
worst results are achieved for the code generated with Pluto, which is unable to tile the
innermost loop nest.

Table 4 shows how the code execution times depend on the number of threads (1, 2, 4,
8, and 12) for N = 10,000 on the Intel i7-8700 processor. We can observe that the presented
approach allows for (i) generation of scalable code (execution time decreases with the
increasing number of treads) and (ii) achieving the highest code performance for each
number of threads in comparison with that of the reminding examined codes. The second
in terms of performance is the code obtained with the tile correction strategy. Figure 3

https://github.com/piotrbla/nuss3d
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depicts how code speedup depends on the number of treads for N = 10,000; speedup is
calculated on the basis of the data presented in Table 4.
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Figure 2. Speedup for Intel i7-8700 and 12 threads.

Table 4. Time in seconds for Intel i7-8700 and N = 10,000 (ST, TC, and TP denote the codes
generated on the basis of the space-time, tile correction, and transpose approaches, respectively).

Threads Serial Pluto ST TC TP ByRow 3D Tiled

1 1521.17 1564.28 796.16 437.59 584.25 486.25 312.38
2 902.88 453.24 236.73 310.54 271.70 217.58
4 657.66 307.04 165.55 206.75 160.11 119.01
8 643.33 255.08 155.50 198.03 160.13 100.71
12 628.74 244.81 133.33 182.67 149.88 96.26
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Figure 3. Speedup for Intel i7-8700 and RNA sequence length, N = 10,000.

Table 5 presets execution times in seconds on Intel Xeon E5-2699 v3 and 36 threads
used for code execution. The code generated with the approach presented in this article
outperforms strongly the other examined codes starting from the problem size N = 3000.
For shorter RNA strands, the transpose code demonstrates better performance because,
in such a case, there is no data moving between cache and RAM. For longer sequences,
the 3D tiled code accelerates over eighty times the serial code and allows us to achieve
super-linear speedup (greater than 36).
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Table 5. Time in seconds for Intel Xeon E5-2699 v3 and 36 threads (ST, TC, and TP de-
note the codes generated on the basis of the space-time, tile correction, and transpose
approaches, respectively).

N Serial Pluto ST TC TP ByRow 3D tiled

1000 0.97 0.11 0.11 0.14 0.08 2.48 0.16
2000 14.15 1.16 0.70 0.69 0.42 3,33 0.63
3000 41.94 3.43 2.28 1.45 1.30 12.04 1.39
4000 142.88 6.61 5.66 3.61 4.59 27.46 2.54
5000 231.11 16.28 10.14 7.89 11.99 54.38 5.07
6000 383.21 29.17 17.98 15.51 23.83 106.89 6.97
7000 591.93 45.31 27.29 22.19 38.44 144.69 10.48
8000 885.61 65.32 41.33 35.51 56.41 213.79 14.65
9000 1646.16 91.22 58.77 48.72 80.49 329.83 21.77

10,000 2447.72 129.41 83.64 75.11 97.91 443.29 30.41

It is worth noting that for longer sequences, space-time tiling allows achieving higher
performance on Intel Xeon than that achieved on i7-8700. On the other side, the ByRow
code is not so efficient on Intel Xeon as on i7-8700. It is worth noting that for 36 threads, the
parallel ByRow code does not outperform the serial ByRow code.

Code speedup calculated on the basis of the data in Table 5 are presented in Figure 4.
Table 6 and Figure 5 present times and speedup on 1, 2, 4, 8, 16, and 36 threads,

respectively, for the longest RNA length, N = 10,000 under our experiments. As we can
see, the performances of the serial and parallel 3D tiled codes are much greater than those
achieved for the codes generated with the related approaches. The low speedup of the
Byrow code is due to the fact that this code is not tiled and that the innermost loop is
only parallelized.
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Figure 4. Speedup for Intel Xeon E5-2699 v3 and 36 threads.

Table 6. Time in seconds for Intel Xeon E5-2699 v3 and RNA sequence length, N = 10,000
(ST is space time, TC is tile correction, TP is transpose).

threads Serial Pluto ST TC TP ByRow 3D Tiled

1 2447.7 2294.3 1069.2 561.97 947.87 1006.99 385.60
2 1318.1 493.1 466.67 444.11 807.20 262.86
4 783.8 240.3 274.29 242.85 685.91 144.41
8 445.5 131.4 148.34 134.46 518.30 86.46
16 250.7 95.1 93.50 119.52 466.54 53.18
36 129.4 83.6 75.11 97.91 443.29 30.41
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Figure 5. Speedup for Intel Xeon E5-2699 v3 and RNA sequence length, N = 10,000.

6. Discussion

Two-dimensional tiles generated by means of well-known techniques implementing
Nussinov’s algorithm and mentioned in Section 4 are unbounded along axis k. For such
tiles, it is very difficult to choose a proper tile size, allowing for holding all data associated
with a single 2D tile in cache. This reduces code locality. Whereas, 3D tiles generated by
means of the approach proposed in this article are bounded along each axis, so, there is a
possibility to choose a proper size for the 3D tile that allows us to hold all data associated
with each tile in cache. This increases code locality that improves code performance.
Summing up, we may conclude that the 3D serial and parallel tiled codes presented in this
article allow us to achieve outstanding performance on the both computers used by us
for experiments Intel i7-8700 (3.2 GHz, 6 cores, 12 threads, 12 MB cache, and Intel Xeon
E5-2699 v3, 2.3 GHz (3.6 GHz turbo), 18 cores, 36 threads, 45 MB cache) for each number of
threads (1 to 36) for larger problem sizes causing data moving between cache and RAM.
Those codes outperform all of the examined, closely related codes.

7. Conclusions

This article introduces a new approach to generate 3D static parallel tiled code imple-
menting Nussinov’s RNA folding. Increasing tile dimension from 2D to 3D allows us to
considerably increase target code locality that leads to improving this code performance.
Experiments carried out by us demonstrate that the generated 3D parallel tiled code out-
performs all implementations known to us of Nussinov’s RNA folding and allows for
obtaining super-linear code speedup for a larger RNA sequence length, i.e., the ratio of
the serial code execution time to that of the parallel one exceeds the number of threads
used for the parallel code execution. In the future, we intend to adapt the presented ap-
proach to other bioinformatics codes to generate tiled code of the enlarged tile dimension
in comparison with state-of-the-art applications.
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