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Abstract: This article presents a review of an approach for studying solution thermodynamics, which
is based the on hydrodynamic fluctuation correlations analysis method suggested by Landau and
Lifshitz. We show that the method is very general, and its applicability goes beyond hydrodynamics.
It starts with examining the entropy production and fluctuating transport fluxes, which are related to
concentration fluctuations and molecular interactions. The approach can be successfully applied to
compute a wide range of thermodynamic properties such as the osmotic pressure (i.e., equation of
state) and provides information about the interactions between the dissolved species. Using dilute
electrolyte solutions as a case study, we reproduce results from the Debye and Huckel theory while
starting from a very different physical perspective.
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1. Introduction

This paper offers an overview of the Landau and Lifshitz approach for the analysis
of hydrodynamic fluctuations [1], and its potential to be used as a tool for obtaining
meaningful and important physical results. The starting point for the analysis is the
fundamental law of entropy production, and therefore, its foundations are quite general.
The Landau and Lifshitz theory of hydrodynamic fluctuations is very helpful in studying
stochastic properties in viscous liquids. An intriguing example is the derivation of the
Stokes–Einstein diffusion coefficient by integrating the fluctuating viscous stresses acting
on the surface of a spherical particle, as demonstrated by Zwanzig [2] and later by Fox and
Uhlenbeck [3]. The general approach can be extended beyond fluid momentum and heat
transfer. It was used to offer a possible explanation for the attractive interactions between
like-charged particles in colloid crystals [4], the surface forces in thin liquid films due to
surface capillary waves [5], or ionic concentration-fluctuation correlations in electric double
layers [6].

The Landau and Lifshitz method can be adapted to examine the properties of solutions,
including electrolytes. This was demonstrated by Donev et al. [7] and Peraud et al. [8],
who studied the fluctuations in such systems in detail. Their main focus was on the non-
equilibrium, gradient-driven transport in fluid mixtures and hence requires a numerical
approach. Still, they offered results for the equilibrium properties of solutions such as
structure factors and the corresponding radial distribution functions in the Debye and
Huckel limit. The focus of the present review is on the general analytical methodology
that allows for the derivation of thermodynamic equilibrium properties of electrolyte
solutions such as osmotic pressure, radial distribution functions, and interaction energies
between ions (potentials of mean force). The effect of the electrostatics enters the analysis
via the Nernst–Planck equations [9] for the fluxes in combination with the Poisson equation
that relates the electrostatic potential to the charge in the fluid [10]. We provide a detailed
pathway for deriving the Debye and Huckel mean field theory of strong electrolytes [11,12]),
starting from the general relationship for the entropy production. All assumptions are
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clearly outlined, which helps to better understand the limitations of the Debye and Huckel
model. This analysis is less general than the one offered by Peraud et al. [8], as it does not
include non-equilibrium effects. Abandoning some of the simplifications (dilute solutions,
small fluctuation amplitudes, solvent structural molecular contributions, etc.) may in
principle lead to a more general theory. The complexity of the calculations, however, would
increase and obtaining analytical results may again become impossible.

2. Theoretical Approach

In this section, we present a brief overview of the Landau and Lifshitz description of
fluctuating hydrodynamics [1] and outline the application of the general method to other
transport processes such as mass diffusion. The latter is necessary in order to examine
the concentration fluctuations, which will next be used to determine the thermodynamic
properties of solutions.

2.1. Entropy Production and Fluxes

We start with examining the entropy production rate in the solution, S (i.e., its change
with time, t), which is given by [1,13]

dS
dt

=
diS
dt

+
deS
dt

. (1)

The first term on the right-hand side is due to irreversible processes inside the thermo-
dynamic system and according to the second law of thermodynamics is always positive, or
diS/dt ≥ 0. The second term accounts for the entropy change that results from exchanges
of energy and matter with the systems surroundings. It is the irreversible part of the
total entropy charge that is relevant to the current discussion. In the case of a solution, it
reads [1,13]

1
kB

diS
dt

=
Ṡ
kB

= −
∫

∆V
dV
(

i · ∇µ

kBT

)
, (2)

where i is the diffusion flux in kg m−2s−1, µ is the chemical potential, and ∆V is some
volume within the solution. If the volume ∆V is small, Equation (2) becomes

Ṡ
kB
≈ −i · ∇µ

kBT
∆V, (3)

Following Landau and Lifshitz [1], we can write Equation (2) (or Equation (3)) in
the form

Ṡ =
∫

∆V
dV

(
∑
η

Xη ẋη

)
≈∑

η

Xη ẋηδV. (4)

The quantities Xη and ẋη are the generalized thermodynamic forces and fluxes, respec-
tively [1,13,14]. Comparing Equation (4) to (2) leads to

Xη =
1

kBT
∂µ

∂rη
, ẋη = iη (5)

where we have set µ = µ1/m1 − µ2/m2. The index η = 1, 2, 3 accounts for the three spatial
coordinates r1, r2, r3. The total flux can then be expressed as

i = −α∇µ + δi, (6)

where δi is the fluctuating part of the flux i.
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2.2. Correlation of the Fluctuating Diffusion Fluxes

The generalized fluxes can formally be expressed by [1,14]

ẋη = −∑
ζ

γηζ Xζ + yη . (7)

The indices η and ζ correspond to various transport processes in all three spatial
directions that may be present in the solution, where the fluctuating fluxes correlations are
given by [14,15]

〈yη(t1)yζ(t2)〉 = (γηζ + γζη)δ(t1 − t2). (8)

The angular brackets 〈. . . 〉 denote ensemble averaging [12,14]. Note that 〈yη(t1)〉 = 0.
We can write the η-component of Equation (6) in the form

iη = −∑
ζ

(
αkBT
∆V

δηζ

)(
1

kBT
∂µ

∂rζ
∆V
)
+ δiη (9)

A comparison of Equation (9) with Equation (7) leads to the following expressions for
the coefficient γηζ and the fluctuating flux δiη

γηζ =
αkBT
∆V

δηζ , yη = δiη , (10)

where again δiη denotes the fluctuation of the η component of the mass flux. The symbol δηζ

is the Kronecker delta [16]. Combining Equations (7)–(10) and noting that γηζ = γζη [15]
allows obtaining

〈δiη(r1, t1)δiζ(r2, t2)〉 =
2αkBT

∆V
δηζ δ(t1 − t2). (11)

Taking the limit ∆V → 0 transforms Equation (11) into

〈δiη(r1, t1)δiζ(r2, t2)〉 = 2αkBTδηζ δ(t1 − t2)δ(r1 − r2). (12)

Let us consider a two-component system where component 1 is the solute and compo-
nent 2 is the solvent. The fundamental thermodynamic equation for the internal energy E
reads [12,14]

dE = TdS− pdV + µ1dN1 + µ2dN2 (13)

where T is temperature, p is pressure, V is volume and N1 and N2 are the number of
molecules of type 1 and 2. The chemical potentials of the solute and solvent read

µ1 = µ0
1 + kBT ln N1, and µ2 = µ0

2 + kBT ln N2. (14)

If the corresponding molecular masses are m1 and m2, then we can write total mass as

Mt = N1m1 + N2m2 (15)

Combining Equations (13) and (15), and introducing a new variable c = N1m1,
leads to

dE = TdS− pdV +

(
µ1

m1
− µ2

m2

)
dc. (16)

The diffusion coefficient for component 1 is defined as

D =
α

ρ

(
∂µ

∂n1

)
=

αV
m1

∂µ

∂N1
, (17)



Appl. Sci. 2022, 12, 5863 4 of 16

where ρ is the solution density (see Equations (13) and (16))

ρ =
N1m1 + N2m2

V
(18)

and n1 is the mass fraction of component 1, or

n1 =
N1m1

N1m1 + N2m2
(19)

Assuming n1 � 1 (or N1 � Nt, where Nt is the total number of molecules), and taking
the derivative of the combined chemical potential µ = µ1/m1 − µ2/m2 with respect to N1
leads to

D =
αV
m1

∂

∂N1

(
µ1

m1
− µ2

m2

)
=

α

ρ

(
kBT

m1N1
+

kBT
m2(Nt − N1)

)
≈ αkBT

m2
1c1

(20)

where c1 = N1/V is the number concentration of component 1. Solving for α results in

α =
m2

1c1D
kBT

. (21)

It is helpful to introduce fluctuation fluxes per unit mass as δj = δi/m1 and δjη =
δiη/m1. Replacing Equation (21) in Equation (12) yields

〈δjη(r1, t1)δjζ(r2, t2)〉 = 2cDδηζ δ(t1 − t2)δ(r1 − r2) (22)

or in tensor form

〈δj(r1, t1)δj(r2, t2)〉 = 2cDIδ(t1 − t2)δ(r1 − r2), (23)

with I being the unit tensor with elements δηζ . Equations (22) and (23) imply that only
the fluxes of the same species are correlated. The correlation of fluxes of different species
is zero.

3. Fluctuation Correlations and Thermodynamics of Binary Symmetric
Electrolyte Solutions

A binary electrolyte solution is actually a ternary system that consists of positive ions,
negative ions, and solvent. However, if the concentrations of both positive and negative ions
(c+ and c−) is low in comparison to that of the solvent c, then each ionic species presents an
ideal solution, and all results from the previous section are applicable to each of them. Our
analysis focuses on symmetric electrolytes where the ions carry the same charge numbers,
z, but with opposite signs. The presence of the charges in the solution, however, creates an
additional difficulty associated with the electric fields and electrostatic interactions between
the charged components. The celebrated theory of Debye and Huckel [11] was the first
successful attempt to overcome these difficulties and is still included in most texts that are
dedicated to the physics and chemistry of electrolyte solutions. The fluctuation correlation
analysis, described here, offers a different starting point to approach the same problem.
It reveals some important physical insights and provides strategies for solving similar
problems in a relatively straightforward way.
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3.1. Balance Equations

We start with balancing the mass of dissolved electrolytes as well as the potential in
the solution. The mass balance Nernst–Planck equations read

∂c+
∂t

= −∇ · j+ + zeβ+∇ · (c+∇ψ)

∂c−
∂t

= −∇ · j− − zeβ−∇ · (c−∇ψ).
(24)

The coefficients β+ and β− are the hydrodynamic mobilities of the positive and
negative ions, while e is the elementary charge. The electrostatic potential ψ is related to
the charge density ρe = ze(c+ − c−) by means of the Poisson equation [10]

∇2ψ = − ρe

εε0
, (25)

where ε0 is the dielectric constant in vacuo, and ε is the relative dielectric permittivity.
In order to account for the fluctuations in the solution, we define the fluxes, the

concentrations, and the local potential as

j+ = −D+∇c+ + δj+
j− = −D−∇c− + δj−,

(26)

c+ = c + δc+
c− = c + δc−,

(27)

and
ψ = 0 + δψ, (28)

where D+ = kBT/β+ and D− = kBT/β− are the diffusion coefficients for the positive and
negative ions, δc+ and δc− are the concentration fluctuations for the positive and negative
ions, and c is the uniform average concentration in units of number per volume. The
resultant local electrostatic potential fluctuation is δψ.

The balance equations for all fluctuating quantities become

∂δc+
∂t

= ∇2δc+ −∇δ · j+ + zeβ+c∇2δψ

∂δc−
∂t

= ∇2δc− −∇δ · j− − zeβ−c∇2δψ.
(29)

∇2δψ = − δρe

εε0
, (30)

The charge fluctuation is

δρe = ze(δc+ − δc−) = δρ+ + δρ−, (31)

where
δρ+ = zeδc+, and δρ− = −zeδc−. (32)

Rearranging the above equations yields

∂δρ+
∂t

= D+

(
∇2δρ+ −

κ2

2
δρe

)
− ze∇ · δj+

∂δρ−
∂t

= D−

(
∇2δρ− −

κ2

2
δρe

)
+ ze∇ · δj−,

κ2 =
2z2e2c
εε0kBT

=
2z2e2cβ+

εε0D+
=

2z2e2cβ−
εε0D−

.

(33)
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The parameter κ is the Debye screening parameter (inverse length) [11], which is a
measure of potential magnitude reduction with distance around an ion in the solution.
A significant simplification of Equation (33) can be achieved by setting D+ = D− = D,
and noting that for symmetric electrolytes, the overall concentrations are c+ = c− = c.
This seems like a very strong limitation, but it does not affect the majority of the final
results. Combining the first two equations in (33) leads to an equation for the charge
density fluctuation

∂δρe

∂t
= D

(
∇2δρe − κ2δρe

)
− ze∇ · (δj+ − δj−). (34)

3.2. Charge Fluctuation Correlations and Correlation Energy

We will use the Fourier transform technique [16] to express the charge and flux
fluctuations as

δρ̂e(k, ω) =
1

(2π)2

∫ ∞

−∞
dr
∫ ∞

−∞
dtρe(r, t)ei(ωt−k·r) (35)

and
δĵ(k, ω) =

1
(2π)2

∫ ∞

−∞
dr
∫ ∞

−∞
dtδj(r, t)ei(ωt−k·r). (36)

The inverse transforms are

δρe(r, t) =
1

(2π)2

∫ ∞

−∞
dk
∫ ∞

−∞
dωρ̂e(k, ω)e−i(ωt−k·r) (37)

and
δj(r, t) =

1
(2π)2

∫ ∞

−∞
dk
∫ ∞

−∞
dωδĵ(k, ω)e−i(ωt−k·r) (38)

where k is the wavevector and ω is the frequency.
The ionic fluxes and their correlations are of special interest. For low ionic concen-

trations, the diffusion flux of each component does not depend on any variable pertinent
to the other solutes (see Equations (20)). Hence, the correlations between the fluxes for
different species is zero, or

〈δj+(r1, t1)δj+(r2, t2)〉 = 2cDIδ(t1 − t2)δ(r1 − r2),

〈δj−(r1, t1)δj−(r2, t2)〉 = 2cDIδ(t1 − t2)δ(r1 − r2),

〈δj+(r1, t1)δj−(r2, t2)〉 = 〈δj−(r1, t1)δj+(r2, t2)〉 = 0.

(39)

Equations (38) and (39) allow for the derivation of the important relationship (see
Appendix A)

〈δĵ(k1, ω1)δĵ(k2, ω2)〉 = 2cIDδ(ω1 + ω2)δ(k1 + k2). (40)

Note that the right-hand sides for the first two equations in (40) are the same irrespec-
tive of whether the positive or negative ionic fluxes are correlated.

Equations (35)–(38) allow Fourier transforming the whole Equation (34)

iωδρ̂e(k, ω) = −D(k2 + κ2)δρ̂e(k, ω) + izek · [δĵ+(k, ω)− δĵ−(k, ω)]. (41)

Solving for the charge density δρ̂e(k, ω) yields

δρ̂e(k, ω) =
ikze[δĵ+(k, ω)− δĵ−(k, ω)]

iω + D(k2 + κ2)
. (42)
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The charge correlation fluctuation correlation is

〈δρ̂e(k1, ω1)δρ̂e(k2, ω2)〉 =

− k1 · (ze)2[〈δĵ+(k1, ω1)δĵ+(k2, ω2)〉+ 〈δĵ−(k1, ω1)δĵ−(k2, ω2)〉] · k2

[iω1 + D(k2
1 + κ2)][iω2 + D(k2

2 + κ2)]
.

(43)

Using Equations (40) and (43), the identity k1 · I · k2 = k1 · k2 leads to

〈δρ̂e(k1, ω1)δρ̂e(k2, ω2)〉 = −
4(ze)2cDk1 · k2δ(ω1 + ω2)δ(k1 + k2)

[iω1 + D(k2
1 + κ2)][iω2 + D(k2

2 + κ2)]
. (44)

The electrostatic energy per unit volume of the solution is (see Figure 1)

Ee

V
=

1
2
〈δψ(r1, t1)δρe(r2, t2)〉. (45)

Using the Fourier transform of Equation (30)

− k2
1δψ̂ = − δρ̂e

εε0
or δψ̂ =

1
k2

1

δρ̂e

εε0
(46)

Then, the correlation of the potential and charge fluctuations in Equation (45) becomes
(see also Equation (43)).

Figure 1. The correlation energy (50) is due to the interaction of the charge δρe with the potential δψ.

〈δψ̂(k1, ω1)δρ̂e(k2, ω2)〉 = −
4(ze)2cDk1 · k2δ(ω1 + ω2)δ(k1 + k2)

εε0k2
1[iω1 + D(k2

1 + κ2)][iω2 + D(k2
2 + κ2)]

. (47)

Assuming t1 = t2 = t, and inverting (47) with respect to ω1 and k1 (see Appendix B)
leads to the following result for the electrostatic energy (45)

Ee

V
=

kBTκ2

8π

e−κr

r
(48)
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Expanding the exponential leads to

Ee

V
=

kBTκ2

8π
(

1
r
− κ + . . . ) ≈ kBTκ2

8πr
− kBTκ3

8π
(49)

The first term on the right-hand side is the self-energy of the ions, while the second
term accounts for the electrostatic correlation energy [14]

Ecorr

V
= − kBTκ3

8π
(50)

3.3. Thermodynamic Relationships
3.3.1. Free Energy and Chemical Potential

The focus of this section is on the effect of electrolyte solution non-ideality, which is
represented by the correlation energy (50), on its thermodynamic properties. We start with
the general thermodynamic relationship between the internal energy E and the Helmholtz
free energy A [12,14]

E
T2 = −

[
∂

∂T

(
A
T

)]
V

(51)

Substituting the correlation internal energy (50) into the above equation and integrat-
ing over the temperature yields

A− Aid = − (ze)3V
12π
√

kBT

(
2c
εε0

)3/2
, c =

Ne

V
(52)

Let Ne be the number of pairs of positive and negative ions, and Nw is the total number
of water molecules. Since we are considering a dilute electrolyte solution, it is reasonable
to assume that the total volume is V ≈ Nwvw, where vw is the molecular volume of water.
Then, Equation (52) becomes

A− Aid = − (ze)3(2Ne)3/2

3
√

2π
√

kBT(Nwvw)1/2(εε0)3/2
. (53)

Differentiating Equation (53) with respect to Nw allows obtaining the chemical poten-
tial of the solvent (i.e., the water)

µw =

(
∂A

∂Nw

)
Ne

−
(

∂Aid
∂Nw

)
Ne

= − ∂

∂Nw

[
(ze)3(2Ne)3/2

3
√

2π
√

kBT(Nwvw)1/2(εε0)3/2

]
. (54)

After some rearrangements, we finally obtain

µw − µid
w =

kBTvwκ3

24π
(55)

where µw is the total chemical potential and µid
w is the ideal part defined by [12,14]

µid
w = µ0

w + pvw + kBT ln
(

Nw

Nw + 2Ne

)
. (56)

µ0
w is the standard chemical potential.
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3.3.2. Osmotic Pressure

The osmotic pressure difference between the electrolyte solution and the pure water
solvent can be derived from the chemical equilibrium relationship

µ0
w + p0vw = µ0

w + pvw + kBT ln
(

Nw

Nw + 2Ne

)
+

kBTvwκ3

24π
(57)

Rearranging (57) yields

∆p = p− p0 = − kBT
vw

ln
(

1− 2Ne

Nw + 2Ne

)
− kBTκ3

24π
(58)

where ∆p is the osmotic pressure of the electrolyte solution. For dilute electrolytes,
2Ne/(Nw + 2Ne)� 1 and (58) simplifies to

∆p = p− p0 ≈
kBT
vw

(
2Ne

Nw + 2Ne

)
− kBTκ3

24π

≈kBT
(

2Ne

Nwvw

)
− kBTκ3

24π
= 2ckBT − kBTκ3

24π
.

(59)

The first term on the right-hand side of Equation (59) corresponds to the ideal part of
the solution osmotic pressure, while the second term accounts for the charge correlation
effects. This result for the osmotic pressure also follows from the traditional Debye–Huckel
approach [12,14].

3.3.3. Radial Distribution Functions and Pair Interaction Energies

The starting point for determining the radial distribution functions are the concentration-
fluctuation correlation functions 〈δcmr+, t)δcn(r+, t)〉, 〈δcmr−, t)δcn(r−, t)〉, and
〈δcmr+, t)δcn(r−, t)〉, where the indices + and − correspond to the two ionic species (posi-
tive and negative) in the solution. Combining Equations (29) and (30) leads to

∂δc+
∂t

= D
(
∇2δc+ −

κ

2ze
δρe

)
−∇ · δj+

∂δc−
∂t

= D
(
∇2δc− +

κ

2ze
δρe

)
−∇ · δj−.

(60)

Transforming Equation (60) and solving for the concentration fluctuation yields

δĉ+(k, ω) =
ik · δĵ+(k, ω)

iω + Dk2 − Dκ2

2ze
δρ̂e(k, ω)

(iω + Dk2)

δĉ−(k, ω) =
ik · δĵ−(k, ω)

iω + Dk2 +
Dκ2

2ze
δρ̂e(k, ω)

(iω + Dk2)

(61)

Equation (61) can be used to find the Fourier transform if the concentration-fluctuations
correlations for positive–positive negative–negative and positive–negative ionic combina-
tions. These are then used to obtain the radial distribution functions and the potentials of
mean force for all ionic interactions in the mean field (i.e., Debye–Huckel) limit (see also
Ref. [8]).
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3.4. Positive–Positive Ionic Correlations

The Fourier transform of the positive–positive ions concentrations fluctuation correla-
tion is derived from the first Equation (61). After averaging, the result is

〈δĉ+(k1, ω1)δĉ+(k2, ω2)〉 =

− k1 · 〈δĵ+(k1, ω1)δĵ+(k2, ω2)〉 · k2

(iω1 + Dk2
1)(iω2 + Dk2

2)
+

D2κ4

4(ze)2
〈δρ̂e(k1, ω1)δρ̂e(k2, ω2)

(iω1 + Dk2
1)(iω2 + Dk2

2)

− Dκ2

2ze

[
ik1 · 〈δĵ+(k1, ω1)δρ̂e(k2, ω2)〉

(iω1 + Dk2
1)(iω2 + Dk2

2)
+

ik2 · 〈δĵ+(k2, ω2)δρ̂e(k1, ω1)〉
(iω1 + Dk2

1)(iω2 + Dk2
2)

]
,

(62)

Inverting Equation (62) (see Appendices B and C) and setting t1 = t2 = t leads to the
following result for the concentration-fluctuation correlation in real space

〈δc+r1, t)δc+(r2, t)〉 = cδ(r1 − r2) + c2[g++(r)− 1]. (63)

where

g++(r) = 1− (ze)2

4πεε0kBT
e−κr

r
(64)

is the radial distribution function for the positive ions. Comparing (64) to the formal
definition

g++(r) = e−
w++(r)

kBT ≈ 1− w++(r)
kBT

(65)

leads to the Debye and Huckel [11] result for the electrostatic energy of interaction between
the ions in the solution

w++(r) = zeψ(r) =
(ze)2

4πεε0

e−κr

r
. (66)

The energy is positive, which indicates a repulsive interaction.

3.5. Negative–Negative Ionic Correlations

Using the second Equation (61), we obtain the concentration negative–negative ion
concentration-fluctuation correlation in the form

〈δĉ−(k1, ω1)δĉ−(k2, ω2)〉 =

− k1 · 〈δĵ−(k1, ω1)δĵ−(k2, ω2)〉 · k2

(iω1 + Dk2
1)(iω2 + Dk2

2)
+

D2κ4

4(ze)2
〈δρ̂e(k1, ω1)δρ̂e(k2, ω2)

(iω1 + Dk2
1)(iω2 + Dk2

2)

+
Dκ2

2ze

[
ik1 · 〈δĵ−(k1, ω1)δρ̂e(k2, ω2)〉

(iω1 + Dk2
1)(iω2 + Dk2

2)
+

ik2 · 〈δĵ−(k2, ω2)δρ̂e(k1, ω1)〉
(iω1 + Dk2

1)(iω2 + Dk2
2)

]
.

(67)

Note that the sign in front of the last two terms on the right is positive, which is
in contrast to Equation (62). Following the same recipe as for the positive–positive ion
interactions above (see Appendix C), we derive

〈δc−(r1, t)δc−(r2, t)〉 = cδ(r1 − r2) + c2[g−−(r)− 1]. (68)

The radial distribution function is

g−−(r) = 1− (ze)2

4πεε0kBT
e−κr

r
, (69)

and the interaction energy reads [11]

w−−(r) =
(ze)2

4πεε0

e−κr

r
, (70)
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which is also positive (i.e., repulsive). Hence, the radial distribution functions and interac-
tion energies for ions that are both positive or both negative are identical.

3.6. Positive–Negative Ionic Correlations

The positive–negative ion concentration-fluctuation correlation is also derived from
Equation (61). The result becomes

〈δĉ+(k1, ω1)δĉ−(k2, ω2)〉 = −
D2κ4

4(ze)2
〈δρ̂e(k1, ω1)δρ̂e(k2, ω2)

(iω1 + Dk2
1)(iω2 + Dk2

2)

+
Dκ2

2ze

[
ik1 · 〈δĵ+(k1, ω1)δρ̂e(k2, ω2)〉

(iω1 + Dk2
1)(iω2 + Dk2

2)
− ik2 · 〈δĵ−(k2, ω2)δρ̂e(k1, ω1)〉

(iω1 + Dk2
1)(iω2 + Dk2

2)

]
.

(71)

The correlation between the positive and negative ionic fluxes is zero because of
Equation (39). In addition, 〈δĉ+(k1, ω1)δĉ−(k2, ω2)〉 = 〈δĉ−(k1, ω1)δĉ+(k2, ω2)〉. The
inversion of Equation (71) at t1 = t2 = t yields

〈δc+(r1, t)δc−(r1, t)〉 = c2[g+−(r)− 1]. (72)

The radial distribution function and pair interaction energy between oppositely
charged ions are

g+−(r) = 1 +
(ze)2

4πεε0kBT
e−κr

r
, (73)

and [11]

w+−(r) = −
(ze)2

4πεε0

e−κr

r
. (74)

The sign of the interaction energy w+−(r) is negative, which is in agreement with the
fact that positive and negative ions attract each other.

4. Conclusions

The Landau–Lifshitz approach for the treatment of hydrodynamic fluctuations is
based on the fundamental expression for entropy production (4). Its generalization to
include transport processes (such as diffusion) is straightforward. The method offers
simple expressions for the correlation of the fluctuating fluxes. The flux fluctuations are
related to the concentration fluctuations, which in turn account for the effects of interactions.
Proper averaging allows us to derive results that are pertinent to systems in thermodynamic
equilibrium. The procedure is relatively simple, and the main mathematical techniques
are the forward and inverse Fourier transforms, and more specifically the transforms of
various Dirac delta functions.

The focus of this paper is on electrolyte solutions. We show how the Landau and
Lifshitz method can be used to derive the Debye and Huckel theory of strong, dilute
electrolytes. This is accomplished without formally solving the Poisson equation of electro-
statics (25). Even the Debye and Huckel assumption of low potential and the subsequent
linearization of the Boltzmann distribution of the local charge

− ρ(r)
εε0

= 2zec sinh
[

zeψ(r)
kBT

]
≈ 2(ze)2c

εε0kBT
ψ = κ2ψ (75)

is not explicitly applied. Instead, we use the relationship between charge and potential
fluctuations (30) to write the transport Equation (29) in terms of concentration fluctuations.
The equilibrium state, in our analysis, is established by the integration (averaging) over
the entire frequency spectrum in Fourier space. The assumptions δc+ � c, δc− � c,
δρe � ρe, and δψ� ψ are equivalent to the Debye and Huckel low potential approximation
zeψ(r)/kBT < 1. However, the fluctuation correlation analysis clearly demonstrates that
the low potential approximation is implied by the small charge density fluctuations, which
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are a direct consequence of the small concentration fluctuations. This is also true for the
Debye and Huckel analysis [11], although there, the argument starts with the low potential
approximation. Another curious feature of the method is that although it is examining the
fluctuations in the system, the end result is a mean field theory, which is analogous to the
Debye and Huckel result.

The correlation energy (45) and the osmotic pressure, Equations (58) and (59), are entirely
determined by the charge density fluctuation correlations given by Equations (43) and (44).
The pair energy of interaction positive–positive, negative–negative, and neagtive–positive
ions depends on the charge density fluctuation correlations but also includes contribu-
tions from the fluctuation correlations of respective ionic fluxes with those of the charge
density (see Equations (62), (67) and (71)). The terms that are proportional to the positive–
positive and negative–negative flux fluctuation correlations in (62) and (67) do not con-
tribute at all to the pair interaction energy but are responsible for the cδ(r1 − r2) term
in Equations (62) and (67). There is no such term in Equation (71) because the diffu-
sion fluxes for the positive and negative ions are independent and uncorrelated (see
Equations (39) and (40)).

The assumption that all diffusion coefficients are the same (D+ = D− = D) can be
abandoned, which makes all derivations and calculations significantly more lengthy and
tedious. The final results, however, for the osmotic pressure, interaction energies and
radial distribution functions are not affected. This is not surprising, since thermodynamic
properties cannot depend on dissipative coefficients such as the diffusivities.
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Abbreviations

A Helmholtz free energy
c concentration of dissolved species
D diffusion coefficient
E internal energy
Ecorr correlation energy
Ee electrostatic energy
e elementary charge
g radial distribution function
h total correlation function
I unit tensor
i, i flux
j, j flux per unit mass
k, k wave number and wave vector
kB Boltzmann constant
m mass of dissolved species
N number of dissolved species
Ne number of ion pairs
Nw number of water molecules
p pressure
r spatial coordinate (radius-vector)
S entropy
T temperature
t time
V volume
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w potential of mean force
X generalized thermodynamic force
ẋ generalized flux
y generalized fluctuating flux
z ionic charge number
α transport coefficient
β friction coefficient
γ Onsager kinetic coefficient
δ coefficient, indicating a fluctuating quantity
δ(x) delta function (x is an arbitrary variable)
δηζ Kronecker symbol
∆V small but finite volume
ε dielectric permittivity
ε0 dielectric constant in vacuo
ζ coordinate index
η coordinate index
κ Debye screening parameter
µ chemical potential
ψ electrostatic potential
ω frequency

Appendix A. Fourier Transform of the Mass Fluxes Fluctuation Correlations

Here, we derive the Fourier transform of the fluctuating flux correlation (23), or

〈δĵ(k1, ω1)δĵ(k2, ω2)〉 =
1

(2π)4

∫ ∞

−∞
dr1

∫ ∞

−∞
dt1

∫ ∞

−∞
dr2

∫ ∞

−∞
dt2〈δj(r1, t1)δj(r2, t2)〉ei(ω1t1−k1·r1)ei(ω2t2−k2·r2).

(A1)

Hence, all that is needed is to transform two delta functions δ(t1 − t2) and δ(r1 − r2)
over the two times (t1 and t2) and positions (r1 and r2) variables, or [16]

1
(2π)4

∫ ∞

−∞
dr1

∫ ∞

−∞
dt1

∫ ∞

−∞
dr2

∫ ∞

−∞
dt2[2cIδ(t1 − t2)δ(r1 − r2)]×

ei(ω1t1−k1 ·r1)ei(ω2t2−k2·r2) = 2cIDδ(ω1 + ω2)δ(k1 + k2).
(A2)

The mass fluxes fluctuation correlation result (A2) is used to find the charge–potential
fluctuation correlations and ionic concentration-fluctuation correlations as shown below.

Appendix B. Electrostatic Charge–Potential Correlations and the Electrolyte
Contribution to the Osmotic Pressure

Below, we provide details on the Fourier inversion of the potential–charge correlation
expression (47) with respect to ω1 and k1. Starting with the frequency, we write

1
(2π)1/2

∫ ∞

−∞
dω1〈δψ̂(k1, ω1)δρ̂e(k2, ω2)〉e−it(ω1+ω2) =

−
∫ ∞

−∞
dω1

4(ze)2cDk1 · k2δ(ω1 + ω2)δ(k1 + k2)e−it(ω1+ω2)

(2π)1/2εε0k2
1[iω1 + D(k2

1 + κ2)][iω2 + D(k2
2 + κ2)]

.
(A3)

The right-hand side can be further rearranged to read

−4(ze)2cDk1 · k2

(2π)1/2εε0k2
1

∫ ∞

−∞
dω1

δ(ω1 + ω2)δ(k1 + k2)e−it(ω1+ω2)

[iω1 + D(k2
1 + κ2)][iω2 + D(k2

2 + κ2)]
=

4(ze)2cDk1 · k2

(2π)1/2εε0k2
1

δ(k1 + k2)

[iω2 − D(k2
1 + κ2)][iω2 + D(k2

2 + κ2)]
.

(A4)
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Next, we perform the inverse Fourier transform over the wave vectors starting with k1

4(ze)2cD
(2π)2εε0

∫ ∞

−∞
dk1

k1 · k2δ(k1 + k2)e−i(k1·r1−k2·r2)

k2
1[iω2 − D(k2

1 + κ2)][iω2 + D(k2
2 + κ2)]

=

4(ze)2cD
(2π)2εε0

eik2·∆r

[ω2
2 + D2(k2

2 + κ2)2]
.

(A5)

where ∆r = r2 − r1. Now, we can repeat the same procedure over the frequency ω2

4(ze)2cDeik2·δr

(2π)5/2εε0

∫ ∞

∞

dω2

[ω2
2 + D2(k2

2 + κ2)2]
=

4(ze)2ceik2 ·∆r

(2π)5/2εε0

π

k2
2 + κ2

. (A6)

Finally, we integrate over the wave vector k2, which leads to

〈δψ(r1, t1)δρe(r2, t2)〉 =
4π(ze)2c
(2π)4εε0

∫ ∞

−∞
dk2

eik2·∆r

k2
2 + κ2

(A7)

This is easy to accomplish if we select a coordinate system where the vector ∆r is
directed along k2z axis (see Figure A1). Then, k2 · ∆r = k2r cos θ and dk2 = k2

2 sin θdθdφ,
and the integral in (A7) becomes

∫ ∞

−∞
dk2

eik2·∆r

k2
2 + κ2

=
∫ ∞

0

∫ π

0

∫ 2π

0
dk2dθdφ

k2
2 sin θeikr cos θ

k2
2 + κ2

=

2π
∫ ∞

0
dk2

k2
2

k2
2 + κ2

eikr − e−ikr

ikr
=

4π

r

∫ ∞

0
dk2

k2 sin(k2r)
k2

2 + κ2
= 2π2 e−κr

r

(A8)

Inserting (A8) in Equation (A7) leads to the final results for the potential–charge
correlation (see Equation (33)).

〈δψ(r1, t)δρ(r2, t)〉 = kBTκ2

4π

e−κr

r
(A9)

Figure A1. Coordinate setup for calculating the integral (A8). θ and φ are the polar and azimuth
angles, and k2

2 = k2
2x + k2

2y + k2
2z.
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Appendix C. Derivation of Ionic Concentration Correlations

This section provides details on the derivation of the concentration fluctuations (63), (68)
and (72), starting from (62), (67) and (71). The necessary mathematical procedure is the
inverse Fourier transform, which we will perform separately on each term for better clarity.

Appendix C.1. Flux Correlation Term

Starting with the first terms in Equations (63) and (68), we obtain (taking the integrals
one at the time as in the previous section)

− 1
(2π)4

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

[
k1 · 〈δĵ±(k1, ω1)δĵ±(k2, ω2)〉 · k2

(iω1 + Dk2
1)(iω2 + Dk2

2)

]
×

e−i(ω1t1+ω2t2−k1·r1−k2·r2) = cδ(r1 − r2)δ(t1 − t2).

(A10)

The final result is the same for both positive or both negative ionic flux correlations.
Since 〈δĵ+(k1, ω1)δĵ=(k2, ω2)〉 = 〈δĵ−(k1, ω1)δĵ+(k2, ω2)〉 = 0 (see Equation (39)), there
is no such term in Equation (72).

Appendix C.2. Charge Correlation Term

The next term of interest is proportional to the charge density correlation, and its
inverse Fourier transform is

− 1
(2π)4

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

[
D2κ4

4(ze)2
〈δρ̂e(k1, ω1)δρ̂e(k2, ω2)

(iω1 + Dk2
1)(iω2 + Dk2

2)

]
×

ei(ω1t1+ω2t2−k1·r1−k2·r2) =
c(ze)2

4πεε0kBT

(
e−

κ√
2

r

r
− e−κr

r

)
.

(A11)

Appendix C.3. Flux-Charge Correlations

The last terms in Equations (62), (67) and (71) account for the correlations between the
ionic flux (positive of negative) and the charge density fluctuations. Starting with the last
term in Equation (62), and using Equations (39), (40) and (42), we obtain

−Dκ2

2ze

[
ik1 · 〈δĵ+(k1, ω1)δρ̂e(k2, ω2)〉

(iω1 + Dk2
1)(iω2 + Dk2

2)
+

ik2 · 〈δĵ+(k2, ω2)δρ̂e(k1, ω1)〉
(iω1 + Dk2

1)(iω2 + Dk2
2)

]
={

k1 · k2κ2cD2δ(ω1 + ω2)δ(k1 + k2)

(iω1 + Dk2
1)(iω2 + Dk2

2)[iω2 + D(k2
2 + κ2)]

+

k1 · k2κ2cD2cDδ(ω1 + ω2)δ(k1 + k2)

(iω1 + Dk2
1)(iω2 + Dk2

2)[iω1 + D(k2
1 + κ2)]

}
.

(A12)

The right-hand side above can be inverse-transformed following the procedure out-
lined in Appendix B above. The result is

− c(ze)2

4πεε0kBT
e−

κ√
2

r

r
. (A13)

Note that (A13) is identical to the first term in the right-hand side of Equation (A11)
but with an opposite sign. This is also true for the cases of negative–negative and positive–
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negative concentration fluctuations. They always cancel, and summing the results from
Equations (A10), (A11) and (A13) leads to

〈δc+(r1, t)δc+(r1, t)〉 = c
[

δ(r1 − r2)−
c(ze)2

4πεε0kBT
e−κr

r

]
, (A14)

which is equivalent to Equation (63). Equations (68) and (72) can be derived via the same
mathematical procedure to read

〈δc−(r1, t)δc−(r1, t)〉 = c
[

δ(r1 − r2)−
c(ze)2

4πεε0kBT
e−κr

r

]
(A15)

and

〈δc+(r1, t)δc−(r1, t)〉 = c
[

δ(r1 − r2) +
c(ze)2

4πεε0kBT
e−κr

r

]
. (A16)

The signs’ electrostatic contributions to the correlations are positive for the same-
charge cases and negative for the positive–negative case. This obviously reflects the fact
that same-charge ions repel, while oppositely charged ions attract each other.
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