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Abstract: Anomaly detection is the foundation of intelligent operation and maintenance (O&M),
and detection objects are evaluated by key performance indicators (KPIs). For almost all computer
O&M systems, KPIs are usually the machine-level operating data. Moreover, these high-frequency
KPIs show a non-Gaussian distribution and are hard to model, i.e., they are intricate KPI profiles.
However, existing anomaly detection techniques are incapable of adapting to intricate KPI profiles.
In order to enhance the performance under intricate KPI profiles, this study presents a seasonal
adaptive KPI anomaly detection algorithm ASAD (Adaptive Seasonality Anomaly Detection). We
also propose a new eBeats clustering algorithm and calendar-based correlation method to further
reduce the detection time and error. Through experimental tests, our ASAD algorithm has the best
overall performance compared to other KPI anomaly detection methods.

Keywords: KPI anomaly detection; intricate KPI profiles; adaptive seasonality anomaly detection

1. Introduction

Computer operation and maintenance is always a vital component in guaranteeing
the high availability of the application systems. Operation and maintenance must evolve
from manual detection to intelligent detection with the explosive increase in the volume
of application data. According to Gartner’s report, more than 40% of global enterprises
have replaced their outdated O&M systems with intelligent solutions as of 2020. In these
intelligent systems, anomaly detection is critical to detect important performance indicators
(KPIs) such as CPU utilization, memory utilization and so on. To ensure a stable and reliable
O&M system, a rising number of researchers are investigating KPI anomaly detection
methods [1,2].

Traditional statistics, supervised learning and unsupervised learning algorithms are
the three types of KPI anomaly detection techniques. First, seasonal length is required as an
input parameter by traditional statistical approaches such as Argus [3] and TSD [4], but it is
frequently given manually. It may cause seasonality to be disrupted in intricate KPI profiles,
leading to erroneous anomaly detection. Secondly, supervised learning algorithms such as
Opperence [5] and EGADS [6] relied on classical statistical techniques, and they also did
not recognize seasonal length under intricate KPI profiles. Finally, among unsupervised
learning methods, Zhao, N. [7] developed a periodic adjustable approach called Period.
This paper considers time series data to be related to daily human activities, and it directly
assumed that the basic seasonal length of time-series data is 1 day. However, KPI time
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series data containing intricate KPI profiles are very common, the seasonal length in these
non-Gaussian distributed data is difficult to estimate [8]. In general, there are three key
challenges to overcome. To begin, precise seasonal characteristics are hard to extract
from the intricate KPI time series data. Second, due to the long sub-sequence length, the
clustering process will take too much time. Third, noise and anomalies in the KPI time
series data could also result in bad sub-sequence clustering results. Facing the above
problems, existing KPI anomaly detection algorithms cannot obtain good performance
under intricate KPI profiles.

To address the aforementioned issues, this work introduces a seasonal adaptive KPI
anomaly detection algorithm ASAD to enhance the detection accuracy under intricate KPI
profiles. For the first challenge, we adopt the scaling technique (enlarge-detect-restore) to
determine the seasonal length under intricate KPI profiles. For the second challenge, to
reduce the time consumption, we develop a new clustering algorithm by extracting the
principal information rather than using the raw data. For the third challenge, we introduce
the calendar feature to further modify the clustering results, avoiding noise and anomalies.
At last, according to our experiments, ASAD can recognize the seasonal length of time
series data under intricate KPI profiles and effectively boosting anomaly detection accuracy.

The contributions of our study are summarized as follows.

• We present a scaling Auto-Period approach using the philosophy of enlarge-detect-
restore, to determine the seasonal length under intricate KPI profiles.

• This study develops a new eBeats clustering algorithm, which reduce the large time
overhead of KPI sub-sequence clustering process. eBeats first extracts the principal
information based on discrete cosine transform, then clusters the principal information.

• The calendar-based correction technique is introduced to improve clustering results
with noise and anomalies. It could improve clustering results by using the relationship
between seasonality and calendar, which not only improves accuracy but also provides
great robustness.

The remainder of the paper is laid out as follows. Section 2 introduces some concepts
and related studies. The framework of the ASAD algorithm is described in Section 3, as
well as the algorithm’s premise. The ASAD method is compared to other algorithms in
Section 4 to verify its performance and effect. Finally, Section 5 brings this paper to a close.

2. Background and Related Work

In this section, we mainly introduce some key concepts about the KPI anomaly detec-
tion algorithm.

2.1. Background

1. KPI: Key Performance Indicator (KPI) consists of many background system metrics
including CPU utilization, memory utilization, network throughput, system response
time and so on. Above types of KPI time series data can cover the main information
from hardware to software, and reflect the status of the entire system from the bottom
up. In brief, it is the focus of the operation and maintenance system.

2. Intricate KPI Profiles: In KPI time series data, time is the independent variable and
KPI value is the dependent variable. The shape of the KPI time series data graph
is known as the KPI profile. For most operation and maintenance systems, as time
passes, the KPI profile will take on new forms, i.e., the graph of KPI time series data
usually contains many KPI profiles. In our work, the situation where many types of
KPI profiles exist in KPI time series data graph is referred to as intricate KPI profiles.

3. KPI Anomaly: KPI anomalies are data that do not meet expectations in KPI time
series data [5,9]. Anomalies in KPIs are usually a sign that something is wrong with
the system. For example, the system’s CPU utilization remains excessively high,
indicating that the number of computing tasks executed by the system exceeds the
typical level, posing a crash risk. Early detection of KPI deviations can aid in the
diagnosis and analysis of issues.
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4. Seasonality of Time Series Data: When time series data vary with seasonal influences,
they are said to have seasonality [10]. For example, if time series data frequently
exhibit fixed characteristics in a certain time interval, this can indicate that the data
are seasonal. The seasonal length is the time between repetitions, and it occurs at an
observed or predicted period.

2.2. KPI Anomaly Detection Algorithm

As discussed in Section 1, existing KPI anomaly detection algorithms shown in Table 1
are divided into three categories, including traditional statistical, supervised learning
and unsupervised learning algorithms [11]. For traditional statistical algorithms, Yaacob,
A.H. et al. [12] studied the problem of network attack detection based on ARIMA in 2010.
In 2012, Yan, H. et al. [3] developed the end-to-end service quality evaluation problem
based on Holt–Winter. In 2013, Chen, Y. et al. [4] studied the view of web search response
time based on TSD. The disadvantage of them is that they all need to input seasonal fitting
parameters and cannot adapt to intricate KPI profiles.

Table 1. KPI Anomaly Detection Algorithms.

Name Time Type

Yaacob, A.H. et al. [12] 2010 traditional statistical
Yan, H. et al. [3] 2012 traditional statistical
Chen, Y. et al. [4] 2013 traditional statistical

Liu, D. et al. [5] 2015 supervised learning
Laptev, N. et al. [6] 2015 supervised learning

Zhou et al. [13] 2019 ensemble learning
Himeur et al. [14] 2020 deep neural network
Himeur et al. [15] 2021 deep neural network

Deng et al. [16] 2021 graph deviation network
Chen et al. [17] 2021 transformer-based architecture
Zhou et al. [18] 2021 federated learning

Xu, H. et al. [19] 2018 unsupervised VAE
Himeur et al. [20] 2021 unsupervised temporal autoencoder

Li et al. [21] 2021 unsupervised learning
Li et al. [22] 2021 fast unsupervised learning

Carmona et al. [23] 2021 unsupervised learning

For supervised learning algorithms, in 2015 Liu, D. et al. [5] proposed Opperence
based on traditional statistical algorithms to solve the problems of service quality monitor-
ing and performance anomaly detection. In the same year, Laptev N et al. [6] presented
system anomaly monitoring based on traditional KPI anomaly detection methods. In 2019,
Zhou et al. [13] designed an ensemble learning scheme based on extreme learning machine
(ELM) algorithm and majority voting method to detect abnormal electricity consumption.
In 2020, Himeur et al. [24] firstly discussed the anomaly detection in building energy con-
sumption. It comprehensively introduced a method to classify existing algorithms based
on different factors, such as the machine learning algorithm, feature extraction approach,
detection level, computing platform, application scenario and privacy preservation. Then
they introduced a new solution [14] to detect energy consumption anomalies. Besides
micro-moment features extraction, they developed a deep neural network architecture for
efficient abnormality detection and classification. In 2021, they also used the autoencoder
and micro-moment analysis to detect abnormal energy usage [15]. To provide an explain-
able model, Deng et al. [16] propose a novel Graph Deviation Network (GDN) approach.
It can learn a graph of relationships between sensors, and detects deviations from these
patterns. Similarly, Chen et al. [17] presented a new framework for multivariate time series
anomaly detection (GTA) that involves automatically learning a graph structure, graph
convolution and modeling temporal dependency using a Transformer-based architecture.
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Recently, Zhou et al. [18] put forward an anomaly detection framework. Firstly, this cap-
tures more detailed data regarding the time series’ shape and morphology characteristics.
Then, it utilizes interval representation to realize data visualization and mine the internal
relationships. However, these supervised methods are unable to adapt to intricate KPI
profiles due to the inherent lack of labeled anomalies in historical data.

For unsupervised learning algorithms, in 2018 Xu, H. et al. [19] studied application
monitoring problems based on VAE. In 2021, Thill et al. [25] designed a novel unsupervised
temporal autoencoder architecture based on convolutional neural networks (TCN-AE). It
can utilize the information from different time scales in the anomaly detection process.
Then, Himeur et al. [20] developed two different schemes to detect abnormalities in energy
consumption. These are an unsupervised abnormality detection based on one-class support
vector machine (UAD-OCSVM) and a supervised abnormality detection based on micro-
moments (SAD-M2). In the same year, Li et al. [21] proposed a clustering-based approach to
detect anomalies concerning the amplitude and the shape of multivariate time series. They
generate a set of multivariate subsequences by setting the sliding window. To improve
the detection efficiency, Li et al. [22] proposed FluxEV, a fast and effective unsupervised
anomaly detection framework. It can extract appropriate features to indicate the degree of
abnormality, and make the features of anomalies as extreme as possible. Recently, Carmona
et al. [23] presented a framework Neural Contextual Anomaly Detection (NCAD) that scales
seamlessly from the unsupervised to supervised setting. It is a window-based approach
which can facilitate learning the boundary between normal and anomalous classes by
injecting generic synthetic anomalies into the available data. Moreover, it adopted the
moments method to speed up the parameter estimation in the automatic thresholding.
Although they achieved good performance, the defect is also unsuitable for intricate KPI
profiles due to lack of significant seasonality in original data. In order to solve the above
problem, Zhao, N. et al. [7] devised a periodic adaptable algorithm Period, to enhance the
accuracy of KPI anomaly detection. The authors of this work assumed that the intricate
KPI profiles had a 1-day seasonal length and split the KPI data. However, this strategy is
not universal, because not all intricate KPI profiles have a 1-day seasonal length.

In fact, KPIs may show distinct patterns in different time intervals, which are referred
to as KPI profiles, such as weekly, quarterly or other imperfect or complex periodicity.
To deal with the situation described above, a new algorithm to recognize intricate KPI
profiles with uncertain seasonal lengths must be developed. Therefore, this study proposes
an adaptive seasonality anomaly detection algorithm under intricate KPI profiles. The
notations list of our research is shown in Table 2.

Table 2. Notations List.

Notation Description

S seasonal component of KPI time series data
Si ith sample seasonal component from S

sumi sum of sample points for ith sample sequence
POall set of powers derived from the periodogram

poi ith power from POall
periodi ith element in the candidate period set
periodS′ period of scaled seasonal component S′

U discrete cosine feature matrix
D matrix after discrete cosine transform
Z standard matrix for discrete cosine transform
Q principal information of matrix D

3. Materials and Methods

Generally, KPI anomaly detection consists of seven core steps before online anomaly
detection. These steps include data preparation, seasonal feature extraction, seasonal length
detection, KPI data segmentation, sub-sequence clustering, clustering results correction
and building model dictionary. Since seasonal length detection, sub-sequence clustering
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and clustering results correction are crucial steps among the above processes as shown in
Algorithm 1. As a result, we will focus on the following three steps.

Algorithm 1 ASAD Diagram
Input: KPI time series data
Output: Anomaly Detection Results
1: Data Preprocessing: Data Interpolation and Denoising
2: Seasonal Feature Extraction: STL Decomposition
3: Seasonal Length Detection: Scaling Auto-Period Method
4: Sub-sequence Clustering: eBeats Clustering Algorithm
5: Clustering Results Correction: Calendar based Correction Method
6: Model Dictionary: Utilize Existing Anomaly Detection Models
7: Online Testing
8: Return Anomaly Detection Results

3.1. Scaling Auto-Period Seasonal Length Detection Algorithm

At first, smooth the sample KPI time series data by data pre-processing as exhibited
in Figure 1. Traditional seasonal length detection of KPI time series data can be thought
of as a periodic seasonal component detection. Existing detection algorithms (such as
auto-correlation and periodogram) deconstruct the original data into multiple signals
using power spectrum estimation methods which can find the decomposed signal with
the most energy. Then, extract the seasonal components by using STL decomposition [26]
as shown in Figure 2. The primary period is the reciprocal of these decomposed signals
frequency with increased energy, and it is roughly equivalent to the period of the original
data. However, the seasonal threshold must be manually set (e.g., auto-correlation based
method), and finding long period features is difficult (e.g., periodogram based method). To
compensate for the shortcomings of current methods, IBM Watson team designed the Auto-
Period algorithm [27], which can discover both long and short periods in time series data
without manually setting the threshold. However, under intricate KPI profiles, Auto-Period
algorithm is unable to recognize all seasonal indicators.

Figure 1. The sample KPI time series data after data pre-processing.

Figure 2. Seasonal components of KPI time series data.

To solve the above problem, we design a scaling Auto-Period algorithm. In the seasonal
length detection step, the scaling Auto-Period method could automatically achieve the
period value of seasonal components. Firstly, down-sample the seasonal component of
KPI time series data to provide a scaled sharper seasonality. Secondly, use Auto-Period
algorithm to detect the seasonal length after scaling. Finally, restore the scaled seasonal
length as the genuine length by using the down-sampling ratio.
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3.1.1. Seasonal Components Scaling

The specific operation of ASAD using down-sampling for seasonal component scaling
is as follows. For the seasonal component of KPI time series data S = {s1, s2, s3, . . . , sn}, the
down-sampling seasonal components can be denoted as S′, where s′i =

sumi
m . The formal

expression is
sumi = sm×(i−1)+1 + sm×(i−1)+2 + · · ·+ sm×(i−1)+m (1)

where m is the number of sample points for ith sample sequence.
The seasonal components after scaling are shown in Figure 3, and we can see a more

clearer seasonality than before. The horizontal axis in Figure 3 represents the number
of scaling sample points, and the vertical axis represents the seasonal value of the KPI
time series data. Meanwhile, the up and down oscillations have almost the same range.
Through a series of evaluations, it can be seen that a scaling ratio of roughly 1% can help to
clarify the seasonality of seasonal components in long KPI time series data. If the seasonal
component’s scaling ratio is too large or too little, the scaled profile will struggle to indicate
seasonality of the seasonal component.

Figure 3. Seasonal components scaling.

3.1.2. Seasonal Length Detection

ASAD detects the seasonal length by using Auto-Period method, with the scaled
seasonal components serving as the input to the seasonal length detection algorithm. The
ASAD algorithm treats the scaled seasonal component as new time series data and uses the
Auto-Period technique to calculate the scaled seasonal component’s period, or seasonal
length. Then the flow of Auto-Period algorithm is described in the following statements.
Firstly, this method could search a period diagram for one candidate period. Therefore,
the candidate period can be recorded without verification if the second derivative of auto-
correlation function’s candidate period point is smaller than zero. Furthermore, the Auto-
Period algorithm ranks all recorded candidate periods by power percentage. Finally, one
candidate period with the highest power is regarded as the seasonal component’s period.

Specifically, through sampling and transformation of the seasonal component data S′,
the Auto-Period algorithm obtains the set of all powers POall through the periodogram
and main power set POmain. The calculation method of POmain is shown in Equation (2).

POmain = {poi|poi ∈ POall ∧ poi > ξpo} (2)

where POall is the set of all powers obtained by the periodogram, poi is ith element in the
set of all powers and ξpo is the power threshold.

The frequency corresponding to the main power set POmain can generate the candidate
period set PEcandidate. The auto-correlation function generated by the seasonal component
data S′ is denoted as ACF(x). The verification of candidate periods is limited by the
following Equation (3).

∀x ∈ (a, b),
∂2 ACF(x)

∂x2 < 0 (3)

where a is the left limit of the region, b is the right limit of the region and ACF(x) is the
auto-correlation function generated by the seasonal component data S′.
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Among them, the calculation methods of a and b are as follows.

a =
1
2
(periodi +

N × periodi
N + periodi

)− 1 (4)

b =
1
2
(periodi +

N × periodi
N − periodi

) + 1 (5)

where periodi is the ith element in the candidate period set generated by the main power
set, that is periodi ∈ PEcandidate, and N is the size of the seasonal component data S′.

Generally, as in Equation (3), let Lb
a be the auto-correlation function ACF(x), x ∈ [a, b].

Within the range of linear regression, the approximation error of linear regression is
recorded as ξ(Lb

a). At this time, as long as the linear regression satisfies upper convexity, the
period verification of the candidate period is passed. Additionally, the verified candidate
period is corrected to obtain the final period, that is

period = argmax(ξ(Lx
a ) + ξ(Lb

x+1)) (6)

where x is the candidate period.
The period fitted by the Auto-Period algorithm is shown in Figure 4. The horizontal

axis is the index of the seasonal component in KPI time series data after multi-point
sampling, and the vertical axis is the value of the seasonal component. The blue line is
the seasonal component of the KPI time series data, and the orange line is the waveform
generated by the Auto-Period algorithm according to the estimated period. As can be
seen from the red markings, peaks and troughs of the actual seasonal component and
Auto-Period algorithm are approximately aligned.

Figure 4. Period fitting of seasonal component data.

3.1.3. Restore the Seasonal Length

Our ASAD algorithm would restore and regularize the Auto-Period method’s calcula-
tion findings after Auto-Period algorithm completing the fitting period of scaled seasonal
components. The scaled seasonal component is the input of Auto-Period algorithm, and
Auto-Period’s computation result is the period or the seasonal length of the scaled seasonal
component. As a result, the original seasonal length requires to be restored by using the
scaled factor. In the restoration process, the main unit of real seasonal length is usually
days, quarters and so on. To accurately recover to the original seasonal length, seasonal
length identification in ASAD method uses the day-based rounding approach. The original
seasonal length must be regularized in days as the basic unit when the restoration operation
is done. The procedure for restoring and regularizing method of Auto-Period algorithm is
as follows.

We design map function as the regularization method, and the restoration process is
to multiply the scaled seasonal component S′ by the number of sample points for down-
sampling. Where the period of scaled seasonal component S′ is denoted as periodS′ , and
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the seasonal length of the seasonal component S is indicated as seasonality. Finally, map
function rounds the duration of time using days as the base unit.

seasonality = map(m× periodS′) (7)

where map is a function that uses day as the basic unit to round the length of time, m is the
number of sample points for down-sampling.

3.2. eBeats Clustering Algorithm

After determining the seasonal length, the original KPI time series data could be split
into many sub-sequences. The segmented KPI sequence data is shown in Figure 5. KPI time
series data is denoted by the blue line in the picture, whereas segmentation is represented
by the red line. The following content is the procedure for clustering sub-sequences. To
begin, calculate the distance between the KPI time series data sub-sequences by using a
new lightweight distance measurement algorithm. Then cluster the sub-sequences by using
DBSCAN clustering technique.

Figure 5. Sub-sequences segmentation of KPI time series data.

3.2.1. Lightweight Distance Measurement Algorithm

The choice of distance measurement algorithm has an important influence on the
clustering algorithm [28]. In the previous literature, researchers have presented a variety of
distance measurement algorithms, such as Move-Split-Merge [29], Spade [30], Lp norm [31]
and so on. Wang [32] evaluated nine distance measurement algorithms and corresponding
derivative algorithms. Therefore, they discovered that Euclidean distance is more accurate
than other distance measurement algorithms, and that DTW outperforms them. There is a
significant variance in the direct use of Euclidean distance for distance measurement due
to the offset of the KPI time series data. The offset phenomenon of KPI time series data
is shown in Figure 6. In the picture, we use two color lines to represent two separated
dates of KPI time series data. Furthermore, the peak values in the two pieces of KPI time
series data shown in red rectangles are not perfectly aligned in time, indicating the offset
phenomena of KPI time series data. DTW can handle the offset of KPI time series data, but
the computation time will be very long because a large number of short sample intervals
exist in intricate KPI time series data. Therefore, it is not appropriate to use the DTW
algorithm directly under intricate KPI profiles.



Appl. Sci. 2022, 12, 5855 9 of 18

Figure 6. Cycle offset diagram of KPI time series data.

To reduce time consumption of the clustering algorithm [33], we propose a lightweight
distance measurement algorithm in ASAD to quantify the distance between KPI time
series data sub-sequences. It can reduce the consuming time by extracting the primary
information from a piece of KPI time series data and then utilizing the DTW method to
estimate the distance. In short, there are three phases in this algorithm. Firstly, divide time
series data into a set of data blocks. Secondly, modify each data block by using the discrete
cosine transform, and the most important information is gathered in the upper left corner.
Finally, extract the most significant data using a quantitative approach and matrix division.
Following the above steps, we can extract the essential information and mask the offset of
some KPI time series data to compress the sequence length.

The specific algorithm flow is as follows. At first, divide the data by one window
size (n) for a given period of time series data. For example n = 8, for the observed data of
Y = {y1, y2, y3, . . . , yt}, divide Y into 8× 8 matrices. If the last matrix has less than 8× 8
elements, fill it with 0. After completing the previous step, the data in each window can
form a matrix Mi,i=1,2,3. . . , d len(Y)

size e, Mi can be expressed as

Mi =


y1+size×(i−1) y2+size×(i−1) · · · y8+size×(i−1)
y9+size×(i−1) y10+size×(i−1) · · · y16+size×(i−1)

...
...

. . .
...

y57+size×(i−1) y58+size×(i−1) · · · y64+size×(i−1)

 (8)

Then, the discrete cosine transform is performed on the divided data block Mi.

D = UMUT (9)

where U is a discrete cosine variable matrix.
In our method, the discrete cosine variable matrix can be expressed as

Uij =


1

22
√

2
, i = 1

1
2

cos[
π

16
(i− 1)(2j− 1)], i 6= 1

(10)

Taking one of the matrices as an example, the data aggregation effect of Mi is shown in
Figure 7. The color closest to white in the heat map represents a bigger absolute value of the
data, whereas the color closest to black suggests a smaller absolute value of the data. The
thermal data distribution of the original matrix is shown in Figure 7a. It can be seen that the
original matrix’s data distribution is not concentrated, and the four corners of the matrix
have more data. The thermal distribution of the data after the discrete cosine transform
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is shown in Figure 7b. Discrete cosine transform can express a finite time series sequence
of KPI data in terms of a sum of cosine functions oscillating at different frequencies. The
use of cosine rather than sine functions is critical for compression, since it turns out that
fewer cosine functions are needed to approximate a typical signal, whereas for differential
equations the cosines express a particular choice of boundary conditions. According to
observations, the larger data in the updated matrix is predominantly dispersed in the upper
left, while the absolute values of data scattered in other places are close to zero. As a result,
the major data information in the matrix converges in the upper-left corner.

0 5 7
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64321
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(a)
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0
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16
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32

5 764321

(b)
Figure 7. Data aggregation comparison chart. (a) Data thermal distribution of the original matrix.
(b) Data heat distribution of the aggregation matrix.

After the discrete cosine transform, quantify and divide the matrix, then determine
the eigenvalues. The matrix D’s quantization matrx Q is as follows.

Q = round(
D
Z
) (11)

where round is rounding function and Z is the standard quantization matrix for discrete
cosine transform [34].

For the matrix Q, it can be divided into four small matrices.

Q =

[
q11 q12
q21 q22

]
(12)

Because the matrix Q is generated by converging the principal information of the
matrix D to the top-left corner, it can be seen that the matrix q11 keeps the main data
information and the matrix q22 barely retains it in the figure. The highest values of the
matrices q12 and q21 surpass the minimum value of the matrix q11, indicating that the
matrices q12 and q21 maintain the secondary information of the data. As a result, the matrix
Q is represented as when the matrices q12 and q21 include the secondary information of
the data.

Q ≈
[

q11 q12
q21 0

]
(13)

where we calculate the eigenvalues of the matrices q11, q12 and q21, sort them in descending
order to form an array as the principal information extracted from Mi.

The comparison charts before and after extracting principal information of KPI time
series data sub-sequences are shown in Figure 8. The KPI time series data sub-sequences
segmented by day are shown in Figure 8a. The five different color sub-sequences in the
figure represent different working days and rest days. Each of sub-sequences contains
288 observations. According to experimental results, KPI profiles of these three sub-
sequences representing the working days are more similar. Similarly, the profiles of other
two sub-sequences representing rest days are more similar. The KPI time series data
sub-sequences after extracting the principal information are shown in Figure 8b. Five sub-
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sequences with various colors reflect distinct working days and rest days in the diagram.
Each sub-sequence concludes 36 observations once the principal information has been
extracted. Based on experimental observations, the analytical results are as follows. It
can be seen that the data length of sub-sequences can be compressed by 87.5% without
compromising profile similarity. Then, we use the classical DTW algorithm to calculate the
distance between different sub-sequences because of the short length of extracted KPI time
series data. As a result, we can say that our lightweight distance measurement algorithm is
useful for reducing the clustering time consumption by extracting principal information
from origin KPI time series data.

(a) (b)
Figure 8. The comparison before and after information extraction. (a) Sub-sequences before extracting
the principal information. (b) Sub-sequences after extracting the principal information.

3.2.2. DBSCAN Clustering Algorithm

The second step in ASAD is an unsupervised learning technique to cluster the sub-
sequences. When the samples are not labeled, it may divide the data into various clusters.
The clustering process is based on calculating the distance between the data points. Ac-
cording to previous studies, there are two main clustering algorithms available for ASAD.
K-means and DBSCAN are two of the most widely used clustering methods. The k-means
algorithm is a traditional clustering algorithm that requires the number of groups to be
specified. On the contrary, DBSCAN clustering algorithm does not need to determine the
number of clustering centers. DBSCAN can cluster KPI time series data automatically
based on the density of data points by setting the minimum number of clustering points
and the clustering distance radius, rather than the number of clusters.

The result of DBSCAN clustering algorithm is shown in Figure 9. Five separate KPI
time series data sub-sequences are shown in the figure by five different lines with varied
patterns. Moreover, they are divided into two groups after being calculated using the
DBSCAN clustering technique, which are denoted by red and green respectively. The
working day mode is represented by the red KPI time series data sub-sequences, while the
rest day mode is represented by the green KPI time series data sub-sequences. According to
the experimental results, the similar KPI profiles among three sub-sequences in red belong
to one category, while similar profiles between the two sub-sequences in green belong to
another category. Meanwhile, it is worth noting that the clustering results corroborate
the observations.
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Figure 9. Clustering result of KPI time series data sub-sequences.

3.3. Calendar Based Correction Method

As shown in Figure 9, there are two categories of KPI time series data in those five KPI
time series data sub-sequences, called working day mode and rest day mode. However,
noise, abnormalities and other affecting factors may exist in the actual KPI time series data,
leading to an inaccurate clustering result. So, we will put forward an improved method
by integrating the calendar feature into ASAD, because KPI time series data is closely tied
to time.

Firstly, we arrange the clustering results in row-first order according to the calendar
as shown in Table 3, where different numbers in the table indicate the category number
corresponding to each KPI time-series data sub-sequences, and −1 indicates the noise
category. Each cell in the table indicates the position of the KPI time series data sub-
sequence in a week, and each row of the table represents a week. Specifically, calendar cell
size is the same as seasonal length. Each column in the table reflects the same day of the
week and has the same calendar property. Then, we follow these three steps to improve the
clustering results. To begin, delete any data from the clustering result that is considered
noise in Table 4. The reason for this step is that the KPI time series data sub-sequences
corresponding to these clustering findings may be anomalous, and statistical involvement
will impair the clustering results’ correctness. Second, using the column as a unit, calculate
the probability that each column belongs to a specific category as shown in Table 5. Finally,
determine the most likely categories of different calendar features based on the calendar
characteristics. If many equally valid categories exist, the one with the most components
is chosen. Hence, the final classifications only include category 0 and category 1 based
on previous processes. To sum up, the KPI time series data sub-sequences from Monday
to Friday are classified as category 0, whereas the KPI time series data sub-sequences on
Saturday and Sunday are classified as category 1. In other words, category 0 is referred to
as the working day mode, and category 1 is referred to as the rest day mode.

Table 3. Clustering results of KPI time series data sub-sequences.

Mon Tue Wed Thu Fri Sat Sun

0 1 1
2 0 0 −1 0 1 1
−1 0 0 0 −1 1 1
−1 0 0 1 −1 1 1
0 0 2 0 −1 1 1
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Table 4. Effective clustering results of KPI time series data sub-sequences.

Mon Tue Wed Thu Fri Sat Sun

0 1 1
2 0 0 – 0 1 1
– 0 0 0 – 1 1
– 0 0 1 – 1 1
0 0 2 0 – 1 1

Table 5. Category probability statistics of KPI time series data sub-sequences.

Mon Tue Wed Thu Fri Sat Sun

category 0 0.5 1 0.75 0.66 1 0 0
category 1 0 0 0 0.33 0 1 1
category 2 0.5 0 0.25 0 0 0 0

The KPI time series data sub-sequences of the same pattern are spliced in chronological
order once the clustering results are corrected. The working day mode’s data and the rest
day mode’s data spliced by the KPI time series data sub-sequences are shown in Figure 10a
and Figure 10b, respectively. The spliced KPI time series data is shown by the blue line
in the figure. Different KPI time series data sub-sequences are separated by the red line.
According to observations, sub-sequences in each mode have a more consistent profile
with other sub-sequences in the same mode, and the average value of working day mode is
higher than the rest day mode’s.

(a) (b)
Figure 10. Mosaic of KPI time series data in different modes. (a) KPI time series data in working day
mode. (b) KPI time series data in rest day mode.

4. Results

This subsection examines the performance of ASAD algorithm by designing the fol-
lowing evaluations. The experimental evaluation of the ASAD algorithm is mainly to verify
its Seasonal Adaption, Time and Performance and F1-score. Seasonal Adaption consists
of seasonal adaptive function and seasonal length evaluations. Time and Performance
includes clustering time consumption and clustering accuracy of sub-sequences. F1-score
is the overall performance indicator of our KPI anomaly detection algorithm ASAD.

4.1. Data Set Description

This work collects five KPI time series datasets from the private back-end system and
Tencent cloud computing platform in order to validate the effect of the ASAD algorithm,
and these data have been marked by engineers using the TRAINSET auxiliary tool. The
time series data collected for KPIs includes indications such as system transactions, CPU
utilization, IO, memory utilization and network traffic. A single indicator’s overall moni-
toring time ranges from 2 months to half a year, with a total time of more than 400 days.
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Table 6 displays the KPI time series data gathered during this trial. The KPI in the table is
highly relevant to the business and can indicate the system’s degree of irregularity. These
KPI time series data are heavily influenced by user behavior and are roughly seasonal
after manual assessment. In addition, the following statements are the features of these
manually picked datasets. Dataset A has complicated categories, dataset B has evident
seasonal features and less noise, dataset C has a lot of noise and is not obvious in seasons,
dataset D has a seasonal length of more than 1 day and dataset E has a seasonal length of
1 day.

Table 6. KPI indicator statistics of experimental dataset.

ID Index Name Sampling Interval (s) Total Duration (day)

A Transactions per Second 300 180
B CPU utilization 300 60
C Number of full table scans Second 300 60
D Memory utilization 300 60
E Number of TCP connections 300 60

4.2. Seasonal Adaption Evaluation

First, we assess the ASAD algorithm’s seasonal adaptation function. With respect to
seasonal adaptation functions, we compare the ASAD method to similar anomaly detection
algorithms as shown in Table 7. The seasonal length detection function of the KPI anomaly
detection algorithm is gradually growing toward intelligence, from manual and automatic
configuration of seasonal parameters to the process of self-adaptation. Both Argus and
EGADS, according to tests, require human configuration of the seasonal length as a param-
eter in KPI anomaly detection and are unable to achieve seasonal adaptation. Period does
not require the seasonal length parameter to be configured, but it is unable to adapt to the
seasonal feature, because Period assumed that KPI time series data have a seasonal length
of 1 day. As a result, only the ASAD algorithm has seasonal adaptive capability to detect
anomalies under an intricate KPI profile.

Table 7. Seasonal adaptive function comparison.

Argus EGADS Period ASAD

Manually
configure X X X X

Auto-configure X X
Seasonality
adaptation X

Second, we evaluate the accuracy of the ASAD algorithm’s seasonal length detection.
There are no other anomaly detection algorithms to compare, so we use auto-correlation as
the comparison method. We divide the KPI time series data into multiple segments with a
length of 1 week to half a month to test the performance.

Finally, we employ the ASAD method and auto-correction to determine the seasonal
length of each test instance. According to Table 8, ASAD algorithm has the 75% accuracy rate
for detecting seasonal length. The auto-correction algorithm’s accuracy rate for detecting
seasonal length is only 43%. The accuracy rate of the ASAD algorithm is higher than
that of auto-correction, and the ASAD algorithm’s error rate is lower than that of auto-
correction. To summarize, ASAD algorithm with a higher detection accuracy rate is better
than auto-correction method for automatically detecting the seasonal length.
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Table 8. Results of seasonal length evaluation.

ASAD Auto-Correction

Accuracy Rate 75% 43%
Error Rate 25% 57%

4.3. Time Overhead Evaluation

In this section, we firstly compare the time overhead of ASAD with Argus [3], EGADS [6]
and Period [7]. Based on the single variable principle of the experiments, ASAD and Period
both rely on EGADS as the anomaly detection model.

As shown in Table 9, the overall KPI anomaly detection consuming time of ASAD,
Period, EGADS and Argus is shown. It needs to be emphasized that time overhead is the
average consuming time for detecting 1-month KPI time series data. According to the
testing data, the anomaly detection consuming time of ASAD is 82% lower than Argus
and 24% lower than EGADS, but it is a little higher than Period. We think this is due to
the different clustering algorithms, so we do extra experiments to compare the clustering
performance of sub-sequences. Moreover, in Table 9, it can be seen that the clustering
accuracy of ASAD has reached 84%, while the clustering accuracy rate of Period is only
57%; that is to say, the clustering accuracy rate of ASAD is 27% higher than Period algorithm.
This shows that the ASAD algorithm is more accurate for data clustering under intricate
KPI profile.

Table 9. Time and performance comparison.

Algorithm Average Time (s)

Argus 219
EGADS 51
Period 29
ASAD 39

Algorithm Clustering Accuracy

Period 57%
ASAD 84%

According to the above experiments, we can see that time overhead of ASAD is
the lowest of almost all algorithms. Although ASAD is a little slower than Period, it
has a modest time overhead in return for more accurate sub-sequence clustering results.
Furthermore, it also leads to the conclusion that the anomaly detection performance of our
ASAD algorithm is better than Period algorithm in next section.

4.4. KPI Anomaly Detection Evaluation

In the application of KPI anomaly detection, fragmented alarms are more practical,
so the statistics in this section take the form of fragmented alarms. The fragmented alarm
processing process is as follows. The abnormality in the nearby and continuous time
window is deemed a hit in the abnormal monitoring procedure if an anomaly is identified
in the KPI time series data at a certain point. Specifically, the fragmented alarm is shown in
Figure 11. The original KPI time series data is represented by the first row of data in the
graphic, and each square represents one sampling point at a time. If a point is found to
be abnormal, it is given a value of 1, otherwise it is given a value of 0. The anomaly score
computed by the KPI anomaly detection algorithm is in the second row of data, and data in
each square is the anomaly score at the corresponding time point. The discovered findings
are indicated in the third row of data, and a point is considered abnormal if the abnormal
score exceeds a particular threshold. The experimental statistical results are in the fourth
line of data, which are fine-tuned by fragmented alarm [13]. The adjusted statistical result
are Recall = 50%, Precision = 50% and F1-Score = 0.5.



Appl. Sci. 2022, 12, 5855 16 of 18

Figure 11. Fragment alarm for anomaly detection.

This section analyzes the effects of ASAD, Period, EGADS and Argus for KPI anomaly
detection in order to assess the overall effect of KPI anomaly detection. We also utilize
F1-Score as a comparative metric because it can synthetically reflect algorithm quality. Each
dataset is separated into numerous samples of 1 month in length for the experiment. Argus,
EGADS, Period and ASAD are four algorithms that are evaluated on several samples of
diverse datasets. The recall rate, accuracy and F1-scores of each algorithm on various
datasets are shown in Figure 12. According to the analysis on most datasets, the F1-score of
the ASAD method is higher than the other three algorithms. Only on dataset E is the ASAD
algorithm’s F1-score slightly lower than Period’s F1-score.

KPIKPI
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Figure 12. Experimental comparison to other algorithms.

4.5. Experimental Analysis

Primarily, the ASAD algorithm can achieve seasonal adaptation. However, Argus and
EGADS require human setting of the seasonal length, and Period can only generate one
seasonal length for all current data. Simultaneously, ASAD’s seasonal length computation
accuracy might reach 75%, which is better than the auto-correction technique.

Furthermore, the ASAD algorithm performs well with respect to both time consump-
tion and sub-sequence clustering accuracy. Despite the fact that the ASAD algorithm
consumes somewhat more time than the Period algorithm, its clustering accuracy rate is
significantly higher.

Finally, because the Period and ASAD outperform the Argus and EGADS in terms of
recall, accuracy, and F-score on each KPI, the comparison and analysis of the Period and
the ASAD are the focus of attention in terms of dataset features. In Figure 12, it can be seen
that ASAD outperforms Period in 80% of KPI datasets.

5. Conclusions

In this work, we present ASAD, a seasonal adaptive KPI anomaly detection algorithm.
To begin, ASAD used a scaling Auto-Period algorithm to create a set of seasonal sub-
sequences. Meanwhile, sub-sequence clustering is optimized using eBeats clustering
algorithm and calendar-based correction method. Then, using the above clustering results,
train several offline anomaly detection models. Finally, choose an appropriate offline
model to detect KPI anomaly for online data based on the derived seasonal information.
Experiments demonstrate that ASAD can achieve seasonal adaptation effect and enhance
overall KPI anomaly detection performance under intricate KPI profiles.
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However, KPI time series data could contain multiple seasonal lengths and one abnor-
mality does not necessarily indicate that the overall system is abnormal. Therefore, we are
dedicated to study multiple seasonal lengths detection and correlation among many KPI
anomalies. Future work would further improve KPI anomaly detection accuracy.
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