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Abstract: The gut microbiome is related to many major human diseases, and it is of great significance
to study the structure of the gut microbiome under different conditions. Multivariate statistics
or pattern recognition methods were often used to identify different structural patterns in gut
microbiome data. However, these methods have some limitations. Minimal hepatic encephalopathy
(MHE) datasets were taken as an example. Due to the physical lack or insufficient sampling of the
gut microbiome in the sequencing process, the microbiome data contains many zeros. Therefore,
the geometric mean of pairwise ratios (GMPR) was used to normalize gut microbiome data, then
Spectrum was used to analyze the structure of the gut microbiome, and lastly, the structure of
core microflora was compared with Network analysis. GMPR calculates the Intraclass correlation
coefficient (ICC), whose reproducibility was significantly better than other normalization methods. In
addition, running-time, Normalized Mutual Information (NMI), Davies-Boulding Index (DBI), and
Calinski-Harabasz index (CH) of GMPR+Spectrum were far superior to other clustering algorithms
such as M3C, iClusterPlus. GMPR+Spectrum can not only perform better but also effectively identify
the structural differences of intestinal microbiota in different patients and excavate the unique critical
bacteria such as Akkermansia, and Lactobacillus in MHE patients, which may provide a new reference
for the study of the gut microbiome in disease.

Keywords: spectrum; normalization; gut microbiome; minimal hepatic encephalopathy; hepatic en-
cephalopathy

1. Introduction

The Gut microbiome is associated with many major human diseases, such as obesity,
diabetes, cirrhosis, autism, allergies, inflammatory bowel diseases, cardiovascular diseases,
multiple cancers, and depression. Therefore, the gut microbiome may become a recent
target for interventional therapies and play an essential role in diagnosing, analyzing, and
treating these major diseases [1]. Microbiome studies are extensively used to analyze the
microbial communities’ composition and diversity of the flora. They are used to study one
of the fundamental questions of microbial ecology: how many taxa or OTUs (operational
taxonomic units) exist? Usually, multivariate statistical or pattern recognition methods are
used to identify different structural patterns in microbial data, such as principal component
analysis (PCA) [2–4], principal coordinate analysis (PCoA) [5–7], partitioning around
medoid (PAM) clustering [8,9], etc. However, this standard multivariate technique does
not applicable to highly diverse microbial data [10]. On the one hand, microbial data with
high diversity tend to have sparse data sets, and on the other hand, most taxonomic units
occur in only a few samples with low abundance. In addition, microbial genetic samples
differ in reading length: small samples are inherently noisier than large samples.

Microbiome sequencing data contains many zeros due to physical deficiencies or
under-sampling during the microbiome sequencing process. The complex processes in-
volved in the sequencing process cause the depth of sequencing to vary with the sample,
sometimes varying by several orders of magnitude. Therefore, the sequenced intestinal
flora data are characterized by large data volume, a large number of OTUs, and sparse
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distribution [11]. Normalization is crucial as it aims to correct or reduce bias caused by the
sequencing depth and is an essential pre-processing step before any downstream statis-
tical analysis of high-throughput sequencing experiments [12,13]. Several normalization
methods are commonly used for sequencing data, especially for RNA-Seq data [12,13].
Other popular methods for normalization of microbiome data, besides the size-factor-based
methods, such as the geometric mean of pairwise ratios (GMPR), Trimmed mean of M
values (TMM), and Relative Log Expression (RLE), are all methods of sparsification. The
above methods have disadvantages and advantages in specific applications. Sparsity, for
example, leads to discarding most reads and may not be optimal from an information point
of view. However, it is still widely used for microbiome data analysis, especially for α and β
diversity analysis. In addition, it suffers from a significant power loss due to the discarding
of a large number of reading operations [14]. Instead, size factors can be included as offsets
in a count-based parametric model to address the problem of uneven sequencing depth [15].
In comparison, GMPR consistently showed the best level of variability in reducing OTUs
at different prevalence levels and increased reproducibility among replicates normalized
to the abundance of taxonomic units [16]. In addition, GMPR normalization has been
studied for distance-based (weighted) statistical methods such as ranking, clustering, and
PERMANOVA based on GMPR-normalized abundance data [17,18].

Clustering analysis plays an essential role in data mining and has many applica-
tions in image processing, data analysis, market research, pattern recognition and other
fields [19–21]. In recent years, spectral clustering has become one of the widely used cluster-
ing algorithms [22]. Compared with traditional clustering methods, it is more adaptable to
data distribution, especially for data sets with different densities, random complex shapes,
and unstable sizes, and the computational effort in clustering is much smaller and less
complicated to implement. It is also much less computationally intensive, not very complex
to implement, and has higher performance. In contrast, Spectrum [23] used in this paper
enhances the similarity between points sharing nearest neighbors using a self-adjusting
density-aware kernel. The data integration and diffusion process through tensor product
maps reduce noise, reveals the underlying structure, and automatically finds the optimal
number of clusters K by analyzing the feature vector distribution. The algorithm can find
clustering of arbitrary data shapes, noisy data in the dataset can be handled efficiently, the
number of clusters K of Gaussian and non-Gaussian structures can be found automatically,
the running time is short, and good clustering results can be shown for large data sets.

In this paper, we first normalized the gut flora data using GMPR [16] algorithm and
then analyzed them using Spectrum. The gut microbial datasets of patients with minimal
hepatic encephalopathy, hepatic encephalopathy, and healthy controls were used as exam-
ples. Minimal hepatic encephalopathy (MHE) is a very insidious stage in the pathogenesis
of hepatic encephalopathy (HE), and studies [24–29] have shown that the prevalence of
MHE reached 20–80% in patients with cirrhosis. MHE is a common complication of liver
disease, typically characterized by altered neurocognitive function [30–33], with an unno-
ticeable onset and no obvious clinical manifestations of HE, and the cognitive dysfunction
caused by MHE can consume many medical resources and impose a great financial burden
on patients and their families. Due to the high prevalence of MHE, its harmful effects, and
the complexity of clinical diagnosis, more clinical attention has been paid to early screening
and diagnosis of MHE. In addition, more and more studies [34,35] have shown that dys-
biosis of the gut microflora was associated with MHE and the occurrence of HE. Since the
traditional screening and diagnostic methods used in clinical practice are time-consuming
and subject to human factors, it is essential to identify structural changes in the gut flora
data of MHE and HE patients.

2. Materials and Methods
2.1. Materials

The datasets used in this paper were obtained from 77 samples collected from the De-
partment of Gastroenterology of the First People’s Hospital of Yunnan Province, including
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26 patients with minimal hepatic encephalopathy (Abbreviated as M), 25 patients with
hepatic encephalopathy (Abbreviated as H), and 26 normal healthy controls (Abbreviated
as N). The data collection process was as follows: (1) Sampling of fresh stool from samples;
(2) Storage in liquid nitrogen within 2 h; (3) Storage in −80 ◦C refrigerator; (4) Extraction
of fecal microbial DNA by kit method [36], and completion of 16SrRNA high-throughput
sequencing according to standard operating instructions [37]. (5) After splicing the original
sequences, performed quality control, selected representative sequences (OTU), clustered
them, and then performed species annotation. (6) The OTUs count table after sequencing
was obtained. The data collected in this study were approved by the ethics committee of
the First People’s Hospital of Yunnan Province, and all subjects signed an informed consent
form. As shown in Table A1 that a partial table of OTUs counts after sequencing, where
rows (OTU_0, OTU_1, OTU_2, . . . ) represent OTUs counts and columns (H1, H2, H3, . . . )
represent sample ID numbers of patients with hepatic encephalopathy. The data used in
the experiments were absolute abundance data.

2.2. Methods

The flow chart of the flora data processing in this study is shown in Figure 1. The
experimental data were first normalized by GMPR, then clustering using the Spectrum
algorithms, and compared with Spectrum without GMPR, M3C [38], and iClusterPlus [39]
in terms of performance metrics including Normalized Mutual Information (NMI), Davies-
Boulding Index (DBI), Calinski-Harabasz Index (CH) and algorithm running time and
finally compared with the network analysis method for core flora.
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2.2.1. Geometric Mean of Paired Ratios (GMPR)

GMPR [16] is a normalized method specially used to solve the problem of zero expan-
sion of data. In principle, it can be applied to any sequencing data. It is mainly to solve
some situations, such as many zeros in the data and different sequencing depths due to
physical lack or insufficient microbial sampling.

The OTUs count table in the paper is the absolute abundance, which contains
77 samples, 1442 OTUs. GMPR is used to calculate the size factor of a given sample, and
the size factor could estimate the library size of a given sample. The formula is as follows:

The first step is to calculate rij,

rij =

Median

k ∈ {1, . . . , q}
∣∣∣cki.ckj 6= 0

{
cki
ckj

}
(1)
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where k is the number of OTUs, rij is the median count ratio representing the non-zero
counts between sample i and sample j, and Cki, Ckj are expressed as the abundance data of
the kth OTU in the sample i and sample j.

Then calculate the size factor si of a given sample i,

si =

(
n

∏
j=1

rij

)1/n

, i = 1, . . . , n (2)

In short, the basic step of GMPR was to first compare pairs of samples in the OTU count
table, and then combined the paired comparison results to obtain the final estimated value.

2.2.2. Other Normalization Methods

Two popular normalization methods for RNA-Seq data include trimmed mean of M
values (TMM) [40], and relative log expression normalization (RLE) [41]. TMM method
selects a reference sample first, and all other samples are compared to the reference sample.
The log ratios’ trimmed (weighted) mean is then calculated as the TMM size factor (log
scale). RLE method calculates the geometric means of all features as a reference, and all
samples are compared to the reference to produce ratios (fold changes) for all features. The
median ratio is then taken to be the RLE size factor.

2.2.3. Spectrum Algorithm

Spectrum [23] is a new spectral clustering method, its idea is to view the data analysis
problem as an optimal partitioning problem of the graph, where all OTUs are viewed as
vertices in the space, and the vertices are connected with edges with weights. The edges
with weights can be regarded as the similarity in OTUs. The key to this algorithm is that
the self-adjusting density-aware kernel is employed to construct the similarity matrix, with
the advantage that the similarity between the nearest neighbors can be further enhanced,
while it can reduce noise. Spectrum can find the optimal number of clusters (K) involving
the distribution of feature vectors, regardless of Gaussian or non-Gaussian structure [23].

The similarity matrix A∗ is computed using the adaptive density-aware kernel in
the Spectrum algorithm. Starting with A∗, the Ng spectral clustering method is used in
Spectrum. At the same time, the number of clusters is estimated using an eigenvalue
heuristic. Finally, the eigenvector matrix is clustered using Gaussian mixture modeling
(GMM) to obtain the final output, i.e., a delineation of the feature clusters represented by
the OTUs.

1. The adaptive density-aware kernel is first used in Spectrum algorithm to compute the
similarity matrix between different OTUs.

The adaptive density perception kernel is:

Aij = exp

(
−d2(sisj

)
σiσj

(
CNN

(
sisj
)
+ 1
)) (3)

where d(s i, sj
)

represents the Euclidean distance between point si and sj, σi and σj are the
local scaling parameter, CNN(s i, sj

)
is the number of points in the connection area of the ε

neighborhood around the point si and sj, and the ε-neighborhood of the point represents
the radius of the sphere around the point.

2. The diagonal matrix D is obtained from A∗, the diagonal matrix where (i,i) element is
the ith row of the sum of A∗, and the normalized Laplacian matrix L is constructed
using D.

L = D−1/2 A∗D −1/2 (4)

3. Decompose eigenvalues of L and extract its eigenvectors X1, X2, . . . XN+1 and eigen-
values λ1, λ2, . . . λN+1.



Appl. Sci. 2022, 12, 5895 5 of 23

4. Determine the difference in eigenvalues, start with the second eigenvalue, i.e., n = 2,
and choose the optimal k, the difference in eigenvalues is maximized and denoted
by k∗.

k∗ =
argmax

n (λn − λn+1) (5)

5. Obtain the largest eigenvectors K∗ and then form the matrix (each eigenvector is ar-
ranged in columns to form n vectors in a k∗-dimensional space), i.e., X = [x 1, x2, . . . xk∗ ]
∈ RN+k∗ .

6. Form the matrix Y from X by renormalizing each of X’s rows to have unit length.

Yij =
Xij(

∑j xij
2
)1/2

(6)

7. Finally, each row of Y is considered as an OTU feature si, and finally all OTUs are
clustered into k∗ clusters using GMM. The obtained class labels are the class labels of
the original OTUs.

2.2.4. Monte Carlo Reference-Based Consensus Clustering (M3C)

Genome-wide expression data are stratified using clustering algorithms to stratify
patients for precision medicine. The Monti consensus clustering algorithm [42], a widely
used method, determines the number of clusters (K) by the stability selection principle. The
algorithm works by resampling and clustering the data in each cluster and calculating an
N*N consensus matrix. Each element represents the proportion of time that two samples
are clustered together. A fully stable matrix consisting entirely of zeros and ones represents
whether all sample pairs are clustered or not in the resampling iteration. The next step is
to compare the stability of these consensus matrices to determine K. The fuzzy clustering
ratio (PAC) score [43] is used to evaluate the stability of the consensus matrix for each K.
However, it is biased towards larger values of K. In contrast another widely used delta K
metric is more subjective in finding K as it relies on finding an elbow point and is not as
good as the PAC score. Monte Carlo Reference-based Consensus Clustering (M3C) [38]
addresses these issues by comparing the true stability scores with the expected scores under
a stochastic model.M3C uses Monte Carlo simulation to generate a distribution of stability
scores along with a range of K by comparing it with actual stability scores to determine the
optimal K and reject the null hypothesis K = 1.

2.2.5. IClusterPlus

IClusterPlus was developed for comprehensive cluster analysis of multi-type genomic
data [39]. Multi-type genomic data such as array comparative gene hybridization (aCGH),
gene expression microarray, RNA-seq, DNA-seq, etc. iClusterPlus samples a range of
lambda values from the parameter space based on a unified design to search for the best
model [44]. The number of points to sample (n.lambda) depends on the number of data
types. If the number of clusters in the sample is known, the corresponding k (the number of
latent variables) can be directly selected for cluster analysis. If the number of clusters is not
known in advance, k can be tested from 1 to N (a reasonable number of clusters). For each
k, Bayesian Informative Features (BIC) is used to select the best sparse model with the best
combination of penalty parameters. To choose the best k, by calculating the deviation rate,
i.e., log-likelihood (fit)-log-likelihood (null model) divided by log-likelihood (full model)-
log-likelihood (null model) ratio. Deviation rate can be interpreted as EV percentage.
Choose k where the percentage EV curve plateaus the optimal number of clusters.

2.2.6. Network Analysis

Microbial networks are an increasingly popular tool for studying the structure of
microbial communities, as they integrate multiple types of information and may represent
system-level behavior. The analysis of microbial networks allows one to predict pivotal
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species and inter-species interactions. In recent years, various network methods have been
successfully applied in different biological contexts. Among them, the correlation-based
association network approach is the most commonly used method for analyzing microbial
interaction networks due to the simplicity and robustness of the computational process.
Network analysis in some disciplines, especially medical-related ones, provides more
options for further data mining and analysis. Therefore, we used network analysis methods
to validate the identified flora’s reliability further.

The network analysis method is based on the concept of a network diagram in mathe-
matics, and the microbial interaction network is constructed based on the Pearson correla-
tion between all OTU species, and different correlation coefficients represent the difference
in the relationship in different OTUs. Meanwhile, each network node corresponds to each
OTU, i.e., colony species, and the edges between different species are determined by the
pairwise Pearson correlations between species, i.e., the significant correlation between a
certain bacterium and another bacterium. Ju et al. [45] ranked all the nodes in the network
according to the degree from highest to lowest and selected the top ten nodes as the core
nodes. Nodes, where the core module represent the core species in the global network.
Therefore, the top ten OTU nodes corresponding to the degree of connectivity (Zi) within
the module were selected as our core nodes in this study. These nodes represent the key
species that may play an essential role in maintaining the structural stability of the microbial
community, i.e., the core gut flora.

2.2.7. Evaluation Index of Normalization Algorithm

Intraclass correlation coefficient (ICC) [46] is often used to evaluate the reproducibil-
ity or consistency of different measurement methods or raters for the same quantitative
measurement results.

ICC is defined as:

ICC =
σ2

b
σ2

b + σ2
ε

(7)

where σ2
b represents the data variability between different normalization methods for the

same sample type and σ2
ε represents the variability between different sample types. ICC

is calculated for the four types of sample data (“all samples”, “M”, “H” and “N”). The
ICC was estimated by the R package “ICC”, and its value is close to 1 indicates the better
reproducibility of the method.

2.2.8. Evaluation Index of Clustering Algorithm

In this paper, NMI, DBI, CH, and running time are employed to evaluate the perfor-
mance of the clustering algorithm. These metrics are defined and formulated as follows:

1. Normalized Mutual information (NMI)

NMI [47], which determines clustering quality, is a common method. The more
significant NMI value means better performance. The joint distribution of random variables
X and Y is p(x,y), and the edge distribution is p(x) and p(y), respectively. The mutual
information I(X,Y) is the relative entropy of the joint distribution p(x,y) and the product
distribution p(x)p(y):

I(X, Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(8)

H(X) =
n

∑
i=1

p(xi)I(xi) =
n

∑
i=1

p(xi) logb
1

p(xi)
= −

n

∑
i=1

p(xi) logb p(xi) (9)

NMI(X, Y) = 2R = 2
I(X, Y)

H(X) + H(Y)
(10)

2. Davies-Boulding Index (DBI)
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DBI, also known as the classification appropriateness index [48], is the maximum
value of the sum of the average distance avg(C) between the samples of each of two clusters
Ci, Cj divided by the distance between the centroids of the two clusters. The larger the
inter-class distance, the better the clustering effect.

avg(C) =
2

|C|(|C| − 1) ∑
1<i<j<|C|

dist
(
xi, xj

)
(11)

DBI =
1
k

k

∑
i=1

max
i 6= j

(
avg(Ci) + avg

(
Cj
)

dist
(
ui, uj

) )
(12)

where avg(C) means the average distance of cluster class C, |C|means the number of cluster
classes C, and dist(xi, xj) is the distance between two samples xi, xj, and ui, uj are the center
of the cluster class Ci, Cj, respectively.

3. Calinski-Harabasz index (CH)

The CH index is the ratio of inter-cluster distance to intra-cluster distance [49]. The
larger the value CH(K), the better the clustering effect. The formula is as follows:

CH(K)
tr(B)/(K− 1)

tr(W)/(N − K)
(13)

where tr(B) = ∑k
j=i ||zi− z ||2 represents the trace of the inter-cluster distance difference

matrix, tr(W) = ∑k
j=i ∑xi∈k ||xi − zi||2 represents the trace of the intra-cluster departure

matrix, where z is the mean of the whole data set, zj is the mean of the jth cluster cj, N
represents the number of clusters, and K is the current class.

3. Results
3.1. Reproducibility of GMPR

The normalization methods include GMPR, TMM, TMM+ (add a pseudocount for
TMM) [50], RLE, RLE+ (add a pseudocount for RLE) [50] were employed to preprocess
four different types of data of “all samples”, “H”, “N” and “M”. It has been seen from the
Figure 2 that in different normalization methods, the ICC of “all samples” is larger than
that of “H”, “N”, “M”. It shows that all samples achieve higher reproducibility in all the
applied normalization methods. All samples obtained a larger sample size across all the
sample styles, showing that reproducibility decreases as the number of samples decreases.
The ICC of GMPR is higher than other methods in all normalization methods under any
sample type. This indicates that the GMPR method is more robust and reproducibility than
other normalization methods.

3.2. Cluster Number

To verify the performance of the used method, all samples is subjected to GMPR+Spect-
rum clustering. Since the algorithm performs an eigendecomposition of the constructed
Laplacian matrix, solves for the eigenvectors and eigenvalues, and maximizes the differ-
ence of the eigenvalues (corresponding to the difference between the eigenvalues of two
neighboring eigenvectors, i.e., the difference of the eigenvalues) [23]. Therefore, the optimal
number of clusters for all samples represented in Figure 3 is 8.

GMPR+Spectrum clustering is performed for M, H, and N groups further to analyze
the M, H, and N groups. As shown in Figure 4, the optimal number of clusters for the
chronic cirrhotic patients is 2. The clustering of the remaining two groups is similar to
Figure 4. Therefore, we can acquire the optimal number of clusters for the three groups.
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in all samples. The horizontal axis represents the eigenvectors, and the vertical axis represents
the eigenvalues.
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3.3. Clustering Evaluation Indicators

GMPR+Spectrum classified all samples’ data for 1442 OTUs into 8 classes with NMI
of 0.3641, DBI of 4.2359, CH of 24.4724, and running time of 26.75 s. The Spectrum
without GMPR divided these data into 3 classes, and all metrics except DBI are lower
than the GMPR+Spectrum. In addition, as shown in Table 1, the performance of M3C
and iClusterPlus are inferior to GMPR+Spectrum. As performances of N, H, and M, the
clustering evaluation indicators are shown in Table A2.

Table 1. Clustering evaluation indicators of four different algorithms in all samples.

Index GMPR+Spectrum Spectrum M3C iClusterPlus

NMI 0.3641 0.1932 0.0047 0.2623
DBI 4.2359 2.7343 3.2742 7.4851
CH 24.4724 14.4933 1.0000 1.0157

Runtimes/second 26.75 36.85 3096.19 117.31
Cluster number 8 3 4 3

3.4. Core Microflora by GMPR+Spectrum (Genus)

All samples dataset was clustered into 8 classes using GMPR+Spectrum. The OTUs of
Cluster1 contain 24 different genera, the OTUs of Cluster2 contain 31 different genera, the
OTUs of Cluster3 contain 54 different genera, the OTUs of Cluster4 contain 38 different
genera, the OTUs of Cluster5 contain 25 different genera, the OTUs of Cluster6 contain
21 different genera, the OTUs of Cluster7 contain 18 different genera, the OTUs of Cluster8
contain 30 different genera, and the detailed bacteria contain in each cluster can be found
in Table A3.
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In addition, M, H, and N groups were clustered into 2 classes by GMPR+Spectrum,
and the core OTUs in each category were identified according to the score value in the
algorithm. The score value represents the proportion of the variance of a certain OTU to the
total variance, which is actually the proportion of a certain feature value to the sum of all
feature values [23]. The larger the score value, the larger the contribution rate, indicating
the stronger information of the original variables contained in that OTU. Therefore, the size
of the score value is used as a measure to determine whether a certain OTU is a core colony.

The score values were calculated in OTUs, including cluster1 and 2 for M, H, and
N groups. Since many bacteria were unlabeled and there were many duplicate bacteria,
the bacteria with the high score values were used as representative bacteria. Thus, we
identified the special core bacteria of group H containing mainly OTU280 (Herbaspirillum),
OTU340 (Clostridium), and OTU373 (Ruminococcus), corresponding to scores of 0.130, 0.309,
and 0.158, in that order. In addition, the important core bacteria of the M group were
found to include OTU2 (Lactobacillus), OTU359 (Akkermansia), OTU280 (Herbaspirillum), and
OTU428 (Acidaminococcus), with scores of 0.085, 0.438, 0.413, and 0.179, respectively. The
score values for each OTU in M, H, and N groups can be seen in Tables A4–A6. It was found
that the core bacteria were concentrated in cluster3 of all samples in group N. The core flora
of the M was concentrated in cluster7 of all samples except for the Herbaspirillum and the
Akkermansia in the core flora of M were only distributed in cluster1 and cluster7. The core
bacteria of H were all concentrated in cluster1 of all samples except for Herbaspirillum, and
Pyramidobacter in this core group was only present in cluster1. In general, Herbaspirillum is
only present in H, M but not in N. Pyramidobacter is only present in the key bacteria of H and
Akkermansia is only present in the core bacteria of M. Furthermore, the bacteria in groups
M, H, and N were all found in all samples, and the signature bacteria of each group were
identified. Among them, all samples and M, H, and N groups were found to be clustered by
GMPR+Spectrum to distinguish the similarity between the various populations in different
OTUs, as well as to identify the differences in flora that exist between healthy individuals,
patients with minimal hepatic encephalopathy and hepatic cirrhosis.

3.5. Network Analysis Core Flora (Genus Level)

In order to compare the structure with the core flora identified by GMPR+Spectrum,
we also use the network analysis method to construct the gut flora interaction network
among different OTUs and then take the MCODE method to identify and visualize the
core gut microbiome contained in the interaction network for each group. The MCODE
method calculates the adjacent subgraphs and graph densities contained in each node in
the network graph, and the score value of a node reflects the density of the node and its
surrounding nodes. Then the algorithm expands from the node with the maximum score
value to the surrounding nodes, and the qualified nodes are added to this module and
generate a module with similar clustering coefficients.

The intra-module connectivity (Zi) value is a measure of the role of a node in its
module, and the larger the Zi value is the greater the role played by this node in that
module, and then the top 10 OTUs in each module are considered as the core nodes within
each key module according to the magnitude of Zi value corresponding to each OTU.
Thus, we obtained the core gut microbiome network for modules 1, 2, and 3 (containing
many core modules, but we only chose 3 modules to show here) of all samples’ group, as
shown in Figure 5, where MCODE1 scored 5 and contained 5 nodes with 10 edges, each
corresponding to a Zi value of 0.935. MCODE2, with a score of 3, contained 3 nodes and
3 edges, and the Zi values of nodes OTU1430, OTU1111, and OTU535 were 1.402, 1.351,
and 1.351 in order. MCODE3 had a score of 5 and contained 5 nodes with 10 edges, and the
Zi values of nodes OTU101, OTU183, OTU907, OTU1153, and OTU582 were 2.293, 2.156,
2.020, 1.951, 1.951, etc. The details of the core colonies contained in each module can be
found in Table A7.
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The details of core colonies and corresponding Zi values in patients with N, H, and
M contained in modules 1, 2, and 3 can be found in Tables A8–A10. The Zi values of
nodes OTU6, OTU683, OTU658, OTU944, OTU406, OTU378, and OTU440 in H were
0.933, 0.906, 0.906, 0.701, 0.574, 0.574, 1.232 representing Coprococcus, Prevotella, Lachnospira,
Parabacteroides, Streptococcus, and Clostridium, respectively. The Zi values of nodes OTU201,
OTU1063, OTU861, OTU1425, OTU1237, OTU225, OTU202, OTU238, OTU1440, OTU1250,
and OTU1383 in M were 1.145, 1.115, 1.115, 1.054, 1.054, 1.029, 1.029, 0.984, 0.843, 0.843,
and 0.843, representing Ruminococcus, Bacteroides, Clostridium, Lachnospira, Faecalibacterium,
Actinomyces, Coprococcus, Faecalibacterium, Veillonella, Sutterella, Oscillospira, respectively.

In the network analysis, the mean scores of the core gut microbiota of the normal,
minimal hepatic encephalopathy and cirrhotic groups were 8.33, 9.33, and 10, respectively,
with higher scores indicating more complex networks. In the three networks, we also
found many similar bacteria among different groups, but the intestinal flora of the M group
was more complex, and Prevotella, Lachnospira, and Veillonella were the key bacteria in the
intestinal flora of the M group, which were not included in the core flora of normal subjects.
Actinomyces, Sutterella, and Oscillospira are key bacteria in the intestinal flora of patients
with mild hepatic encephalopathy, which are not included in the core flora of N and H
groups. Streptococcus, as critical bacteria in the intestinal flora of patients with cirrhosis,
was equally absent in the other two groups.

3.6. GMPR+Spectrum and Network Analysis Flora Comparison (Genus)

When comparing the core bacteria identified by GMPR+Spectrum and network anal-
ysis, it was found that many core bacteria co-exist in both methods. However, since
GMPR+Spectrum and network analysis were two different methods, it was not guaranteed
that each cluster of GMPR+Spectrum matches exactly with each module of network anal-
ysis, and the following situation may occur, for example, the core bacteria in cluster4 of
GMPR+Spectrum appeared in module8 of network analysis method at the same time. The
core bacteria in cluster1, cluster2, cluster3, cluster4, and cluster5 of GMPR+Spectrum could
be found in module 6 of network analysis. The specific relationship can be seen in Figure 6.
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A comparative analysis of the core bacteria included in GMPR+Spectrum and network
analysis revealed that some core bacteria could be found in both methods, while some
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differences existed between the bacteria identified by the two methods. The common
bacteria were Coprococcus, Clostridium of H, Faecalibacterium, Bacteroides, Prevotella in M, and
Clostridium, Faecalibacterium, Fusobacterium, and Bacteroides in N. The difference was that
Lactobacillus, Akkermansia, Herbaspirillum in M and Oscillospira, Dialister in H were found
only in GMPR+Spectrum, etc.

4. Discussion

In this paper, GMPR+Spectrum was used to cluster the all samples dataset to analyze
the structure of the intestinal flora. The sequencing data contains many zeros due to the
missing or under-sampled intestinal flora in the sequencing process. Therefore, the GMPR
method, which can effectively avoid the problem of zero inflation of the intestinal flora
data, was first used to normalize the intestinal flora. Then Spectrum was used to analyze
the structure of the intestinal flora. The results showed that the GMPR+Spectrum algorithm
was the fastest compared with M3C and iClusterPlus on different groups and performed
well. Moreover, most of the core clusters of the network analysis method were included in
different clusters of GMPR+Spectrum.

In Spectrum, graph theory is used for algorithmic analysis, and the idea is to view
the data analysis problem as a problem of optimal partitioning of graphs, while the net-
work analysis method is based on the concept of network graphs in mathematics, where
networks are also called “graphs”, and the idea is to view the data analysis problem as a
problem of dividing a large network into smaller networks [51–53]. Therefore, the similarity
between the two methods is that they both transform the data analysis problem into a
graph, and the essence of both is to partition the graph, and the final result is to make the
correlation between different subgraphs/subnetworks low and the correlation within the
subgraphs/subnetworks high.

The differences are: (1) The way of calculating the similarity matrix is different. The
Pearson correlation coefficient method is used for the network analysis method, while the
adaptive density-aware kernel in Spectrum is used to calculate the similarity matrix. (2)
The graph partitioning method is different. In Spectrum, the Laplace matrix is mainly
used to turn the complete undirected graph into a subgraph. The score value of each
node for subnetwork partitioning based on the MCODE is calculated by the network
analysis method, which reflects the density of the node and the surrounding nodes. (3) In
network analysis, the network is constructed based on the optimal threshold value, but
the threshold value is artificially chosen. While for Spectrum in the clustering process, Ng
spectral clustering method is used, and also the eigenvalue heuristic is used to estimate the
number of clusters, and finally, the final eigenvector matrix of GMM clustering is utilized
to obtain the optimal number of clusters. (4) In the Spectrum algorithm, the bacteria with
the top ranking of score value are taken as the key bacteria. The score value represents
the proportion of variance of a certain OTU to the total variance, which is actually the
proportion of a certain eigenvalue to the total sum of all eigenvalues. Therefore, the larger
score of an OTU, the greater contribution of that OTU to the total OTU. In the network
analysis, the OTU with the highest Zi ranking is used as the core bacteria of each module,
and the Zi value is a measure of the role of a node in the module where it is located. From
the experimental results, it is clear that GMPR+Spectrum and network analysis can find
the same bacteria in all types of populations, but given that there are still some differences
between the two methods, it can also come out that different bacteria are found in the
respective methods. Therefore, we performed another specific analysis for these common
bacteria under the existing studies.

GMPR+Spectrum method identified all samples as well as in the flora of H, N, and
M and found that the Herbaspirillum was only present in the core flora of H, M but not in
N. In fact, Herbaspirillum belongs to Gram-negative bacilli and this bacterium can cause a
decrease in the number of Bifidobacterium, further promoting chronic inflammation in the
liver [54]. In addition, previous studies had mostly found Herbaspirillum in plants, and only
in recent years had it been isolated in clinical patients [55–61]. In particular, in a study by Jia
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et al. same bacteria of Herbaspirillum were found to be a potential opportunistic pathogen
for cirrhotic patients and some immunocompromised elderly patients [62]. Although few
studies had been conducted on Herbaspirillum in humans, some studies had shown that
Herbaspirillum was a potential opportunistic pathogen, meaning that Herbaspirillum may
be a crucial bacterium for appropriate disease screening and diagnosis of clinical patients
with cirrhosis and minimal hepatic encephalopathy.

In addition, Akkermansia was present only in the core bacteria of M in the GMPR+Spectrum
method. Akkermansia is oval-shaped Gram-negative bacteria that are “probiotic” in many
diseases [63], and researchers had seen their potential as the next generation of probiotic
drugs that could be potential targets for improving metabolic diseases such as liver diseases.
At the same time, some studies have shown that Akkermansia may have some negative
effects [2]. For example, when the liver degenerates, metabolism will be destroyed, re-
sulting in changes in the abundance of Akkermansia abundance [64]. A recent study by
Bajaj et al. [65] found that Akkermansia change in healthy individuals and MHE patients,
specifically Akkermansia are higher in the absence of MHE. In contrast, we have only found
seen that Akkermansia may serve as a critical bacterium to distinguish minimal hepatic
encephalopathy from normal individuals, and the specific immunomodulatory mechanism
of action still needs to be further investigated subsequently.

The similarities and differences of the core bacteria identified by GMPR+Spectrum
and network analysis methods could be found when comparing core flora. The similarity
lies in the fact that normal healthy controls (N) have a more abundant flora than patients
with minimal hepatic encephalopathy and hepatic encephalopathy, as well as in the fact
that at the genus level, both methods can identify some common core flora, such as
Clostridium, Ruminococcus as critical bacteria in cirrhotic patients, the effect of changes in
Clostridium and Ruminococcus on the fecal microbiota of HE patients was confirmed in a
study by Bajaj et al. [65], which shows that changes in fecal microbial composition occur
in healthy individuals and HE patients, especially in Clostridium and Ruminococcus, and
that changes in these bacteria are associated with the severity of cirrhosis and worsening of
the complications of cirrhosis, but in the present study, the specific mechanism of action of
Clostridium and Ruminococcus in this study is not clear. In addition, the difference between
the two methods is that the core bacteria in the hepatic encephalopathy patients were
Herbaspirillum, Pyramidobacter, Faecalibacterium, Fusobacterium, Dialister, and Bacteroides,
which were only the core bacteria identified by GMPR+Spectrum.

At the same time, the critical flora of the M group at the genus level included Lacto-
bacillus, Akkermansia, Herbaspirillum, and Acidaminococcus, which were identified by the
GMPR+Spectrum method as the specific key bacteria. The GMPR+Spectrum method
found Lactobacillus as a critical bacterium in the intestinal flora of patients with minimal
hepatic encephalopathy, it did not include essential bacteria of cirrhosis, while in the Ba-
jaj study [66], it was shown that Lactobacillus in the stool of MHE patients had unique
characteristics and that these bacteria could be used for MHE patients for diagnosis. It
has even been demonstrated [67] that microecological inhibitors containing Bifidobacteria
and Lactobacillus can regulate the structure of the intestinal flora, inhibiting the growth of
ammonia-producing, urease producing bacteria, and have a role in reducing the growth of
ammonia. Minimal hepatic encephalopathy as the beginning of the pathogenesis of hepatic
encephalopathy [68], so the difference between the two in Lactobacillus may serve as an
effective way to differentiate between them.

In addition, GMPR+Spectrum has identified Coprococcus, Dialister in the core flora of
cirrhotic patients, Prevotella, Acidaminococcus in the core flora of MHE patients, and which
are also absent from the core flora of normal healthy controls, but the mechanism of action of
these bacteria in patients with minimal hepatic encephalopathy and hepatic encephalopathy
has not been identified in the current study. It is to be followed up with more in-depth
studies. It shows [69] that there is a close relationship between the occurrence of MHE
and bacteria that can affect ammonia. Some bacteria containing urease are associated
with increased ammonia in MHE. Still, other bacteria sometimes have other hidden effects
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(such as causing some inflammation) in patients with minimal hepatic encephalopathy and
hepatic encephalopathy. These bacteria also can promote the accumulation of ammonia,
and it is possible that the differential bacteria found in this study were included.

However, this study also has some limitations. First, the experimental data is too small,
and the intestinal flora is vulnerable to external environmental, genetic, and individual
behavioral differences. Further multi-ethnic and long-term large-scale studies are needed to
provide more controlled experiments to study the association between intestinal flora and
diseases, which can further validate the performance of the Spectrum algorithm. Second,
the next step will be to continue using the model used in this paper to uncover structural
differences in the gut microflora in different populations and provide a reliable reference
for different types of diseases based on research on aspects related to the gut flora.

5. Conclusions

In this study, we present a new method of GMPR+Spectrum to analyze the gut
microbiome from the patients with MHE/HE. The results show that GMPR+Spectrum can
more effectively identify structural differences in the gut microbiota of different patients,
and extracting critical bacteria, and provide a reference for clinical screening and diagnosis
of MHE/HE.
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Appendix A

Table A1. OTU count table after sequencing.

H1 H2 H3 H4 H5 H7 H8 H9 H10

OTU_0 0 0 0 0 1 0 0 2 3
OTU_1 0 0 0 0 0 1 0 0 0
OTU_2 0 0 0 0 0 0 0 0 0
OTU_3 0 0 0 0 0 0 0 1 0
OTU_4 0 0 13 0 0 0 0 0 0
OTU_5 0 18 0 0 0 6 0 0 0
OTU_6 0 0 1 0 0 2 0 140 0
OTU_7 0 0 0 0 0 0 0 0 0
OTU_8 0 30 17 30 0 4 2 0 0
OTU_9 224 2 631 2 0 174 0 10 85
OTU_10 1 0 0 0 0 0 0 1 2
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Table A2. Clustering evaluation indicators in N, H, M.

Index Spectrum GMPR+Spectrum M3C iClusterPlus

N

NMI 0.1524
2.7807

0.1521
3.0169

0.00046 0.2678
DBI 2.8357 5.7933
CH 2.5914 1.6433 0.0103 1.1882

Runtimes/second 23.18 20.39 157.36 38.69
Cluster number 2 2 4 3

H

NMI 0.1555
3.2233

0.1558
3.0738

0.00018 0.27001
DBI 1.8580 6.1212
CH 1.6681 2.3817 20.451 1.2989

Runtimes/second 17.14 15.86 151.75 28.83
Cluster number 2 2 2 3

M

NMI 0.1623 0.1647 0.00059 0.2705
DBI 2.7388 2.8420 2.9583 5.9948
CH 2.7118 2.6339 0.0102 1.4089

Runtimes/second 18.00 15.29 154.06 33.76
Cluster number 2 2 3 3

Table A3. OTUs contained in each Cluster after GMPR+Spectrum.

Cluster OTU ID

Cluster1

OTU8(Clostridium), OTU11(Dialiister), OTU12, OTU13(Megasphaera), OTU16(Blautia), OTU20(Coprococcus),
OTU86(Ruminococcus), OTU106(Lachnobacterium), OTU112(Oscillospira),

OTU160(Bacteroides), OTU163(Prevotella), OTU203(Streptococcus), OTU281(Eubacterium),
OTU306(Alistipes), OTU313(Sutterella), OTU325(Epulopiscium), OTU363(Phascolarctobacterium),
OTU366(Pyramidobacter), OTU409(Fusobacterium), OTU509(Megamonas), OTU647(Roseburia),

OTU701(Lachnospira), OTU1821(Faecalibacterium), OTU2170(Enterobacter), OTU3123(Akkermansia)

Cluster2

OTU15(Lactobacillus), OTU60, OTU170(Ruminococcus), OTU252(Faecalibactium), OTU299(Propionibacterium),
OTU309(Oscillospira), OTU324(Brachybacterium), OTU373(Parabacteroides),

OTU374(Thermus), OTU426(Lachnospira), OTU434(Dialister), OTU448(Deinococcus), OTU495(Coprococcus), OTU515(Clostridium),
OTU530(Megamonas), OTU534(Streptococcus), OTU696(Veillonella), OTU731(Roseburia), OTU760(Bacteroides),

OTU884(Lachnobacterium), OTU1041(Blautia), OTU1237(Phascolarctobacterium), OTU1244(Desulfovibrio), OTU1279(Fusobacterium),
OTU1548(Eubacterium), OTU2149(Alistipes), OTU2563(Bulleidia), OTU2796(Campylobacter),

OTU2898(Brevundimonas), OTU2936(Leptotrichia), OTU3265(Methylobacterium), OTU3379 (Prevotella)

Cluster3

OTU79(Clostridium), OTU81(Oscillospira), OTU88(Ruminococcus), OTU142(Anoxybacillus),
OTU153(Staphylococcus), OTU279(Paludibacter), OTU344(Herbaspirillum), OTU367
(Comamonas), OTU379(Acinetobacter), OTU388(Lactococcus), OTU490(Coprococcus),

OTU499(Dietzia), OTU514(Phascolarctobacterium), OTU531(Lactobacillus), OTU543(Eubacterium),
OTU546(Micrococcus), OTU586(Dialister), OTU605(Roseburia), OTU674(Veillonella), OTU691
(Faecalibacterium), OTU756(Blautia), OTU763(Selenomonas), OTU811(Lachnospira), OTU873

(Brevundimonas), OTU1104(Streptococcus), OTU1304(Prevotella), OTU1307(Megamonas),
OTU1331(Moryella), OTU1602(Odoribacter), OTU1612(Corynebacterium), OTU1637(Fusobacterium),

OTU1683(Acidaminococcus), OTU1695(Bacteroides), OTU1725(Parabacteroides),
OTU1794(Gemella), OTU2000(Alistipes), OTU2197(Porphyromonas), OTU2419(Escherichia),

OTU2426(Sutterella), OTU2520(Brevibacterium), OTU2570(Morganella), OTU2704(Epulopiscium),
OTU2727(Enterobacter), OTU2731(Variovorax), OTU2797(Klebsiella), OTU2807(Adlercreutzia),

OTU2843(Atopobium), OTU2948(Chryseobacterium), OTU2963(Haloanella), OTU3000,
OTU3075(Coprobacillus), OTU3294(Methylobacterium), OTU3301(Sphingomonas), OTU3609(Haemophilus)

Cluster4

OTU0(Lactobacillus), OTU14(Enterococcus), OTU48, OTU49(Clostridium), OTU110(Megamonas),
OTU118(Streptococcus), OTU130(Gemella), OTU138(Parabacteroides), OTU143(Bacteroides),
OTU145(Prevotella), OTU164(Enterobacter), OTU166(Abiotrophia), OTU195(Lactococcus),
OTU263(Actinomyces), OTU305(Neisseria), OTU317(Microbacterium), OTU352(Rothia),

OTU376(Thermus), OTU386(Cetobacterium), OTU467(Escherichia), OTU562(Granulicatella),
OTU708(Lachnospira), OTU744(Eubacterium), OTU847(Methylobacterium), OTU1056(Lautropia),

OTU1060(Blautia), OTU1413(Oribacterium), OTU1666(Leuconostoc), OTU2454(Eikenella),
OTU2601(Coprococcus), OTU2632(Aggregatibacter), OTU2679(Haemophilus), OTU2862

(Adlercreutzia), OTU2909(Eggerthella), OTU2911(Campylobacter), OTU2953(Microvirgula),
OTU2980(Collinsella), OTU3039(Collinsella), OTU3591(Veillonella)

Cluster5

OTU4(Weissella), OTU42(Clostridium), OTU58, OTU64(Coprococcus), OTU127(Oscillospira),
OTU190(Veillonella), OTU200(Ruminococcus), OTU218(Prevotella), OTU272(Odoribacter),

OTU283(Faecalibacterium), OTU286(Parabacteroides), OTU272(Odoribacter), OTU334(Slackia), OTU339(Selenomonas),
OTU361(Bacteroides), OTU403(Eubacterium), OTU428(Dialister), OTU624(Lachnospira), OTU635(Anaeroglobus), OTU664(Roseburia),

OTU827(Phascolarctobacterium), OTU918(Blautia), OTU1412(Megamonas), OTU2119(Alistipes), OTU2500(Leptotrichia),
OTU3057, OTU3097 (Fusobacterium)
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Table A3. Cont.

Cluster OTU ID

Cluster6

OTU2(Lactobacillus), OTU6(Dialister), OTU9(Veillonella), OTU22(Lachnospira), OTU24(Roseburia),
OTU28(Megasphaera), OTU39(Coprococcus), OTU44, OTU47(Ruminococcus), OTU50(Clostridium),

OTU76(Phascolarctobacterium), OTU146(Bacteroides), OTU150(Prevotella), OTU219(Faecalibacterium), OTU238(Alistipes),
OTU248(Parabacteroides), OTU265(Enterobacter), OTU301(Odoribacter),

OTU332(Sutterella), OTU362(Asteroleplasma), OTU419(Fusobacterium), OTU2047(Leclercia)

Cluster7

OTU5(Coprococcus), OTU17(Veillonella), OTU23, OTU45(Clostridium), OTU70(Eubacterium),
OTU105(Oscillospira), OTU119(Ruminococcus), OTU230(Prevotella), OTU253(Faecalibacterium),
OTU259(Parabacteroides), OTU297(Haemophilus), OTU461(Akkermansia), OTU488(Megamonas),

OTU553(Lactobacillus), OTU555(Streptococcus), OTU565(Acidaminococcus), OTU2712(Fusobacterium),
OTU3479(Escherichia), OTU167(Bacteroides)

Cluster8

OTU82(Roseburia), OTU83(Lachnospira), OTU114(Clostridium), OTU122, OTU229(Holdemania),
OTU256(Parabacteroides), OTU481(Megamonas), OTU491(Peptostreptococcus), OTU528(Faecalibacterium),

OTU557(Coprococcus), OTU561(Blautia), OTU567(Veillonella), OTU580(Dialister),
OTU644(Ruminococcus), OTU693(Oscillospira), OTU1030(Prevotella), OTU1174(Desulfovibrio),
OTU1429(Actinomyces), OTU1627(Bacteroides), OTU1793(Streptococcus), OTU1810(Bilophila),

OTU1996(Oxalobacter), OTU2053(Alistipes), OTU2130(Odoribacter), OTU2597(Raoultella),
OTU2599(Epulopiscium), OTU2714(Fusobacterium), OTU2719(Sutterella), OTU2894(Sarcina),

OTU3056, OTU3062(Coprobacillus)

Table A4. The score value and core flora of GMPR+Spectrum in N.

N OTUID SCORE Family Genus

Cluster1

OTU45
OTU104

0.528
0.478

Lachnospiraceae Clostridium
Streptococcaceae Streptococcus

OTU230 0.475 Ruminococcaceae Oscillospira
OTU125 0.330 Bacillaceae Anoxybacillus

OTU2 0.068 Lactobacillaceae Lactobacillus
OTU136 0.056 Staphylococcaceae Staphylococcus
OTU274 0.018 Alcaligenaceae Sutterella

Cluster2

OTU313
OTU354

0.308
0.265

Ruminococcaceae Faecalibacterium
Ruminococcaceae Oscillospira

OTU326 0.235 Clostridiaceae Clostridium
OTU320 0.225 Ruminococcaceae Eubacterium
OTU314 0.195 Erysipelotrichaceae Clostridium
OTU329 0.187 Fusobacteriaceae Fusobacterium
OTU367 0.185 Bacteroidaceae Bacteroides
OTU473 0.134 Lachnospiraceae Clostridium

Table A5. The score value and core flora of GMPR+Spectrum in H.

H OTUID SCORE Family Genus

Cluster1 OTU141
OTU51

0.530
0.323

Erysipelotrichaceae
Lachnospiraceae

OTU111 0.272 Ruminococcaceae Oscillospira
OTU280 0.130 Oxalobacteraceae Herbaspirillum
OTU296 0.116 Dethiosulfovibrionaceae Pyramidobacter
OTU204 0.109 Veillonellaceae Dialister

Cluster2 OTU313
OTU407

0.593
0.348

Ruminococcaceae Faecalibacterium
Ruminococcaceae Oscillospira

OTU323 0.320 Lachnospiraceae Coprococcus
OTU340 0.309 Lachnospiraceae Clostridium
OTU329 0.284 Fusobacteriaceae Fusobacterium
OTU339 0.200 Veillonellaceae Dialister
OTU458 0.173 Bacteroidaceae Bacteroides
OTU373 0.158 Lachnospiraceae Ruminococcus
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Table A6. The score value and core flora of GMPR+Spectrum in M.

M OTUID SCORE Family Genus

Cluster1 OTU2
OTU12

0.085
0.000

Lactobacillaceae Lactobacillus
Veillonellaceae

Cluster2 OTU168
OTU359

0.754
0.438

Veillonellaceae
Verrucomicrobiaceae Akkermansia

OTU280 0.413 Oxalobacteraceae Herbaspirillum
OTU364 0.333 Ruminococcaceae
OTU443 0.330 Ruminococcaceae Faecalibacterium
OTU404 0.319 Bacteroidaceae Bacteroides
OTU155 0.255 Prevotellaceae Prevotella
OTU428 0.179 Veillonellaceae Acidaminococcus

Table A7. Core flora and corresponding Zi values in each module of all samples group in
network analysis.

Spectrum Zi OTU ID Family Genus

module1

0.934501
0.934501

OTU31
OTU18

Enterococcaceae Enterococcus
Lactobacillaceae Lactobacillus

0.934501 OTU700 Burkholderiaceae Lautropia
0.934501 OTU369 Streptococcaceae Streptococcus
0.934501 OTU285 Micrococcaceae Rothia

module2
1.402386 OTU1430 Ruminococcaceae Faecalibacterium
1.351226 OTU1111 Bacteroidaceae Bacteroides

module3
2.292694
1.951359

OTU101
OTU1153

Ruminococcaceae Oscillospira
Catabacteriaceae

1.951359 OTU582 Lachnospiraceae

module4

1.827142 OTU1103 Bacteroidaceae Bacteroides
1.746558 OTU180 Prevotellaceae Prevotella
1.742641 OTU571 Lachnospiraceae Lachnospira
1.742641 OTU235 Ruminococcaceae Eubacterium
1.678291 OTU1083 Catabacteriaceae

module5
1.960498 OTU372 Lachnospiraceae Ruminococcus
1.727345 OTU1300 Clostridiaceae Clostridium
1.494192 OTU431 Turicibacteraceae

module6

2.426804 OTU493 Lachnospiraceae Lachnospira
2.310227 OTU1420 Veillonellaceae Veillonella
2.310227 OTU272 Coriobacteriaceae Slackia
1.960498 OTU1187 Lachnospiraceae Coprococcus
1.960498 OTU281 Ruminococcaceae
1.960498 OTU90 Lachnospiraceae Pseudobutyrivibrio

module7
1.235633 OTU355 Bacteroidaceae Bacteroides
0.813126 OTU356 Lachnospiraceae
0.644123 OTU854 Prevotellaceae Prevotella

module8

0.668220 OTU674 Streptococcaceae Streptococcus
0.668220 OTU113 Gemellaceae Gemella
0.420731 OTU286 Lactobacillaceae Lactobacillus
0.420731 OTU1326 Neisseriaceae Microvirgula
0.173242 OTU658 Ruminococcaceae Clostridium
0.173242 OTU593 Methylobacteriaceae Methylobacterium



Appl. Sci. 2022, 12, 5895 19 of 23

Table A8. Core colonies and corresponding Zi values in each module of N group in network analysis.

N OTUID Zi Family Genus

MCODE1 OTU216
OTU1110

1.107
1.052

Ruminococcaceae Faecalibacterium
Rikenellaceae Alistipes

OTU222 1.052 Porphyromonadaceae Parabacteroides
OTU1354 1.052 Fusobacteriaceae Fusobacterium
OTU1335 1.052 Comamonadaceae Brachymonas
OTU1334 1.052 Ruminococcaceae Ruminococcus
OTU1293 1.052 Clostridiaceae Clostridium
OTU1286 1.052 Bacteroidaceae Bacteroides

MCODE2 OTU1046
OTU268

1.382
1.382

Bacteroidaceae Bacteroides
Ruminococcaceae

OTU106 1.074 Lachnospiraceae Ruminococcus
OTU180 1.030 Clostridium
OTU907 0.986 Ruminococcaceae
OTU101 0.986 Lactobacillaceae Lactobacillus
OTU66 0.986 Lachnospiraceae

OTU1058 0.986 Bacteroidaceae Bacteroides
OTU682 0.986 Lachnospiraceae Roseburia

MCODE3 OTU202 1.285 Lachnospiraceae Coprococcus
OTU1380 1.243 Lachnospiraceae
OTU1333 1.243 Erysipelotrichaceae Clostridium
OTU1324 1.243 Comamonadaceae Variovorax
OTU1310 1.243 Coriobacteriaceae Adlercreutzia
OTU1233 1.243 Enterobacteriaceae
OTU1184 1.243 Ruminococcaceae Faecalibacterium
OTU1166 1.243 Bacteroidaceae Bacteroides

Table A9. Core colonies and corresponding Zi values in each module of H group in network analysis.

H OTUID Zi Family Genus

MCODE1 OTU368
OTU6

0.960
0.933 Lachnospiraceae Coprococcus

OTU1023 0.933 Lachnospiraceae
OTU692 0.906 Ruminococcaceae
OTU683 0.906 Prevotellaceae Prevotella
OTU658 0.906 Lachnospiraceae Lachnospira
OTU632 0.906 Ruminococcaceae
OTU628 0.906 Lachnospiraceae
OTU619 0.906 Lachnospiraceae
OTU559 0.906 Lachnospiraceae

MCODE2 OTU1380
OTU1317

0.701
0.701

Lachnospiraceae

OTU1036 0.701
OTU944 0.701 Porphyromonadaceae Parabacteroides
OTU891 0.701
OTU665 0.701 Lachnospiraceae
OTU434 0.574 Lachnospiraceae
OTU431 0.574 Lachnospiraceae
OTU406 0.574 Streptococcaceae Streptococcus
OTU378 0.574 Lachnospiraceae Coprococcus
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Table A9. Cont.

H OTUID Zi Family Genus

MCODE3 OTU912 1.656 Prevotellaceae Prevotella
OTU134 1.514 Prevotellaceae Prevotella

OTU1009 1.408 Prevotellaceae Prevotella
OTU935 1.373 Prevotellaceae Prevotella
OTU494 1.302 Lachnospiraceae Lachnospira
OTU911 1.302 Prevotellaceae Prevotella
OTU888 1.302 Prevotellaceae Prevotella
OTU446 1.267 Veillonellaceae Veillonella
OTU440 1.232 Ruminococcaceae Clostridium
OTU422 1.232 Lachnospiraceae Coprococcus

Table A10. Core colonies and corresponding Zi values in each module of M group in network analysis.

M OTUID Zi Family Genus

MCODE1 OTU201
OTU1063

1.145
1.115

Ruminococcaceae Ruminococcus
Bacteroidaceae Bacteroides

OTU861 1.115 Ruminococcaceae Clostridium
OTU64 1.085 Lachnospiraceae Clostridium

OTU1392 1.054 Ruminococcaceae
OTU1425 1.054 Lachnospiraceae Lachnospira
OTU1304 1.054 Lachnospiraceae Clostridium
OTU1378 1.054 Bacteroidaceae Bacteroides
OTU1237 1.054 Ruminococcaceae Faecalibacterium
OTU1184 1.054 Ruminococcaceae Faecalibacterium

MCODE2 OTU1069
OTU1036

1.075
1.075

Ruminococcaceae

OTU225 1.029 Actinomycetaceae Actinomyces
OTU202 1.029 Lachnospiraceae Coprococcus
OTU551 1.029 Lachnospiraceae
OTU465 1.029 Erysipelotrichaceae
OTU322 1.029 Lachnospiraceae Coprococcus
OTU238 0.984 Ruminococcaceae Faecalibacterium

MCODE3 OTU956 0.843 Bacteroidaceae Bacteroides
OTU1440 0.843 Veillonellaceae Veillonella
OTU1400 0.843 Bacteroidaceae Bacteroides
OTU1409 0.843 Ruminococcaceae Ruminococcus
OTU1250 0.843 Alcaligenaceae Sutterella
OTU1383 0.843 Ruminococcaceae Oscillospira
OTU1183 0.843 Bacteroidaceae Bacteroides
OTU1166 0.843 Bacteroidaceae Bacteroides
OTU1113 0.843 Prevotellaceae Prevotella
OTU1021 0.843 Ruminococcaceae Faecalibacterium
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