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Abstract: This paper presents a parameter-identification method for rod structures with different
connections. In this method, the parameters of the structure are adjusted to match its analytical
and measured displacements. The damage identification for truss structure and rigid frame were
investigated. Previous studies often considered the cross-sectional area damage or joint damage; there
are few studies on the simultaneous existence of these two types of damage. In this study, damage
identification for a rigid frame with both cross-sectional and joint damage was performed. Based on
the measured displacements, the proposed method can accurately identify the cross-sectional and
joint damage for a rigid frame.

Keywords: parameter identification; cross-sectional and joint damage; semi-rigid connection;
displacement; optimization

1. Introduction

Damage to one or more components of the structure causes changes in the physical
properties of the structure, especially at the damaged location, which will cause the “as-is”
condition of the structure to be different from the design [1–3]. Therefore, it is becoming
increasingly important to assess the condition of the existing structures. At the same time,
there is a growing need for a reliable method to monitor the performance of structures.
The safety of these damaged structures can be detected using parameter identification.
It is a mathematical method that uses the error between the estimated and experimental
values. It correlates the changes in the test data with those in the characteristics of the
structural element [4]. The purpose of parameter identification is to adjust the parameters
of a structure to match the analytical and measured data [5]. Budipriyanto [6] introduced
the application of blind-source-separation technology to identify the dynamic parameters
of a seismic-excited multi-story frame building from the measured responses. Bu et al. [7]
proposed an improved wavelet Galerkin method, which was applied for the simultaneous
identification and excitation of the parameters of a shear frame with non-uniform stiffness
subjected to seismic excitation. Sanayei et al. [8] presented a method to identify the cross-
sectional properties of truss and frame structural elements by applying static forces and
then measuring the displacements. Furthermore, using static responses, Terlaje III et al. [9]
presented a new method and algorithm to identify damage in a truss structure and a frame
structure using a limited number of simulated applied loads and measured displacements.
Xiao et al. [10,11] proposed an optimal placement method of static strain sensors based on
damage identification for truss structures and compared the recognition effects of different
optimization methods. These studies conducted considerable research on the damage
identification of rod structures with different connections, including error analysis, optimal
placement of sensors, and comparison of various optimization methods, and the structures
that were investigated included truss and rigid frame structures.
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In practical engineering construction, several joints in frame structures are of semi-
rigid connection type owing to the design or damage; the characteristics of semi-rigid
connections lie fall in between those of pin and rigid connections. Notably, some studies on
structures with semi-rigid connections have been conducted [12–17]. Reyes-Salazar and
Haldar [12] evaluated and analyzed the nonlinear seismic response of steel structures with
semi-rigid and composite connections in terms of maximum interstory and maximum top
lateral displacements. Llanes-Tizoc et al. [13] carried out a numerical study on the reliability
of 3D steel structures with perfectly pinned connections and semi-rigid connections under
seismic loads. Rigi et al. [14] studied seismic performance of steel moment-resisting frames
with different degrees of moment connection rigidities.

Several methods have been presented to identify joint damage for frame structures
and to reduce the error during model updating by varying the rigidity of the element
connections. Yi et al. [18] proposed an approach to identify the joint damage in steel frame
structures using dynamic and static measurement data. Altunişik et al. [19] presented
a method for updating the finite-element model of an arch-type steel-laboratory bridge
model with semi-rigid connections. Machavaram et al. [20] presented a novel two-stage
improved radial basis function neural network technique to identify the joint damage of a
semi-rigid frame structure in frequency and time domains. Nanda et al. [21] proposed a
joint damage identification method based on modal parameters using a unified particle
swarm optimization method to identify joint damages in any frame structure. Pal et al. [22]
presented a joint damage identification technique using the numerical model of a semi-
rigid frame to quantify the level of loosening of bolted joints in a steel frame structure,
based on vibrations. Seyedpoor et al. [23] introduced a two-step method for joint damage
identification for steel frames using a support vector machine and a differential evolution
algorithm. Hou et al. [24] proposed a two-step damage-detection method for space-frame
structures with semi-rigid connections. Numerous studies have identified cross-sectional
damage in trusses and rigid frames. In addition, in some studies, joint damage was
identified for semi-rigid frame structures on the basis of static and modal data. However,
there are few studies utilizing static measurements for damage identification in rigid frame
structures having both cross-sectional and joint damage. Therefore, this paper presents
a new method to identify the damage in frame structures with both cross-sectional and
joint damage.

2. Formulation for Parameter Identification

In the parameter-identification algorithm, the difference between the analytical and
measured displacements is defined using the objective function. The unknown parameters
can be obtained by determining the global-minimum value of the objective function. In
this method, adequate excitation is imparted to the structure using the applied static forces.
The damage condition of the components of the structure was determined on the basis of
the measurement of nodal displacements of the structure.

The analytical displacements can be obtained using the stiffness method [25]. This
method is based on the force-displacement relationship for the structure, as expressed in
Equation (1):

Q = KD (1)

where Q and D represent the global forces and displacements, respectively; K is the entire-
structure stiffness matrix that can be obtained by assembling the member stiffness matrix
in global coordinates, k, where k = TT k′ T, where k′ is the member stiffness matrix in
local coordinates, and T is referred to as displacement transformation matrix. K contains P,
which is a set of unknown parameters (such as unknown cross-sectional area Au, unknown
moment of inertia Iu, unknown nodal rotational stiffness Ru) that need to be identified.
Equation (1) can be divided to separate the known and unknown displacements as under:[

Qk
Qu

]
=

[
K11 K12
K21 K22

][
Du
Dk

]
(2)
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where Qk and Dk are the known external loads and boundary conditions of the nodal
displacements, respectively. Qu and Du are the unknown loads and boundary conditions
of the nodal displacements, respectively. By solving Equation (2), we obtain:

Du = K−1
11 (Qk −K12Dk) (3)

The objective function is defined as the sum of the square of the difference between
the analytical displacement Du and measured displacement Dm; n is the total number of
measured displacements.

f =
n

∑
i=1

(Du
i −Dm

i)
2

(4)

The unknown parameter P of the structure can be obtained by minimizing the objective
function. Assume that the optimal value of P is P∗, which can be determined using
Equation (5):

P∗ = argmin
P

( f ) (5)

Rod structures are composed of elements and joints. The joints are used to transfer
load from one structural element to another; the joints include pin, rigid, and semi-rigid
connections. The form of member stiffness matrix k′ should be distinguished in the process
of forming the damage-identification objective function for truss structure, rigid frame, and
semi-rigid frame structures.

3. Parameter Identification for Truss
3.1. Member Stiffness Matrix of Truss

The joints of a truss are defined as pin connections. Theoretically, the pin connection
does not provide resistance to rotation, and it behaves as a hinge. A truss member can
only be displaced along its axis because loads are applied along this axis. Truss members
are either under compression or tension, or have no force. The member stiffness matrix of
truss structure is relatively simple owing to the simple stress of the truss structure. The
member stiffness matrix of truss member [25] is given by Equation (6). The terms in this
matrix represent the load-displacement relations for the corresponding member. Due to
corrosion, cracks, etc., the cross-sectional area of a truss can be damaged, and the parameter
P of the objective function is the unknown cross-sectional area Au, which is included in the
following matrix:

k′ =
AuE

L

[
1 −1
−1 1

]
(6)

where E is the modulus of elasticity and L is the length of the member.

3.2. Parameter Identification for Truss Sample

A six-member truss (Figure 1) was used to demonstrate the parameter-identification
method of the truss structure using static displacements. All members have identical
cross-sectional geometric properties. The “as-built” condition of the six-member truss
has cross-sectional areas of A = 3 × 10−3 m2 and a modulus of elasticity of 206 GPa. It
is assumed that there is damage in members 1 and 4. The “as-is” cross-sectional areas of
members 1 and 4 are 2.5 × 10−3 m2 and 2.75 × 10−3 m2, respectively. Since the “as-is”
cross-sectional areas of members 1 and 4 are the parameters that need to be identified,
therefore assuming the corresponding cross-sectional areas are A1 and A4, forces of−100 kN
and 50 kN were applied along degrees of freedom 2 and 3 to excite the truss structure;
subsequently, displacements Dm were measured along degrees of freedom 1 and 2.

In this study, the measured displacement was determined on the basis of the structural
“as-is” condition.

The member stiffness matrix k′ of the truss member was obtained from Equation (6),
and the objective function was obtained from Equation (4). The interior-point method [26]
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can converge quickly and solve complex problems with a large number of variables, and
this method was used to minimize the objective function to realize the damage identification
of the truss structure. According to the “as-built” condition, the starting point of cross-
sectional variable A was set to 1.5 × 10−3, and the constraints on A were set between 0 and
3 × 10−3. After 23 iterations, the final optimal values of A1 and A4 were 2.500 × 10−3 and
2.750 × 10−3 m2, respectively. Figure 2 shows the variation of A1 and A4 with the number
of iterations; the dotted lines in the figure represent the “as-is” cross-sectional areas of
members 1 and 4. Figure 3 shows the variation of the objective function with the number
of iterations. The results demonstrate that A1 and A4 converged at 23 iterations.
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4. Parameter Identification for a Rigid Frame
4.1. Member Stiffness Matrix of a Rigid Frame

Various structures, such as bridges and multi-story industrial plants, are composed
of frames. A frame is a rod structure consisting of beams and columns to resist loads. In
contrast to the plane truss element, the plane frame is subjected to shear forces and bending
moments in addition to axial forces. The member stiffness matrix of the plane frame [25] is
given by Equation (7). This matrix has three degrees of freedom per joint and includes axial
effects, as well as shear force effects and principal bending moment effects [27]. To consider
the damage incurred in the structure, the cross-sectional area Au and moment of inertia Iu of
the damaged member are included in the matrix, which constitute the unknown parameter
P that needs to be identified.

k′ =



AuE
L
0 12EIu

L3 SYM
0 6EIu

L2
4EIu

L
− AuE

L 0 0 AuE
L

0 − 12EIu
L3 − 6EIu

L2 0 12EIu
L3

0 6EIu
L2

2EIu
L 0 − 6EIu

L2
4EIu

L


(7)

The terms in Equation (7) in addition to Au and Iu are the modulus of elasticity (E) and
length (L) of the member.

4.2. Parameter Identification for a Rigid Frame Sample

The one-story steel frame example is shown in Figure 4. This frame structure is
used to demonstrate the parameter-identification method for the rigid frame using static
displacements. The modulus of elasticity is 206 GPa. In “as-built” condition, the frame
has cross-sectional area A = 2.25 × 10−2 m2 and moment of inertia I = 4.21875 × 10−5 m4.
Let us assume that damages exist in members 1–3. The “as-is” cross-sectional areas and
moment of inertia of members 1–3 are unknown and need to be determined. Forces of
100 and−100 kN were applied along degrees of freedom 4 and 5 to excite the structure, and
the displacements Dm were measured along degrees of freedom 1, 2, 4, 5, 7, and 8 (Figure 4).
The “as-is” cross-sectional areas and moment of inertia are presented in Figure 5.
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The member stiffness matrix k′ of the frame member is obtained from Equation (7), and
Equation (4) is the objective function to identify the damage. In this analysis, the starting
points of cross-sectional area variable A and moment of inertia variable I are 1.1 × 10−2 and
2.1 × 10−5, respectively. The constraints on A are set between 0 and 2.25 × 10−2 and those
on I are set between 0 and 4.21875 × 10−5, according to the “as-built” condition. Figure 5
displays the changes in A1, A2, A3, I1, I2, and I3 during the optimization process based
on the interior-point method, and Figure 6 shows the variation of the objective function
with the number of iterations. After 256 iterations, the final optimal values of A and I were
identified, and the results were consistent with those in “as-is” condition.
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5. Parameter Identification for a Frame with Semi-Rigid Connections
5.1. Member Stiffness Matrix of Semi-Rigid Frame

The connection type of joint plays a key role in the structural analysis. The analysis
and design of steel frames are usually performed under the assumption that the beam-
column connections are rigid or pin. In actual engineering, there are some frame structures
with rigid connections, which have a certain rotational stiffness owing to damage and
other factors. The effect of nodal rotational stiffness on the structural analysis should be
considered in the damage identification of frame structures. This study considers frame el-
ement connections, including specific nodal rotational stiffness. Semi-rigid connections are
modeled by zero-length attaching the rotational springs [28,29] with rotational stiffnesses
R1 and R2 at the ends of the member, as shown in Figure 7.
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The nodal rotational stiffness represents the degree of rotation capacity between the
beam and the column. Parameters β1 and β2 are defined as the fixity factors at ends 1
and 2 of the element, respectively, and are related to the corresponding rotational spring
stiffnesses R1 and R2, respectively. The member stiffness matrix of a frame element with
semi-rigid connections at the ends is given [30,31] in Equation (8). By setting both the
parameters β1 and β2 equal to 1, Equation (8) becomes equivalent to the member stiffness
matrix of the rigid frame element; this means that the nodal rotational stiffnesses are infinite.
The unknown parameters, i.e., cross-sectional area Au and moment of inertia Iu, of the
damaged member are included in the following matrix. Additionally, the joint damage can
be represented as a reduction in the connection rigidity [20,32], and this study used the
rotational stiffness Ru to indicate the joint damage condition. The rotational stiffness Ru is
also included in the following matrix.
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n1
n7

)
SYM

0 6
L

(
n2
n7

)
4
(

n3
n7

)
− Au

Iu
0 0 Au

Iu

0 − 12
L2

(
n1
n7

)
− 6

L

(
n2
n7

)
0 − 12

L2

(
n1
n7

)
0 6

L

(
n6
n7

)
2
(

n5
n7

)
0 − 6

L

(
n6
n7

)
4
(

n4
n7

)


(8)

where parameters n are defined using joint fixity factors β1 and β2 as follows:

n1 = β1 + β2 + β1β2, n2 = 2β1 + β1β2, n3 = 3β1,n4 = 3β2, n5 = 3β1β2, n6 = 2β2 + β1β2,n7 = 4− β1β2 (9)

Joint fixity factors β1 and β2 can be defined using the nodal rotational stiffness of the
end springs as follows:

β1 =
1

1 +
(

3EIu/L
Ru1

) β2 =
1

1 +
(

3EIu/L
Ru2

) (10)

where Ru1 and Ru2 are the unknown nodal rotational spring stiffnesses at different ends
of the element, and E and L are the modulus of elasticity and length of the member,
respectively.

5.2. Nodal Displacement Error Analysis Caused by Nodal Rotational Stiffness Changes

As shown in Figure 8, to compare the effect of different nodal rotational stiffnesses on
the nodal displacement of the steel frame structure, steel frame structures with different
nodal rotational stiffnesses are simulated, and the nodal displacements of the semi-rigid
frame structure with the rigid frame are compared under the same applied forces. As-
suming that the nodal rotational stiffness of the semi-rigid frame ranges from 2 × 103 to
9.8 × 104 kN·m/rad and the nodal rotational stiffness of the rigid frame is infinite, the
member stiffness matrix of the frame element with semi-rigid connections at the ends can
be obtained by using Equation (8), and the member-global stiffness matrix of the frame
can be obtained by using the member stiffness matrix. The nodal displacements of the
semi-rigid frame and rigid frame were calculated using Equation (3).
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Consequently, the nodal displacements of the semi-rigid frame structure with different
nodal rotational stiffnesses are compared with those of the rigid connection. Figure 9 shows
the absolute value of the relative error for the nodal displacement with different nodal
rotational stiffnesses. The smaller the rotational stiffness, the greater the nodal displacement
error. Therefore, in the damage identification of rigid steel frame structures, if the joints are
damaged, especially if the damage is serious, it is necessary to consider the impact of the
damage on the nodal displacements.
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5.3. Parameter Identification for a Frame Sample with Joint Damage

A plane frame structure with a one-story and one-bay configuration is illustrated in
Figure 8. This structure is used to demonstrate the joint damage identification method for
the steel frame structure. The modulus of elasticity is 206 GPa. All members have the same
cross-sectional geometric properties. In “as-built” condition, the frame has cross-sectional
areas A = 2.25 × 10−2 m2 and moment of inertia of I = 4.21875 × 10−5 m4, and the nodal
rotational stiffness of all joints is infinite. Let us assume that damages existing in joints
2 and 3 cause these two joints to transform from rigid connections to semi-rigid connections.
The “as-is” nodal rotational stiffnesses of joints 2 and 3 (in the member 2) are 8 × 103 and
1.2 × 104 kN·m/rad, respectively, which are unknown and need to be determined. Next,
let us use applied forces of 100 and −100 kN along degrees of freedom 1 and 5, respectively,
and measured displacements along degrees of freedom 1, 2, 4, 5, 7, and 8, respectively.

The member stiffness matrix k′ of the frame member with semi-rigid connections at
the ends is obtained from Equation (8), and the damage to joints 2 and 3 can be identified
using Equation (4). Simplex method [33] is easy to implement and has been extensively
applied to solve optimization problems. The starting point of the nodal rotational stiff-
ness variable R was zero. Figure 10 shows the variation in R2 and R3 with the number
of iterations. Figure 11 shows the variation of objective function with the number of it-
erations. After 212 iterations, the final optimal values of R2 and R3 are 8.000 × 103 and
1.200 × 104 kN·m/rad, respectively. The optimal values are consistent with the “as-is”
values, and the results are all convergence.
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5.4. Parameter Identification for a Frame with Cross-Sectional Damage and Joint Damage

A plane rigid frame with a two-story and one-bay configuration is illustrated in
Figure 12. As shown in the figure, the damage identification for a rigid frame with both
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cross-sectional and joint damage using static displacements is demonstrated. The modulus
of elasticity is 206 GPa. All the members have the same cross-sectional geometric properties.
In its “as-built” condition, the frame has cross-sectional area A = 2.25 × 10−2 m2, moment
of inertia I = 4.21875 × 10−5 m4, and the nodal rotational stiffness of all the joints is infinite.
Let us assume that damages exist in members 2, 4, and joint 3 (in member 4); these are
unknown and need to be determined. To excite the structure, forces of 100 and −100 kN
were applied along degrees of freedom 4 and 11, and the damages were identified on the
basis of the measured displacements along degrees of freedom 1, 2, 3, 4, 5, 6, 10, 11, and 12.
Figure 13 shows the variation of A2, A4, I2, I4, and R3 with the number of iterations, based
on the interior-point method. Figure 14 shows the objective function value with respect to
the number of iterations. In Figure 13, the dotted lines represent the “as-is” values. After
109 iterations, the final optimal values of A, I, and R were identified, which were consistent
with the “as-is” values, and the results are all convergence.
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6. Conclusions

In this study, damage identification of rod structures with different connections was
performed by using static-displacement measurements. This paper presents a new method
to identify damage in rigid frames that have both cross-sectional and joint damage issues.
The proposed method can be used to accurately identify the cross-sectional and joint
damage in rigid frames, simultaneously. It can also be used to evaluate the rotational
stiffness for semi-rigid connections.
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