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Abstract: Healthcare teams act in a very complex environment and present extremely peculiar
features since they are multidisciplinary, work under quickly changing conditions, and often stay
together for a short period with a dynamically fluctuating team membership. Thus, in the broad
discussions about the future of healthcare, the strategy for improving providers’ collaboration and
team dynamics is becoming a central topic. Within this context, this paper aims to discuss different
viewpoints about the application of network science to teamworking. Our results highlight the
potential benefits deriving from network science-enabled analysis, and also show some preliminary
empirical evidence through a real case study. In so doing, we intend to stimulate discussions
regarding the implications of network science in the investigation and improvement of healthcare
teams. The intention is to pave the way for future research in this context by suggesting the potential
advantages of healthcare teamwork analysis, as well as recognising its challenges and threats.
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1. Introduction

In healthcare, as also in other business contexts, teams act in very complex environ-
ments and present very peculiar features [1–3]. Indeed, they are multidisciplinary, work
under quickly changing conditions, and often stay together for a short period with a dy-
namically fluctuating team membership [4]. These aspects are particularly emphasised in
complex and dynamic health operational contexts, e.g., in surgery, emergency departments,
or intensive care units. Given the growing number of care activities delivered by teams and
their potential societal impact, the optimal management of teams plays a relevant role in
providing effective and efficient care for the entire health system [5,6]. Thus, in the broad
discussions about the future of healthcare, the strategy for improving the collaboration of
medical teams is becoming a central topic. The increasing availability of data, models, and
smart tools can help health managers to evaluate team collaboration dynamics, teamwork,
and team performance determinants. However, the analysis of teamwork, particularly
during the real operation of healthcare teams, remains a non-trivial task.

Teams are highly complex and dynamic systems that are generally influenced by a
large number of variables and evolutionary paths, e.g., the interactions between team
members (individual agents) and their social structures; thus, they are driven to the fi-
nal outcomes by the unpredictable patterns that emerged from these interactions [7–9].
Such characteristics of healthcare teams make them social complex systems; therefore,
investigating team dynamics through the lens of complexity theory is a valuable and still
underexplored research perspective [10].
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Complexity theory regards the identification and analysis over time of complex
systems—including health teams—in which the constituent elements give rise to the collec-
tive behaviours of the system [11,12]. Such complex systems, as teams, can be described
through their structural characteristics (e.g., team member features, behaviours, and inter-
action dynamics) and modelled as networks of interacting entities [13–15]. Hence, network
analysis can be useful to describe and analyse the structure and behaviours of several
complex systems found in the real world, as healthcare teams systematically explore per-
formance drivers by exploiting concepts such as emergence, adaptability, self-organisation,
resilience, and flexibility. In this aim, the rapidly increasing mass of data that has be-
come available in many different healthcare domains contributes to making the empirical
investigation of such complex system more and more suitable at affordable efforts [16].

In an attempt to explore this novel direction, this paper aims to discuss the different
viewpoints about the application of complexity science and, in particular, the application
of network science to teamworking in healthcare. Specifically, we highlight the potential
benefits deriving from network science-enabled analysis and we stimulate the discussions
regarding future implications and challenges in health environments. This work also
tries to shed a light on the applications and potential impacts—in terms of efficiency and
effectiveness—of network analysis during health service delivery. The intention is to
pave the way for future research in this context by suggesting potential advantages and
recognising the challenges and the threats of such an approach.

We corroborate our discussion by providing a real case study in the Breast Unit of
an Italian University Hospital. The network analysis of breast surgery teams permitted
to understand and assess the influence of teams’ structure and communication on the
care performance in the operating rooms, in terms of occurrence of surgical glitches. Case
results show that teams should adjust their communication and structure to meet changing
situational needs when they face uncertain situations that have varying levels of complexity.

The paper is organised as follows. Section 2 briefly describes the relationship between
complex systems, networks, and teamwork in healthcare; Section 3 discusses the implica-
tions, challenges, and benefits of network science for investigating teamwork in healthcare;
Section 4 shows empirical evidence of network analysis for exploring healthcare services;
and, finally, Section 5 concludes the paper, opening new directions and perspectives for
both health managers and researchers.

2. Complexity and Teamwork

Ref. [17] confirms that for improving teamwork “the goal must be collaboration, the
principle must be complexity, and the activity must be engaged communication”. In accord
with this assumption, we will introduce, in the following section, the concept of complexity,
how complex systems can be represented, and, finally, how these concepts affect teamwork.

2.1. Complexity and Complex Systems

The complexity theory has found application in many knowledge domains where it
usually dispensed valuable methodological and theoretical insight [8,18,19]. Herein, based
on the available literature, we discuss the main complexity properties related to networks
and teamwork.

Complex systems are inherently incomplete ensembles of entities interacting without
distinctive borders, in a non-linear nature, without an accurate (or even, perfect) represen-
tation of the system, and with direct and indirect cycles of feedback [12]. These arguments
claim that an unavoidable limitation of the representation should be acknowledged [20].

Literature recognises the challenges of identifying future behaviours of a complex
system. Such behaviours typically arise from six different complexity science concepts:
irreversibility of time, path dependence, sensitivity to initial conditions, emergence and
systemness, attractor states, and complex causation [21]. We use such six concepts as a
baseline for our discussion and we deeply explain them subsequently in the paper.
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Taking into account the concept of time irreversibility, complexity science offers the
scientific foundations on which to build the recognition of the plurality of the future and
the uncertainty related to this. It recognises that there is no simple relationship between
a past trajectory through time and the present situations running to a single identifiable
future. Partially related to this concept is path dependence, which is a consequence of
nonlinearity and signifies that rules and past interactions impact the future. In other words,
the uncertainties that we face can be limited since they are influenced by previous events
and we can have early, at least weak, signals on future events by examining the present.

The concept of sensitivity to initial conditions is linked to the idea of weak signals that
are early warnings referred to a certain trend. One of the most familiar related concepts is
the “butterfly effect”, which is a powerful and simple image of how small initial differences
in the starting states can provoke very different outcomes.

The emergence is perhaps one of the most widely known properties [11–22]. This
phenomenon is related to a rise in a variety of macroscopic states and systemic properties
that are unexpected a priori only by the entities in the system. It is a function of hierarchical
levels of reality that both affects and is affected by the others; moreover, it indicates the
occurrence of new and unexpected events. Thus, it is important to consider the behaviour
at the micro and macro level.

Complex systems are exposed to the attractor states. This means that all paths of
development that fall within the basin of the attractor have the same future outcome,
implying a reiteration of past patterns of development leading to the same outcome.
Examples are local cycles of recurrence in stable systems that return into their periods after
a perturbation.

A complex causation of events involves more than a single event that influences
a cause–effect another event through concomitance. It is related to the concept of self-
organised critical systems [12] that are conceived to behave out of equilibrium towards a
critical point as an attractor. The entities in the system manage to independently find the
critical point by means of non-linearity deriving from interactions between causal factors
that lead to an unexpected future.

These six properties highlight the fact that such systems cannot be described consider-
ing an analytical paradigm; thus, it is not possible to make predictions. Indeed, in complex
systems, the interactions are determined by a list of rules regarding how the dynamics of
the system update its states and future interactions, which then lead to new constraints on
the dynamic at the next step [12]. In other terms, complex systems are best described by an
algorithmic description that considers the evolution of states of the entities in the system,
as well as the evolution of their internal states determining the evolution of the system in
the future.

2.2. Networks: Mapping the Connected Worlds

In complex systems, interactions are usually non-uniform and heterogeneous, but
interactions between elements can be specific [12]. Networks are the preferred tool for map-
ping such interactions among such elements, keeping track also of the strength, dynamics,
and modality of relations. In practice, everything that can be stored in a relational database
can be mapped by a network and described by its structure (i.e., nodes (individual agents)
and links (their connections)) and its behaviour (i.e., what the network “does” as a result of
the interactions among the nodes and links).

Network science is an interdisciplinary field of study which aims to understand the
structure, development, and dynamic of networks through different methods and tools
attributed to several disciplines such as mathematics, statistics, physics, and computer
science [23]. In this respect, it can be considered as an abstraction of observable reality
which can explain the performance of real systems since it correlates form with functions
and structure with behaviours [24,25].

However, each research field using network science has a diverse working meaning.
For example, power engineers analyse networks in terms of electrical power grids; soci-
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ologists think of networks as influence diagrams denoting the social interactions among
people; marketing business people deem networks as population of buyers; and economists
consider networks to analyse economic phenomena. Hence, network science has various
terminology and different methods of analysis in each field of research.

Network science contemplates the application of networks to many subfields, e.g., social
network analysis (SNA), collaboration networks (bibliographic citations and product marketing),
synthetic emergent systems (power grids and the Internet), physical science systems (phase
transition and percolation theory), or life science systems (epidemics and genetics).

By considering healthcare teams as complex systems, this paper seeks to foster the
discussion about the application of network science for analysing and potentially improving
teamwork dynamics.

2.3. Teamwork: An Interconnected World

Teams are defined as a group of two or more individuals working together to achieve
indicated and shared goals [4,26]. Typically, members of a team have specialised roles deriving
from task-specific competencies, use shared resources, and thus interact by coordinating their
actions. As a result, teams and their effective operations turn out to be complex systems.

Moreover, teams perform very different types of functions depending on the specific
context and targets. Accordingly, different types of teams face different objectives and
demands and, as a result, they come in many different configurations and tend to operate
quite differently [27].

Given the high relevance of teams in industrial and service sectors, researchers have
developed different frameworks for investigating working teams, most notably the input–
processes–output (IPO) model and its evolution input–mediator–output–input (IMOI)
model [27–31]. Following the lens of these frameworks, scholars have studied different as-
pects of teams, such as the role of input, processes/mediators, and outcomes, to understand
the potential determinants of team effectiveness in different contexts.

Specifically, inputs describe antecedent factors that enable and constrain team mem-
bers’ interactions. Inputs include individual team member characteristics (e.g., compe-
tencies, experience levels, and personalities), team-level factors (e.g., task structure and
external leader influences), and organisational and contextual factors (e.g., organisational
design features and environmental complexity). These various antecedents combine to
drive team processes, which describe members’ interactions directed toward task accom-
plishment. Processes are important because they describe how team inputs are transformed
into outcomes, i.e., results and by-products of team activity that are valued by one or more
constituencies [27]. Broadly speaking, these may include performance (e.g., quality and
quantity) and members’ affective reactions (e.g., satisfaction, commitment, and viability).

Although teams have been largely investigated by several authors in literature, method-
ological concerns still remain in how to systematically and objectively evaluate their
different aspects [32,33]. However, taking advantage of smart technologies and novel
methodologies, it will be possible to assess teamwork through innovative data-driven
approaches [33,34].

Network science tools can be significant in revealing the underlying structure and
organisation of teams. Indeed, starting from the idea that teams can be considered as
complex systems given that they are composed of different interacting components, we
may use network science to observe and analyse their dynamics and performance. For
instance, taking into account the interactive team cognition approach [35], team adaptation
can be analysed through the interactions among team members that can be evaluated
with quantitative measures, such as the social network analysis [36]. Indeed, SNA utilises
social network metrics based on different data and can quantitatively evaluate team adap-
tation [37] in order to understand organisational and team processes, such as knowledge
sharing and coordination [38].

In addition, new technologies such as wearable sensors can provide automatic, ob-
jective, and real-time measurements of team interactions during the operations of work
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teams [33,39]. This may enable new perspectives for team network analyses and, then,
offer dynamic indications for modifying the ongoing “behaviours” and attitudes of team
members to improve team performance [40].

The previously described aspects are particularly valid for healthcare teams, which
arise as very complex systems to be analysed [4,6,41]. Furthermore, teams and teamwork
play a crucial role in patient care and safety in healthcare systems, e.g., [3,42,43], given
the growing number of care activities delivered by teams of health providers [44]. For
these reasons, the analysis of healthcare teams and the related proposal of improvement
directions, possibly in real time, are particularly relevant. In fact, healthcare team members
should adapt their activities with respect to such a complex environment by adjusting
interactions and structure to meet different objectives and fluctuating situations [4,5].

3. The Implications, Challenges, and Benefits of Network Science for Health Teamworking

The aim of this paper is to discuss the implications, challenges, and potential benefits of
the network science for teams working in the health sector. To achieve this, we draw on the
discussion of the six concepts of the complexity science, as reported by [21]: irreversibility
of time; path dependence; sensitivity to initial conditions; emergency and systematicity;
attracting states; and complex causality (Table 1).

Table 1. Summary of implications, challenges, and benefits for teamwork from complexity science
and network representation.

Concept Implications Challenges Benefits

Irreversibility
of time

• Change in team dynamics
that occurs as
time unfolds.

• Mutual exclusivity of
decisions taken by teams
and closing-down of
options over time.

• Options foregone have
opportunity costs.

• How can we define the roles in
teams and their evolution
during their operations?

• How can we identify the best
team dynamics for the more
creative tasks? There is no
linear relationship between
creative input and
creative output.

• How can we determine which
dyads dominate in local
network of interest?

• Dynamic analysis of the work
of teams that may enable
better and quick decisions.

• “Crucial decisions” can be
taken based on network
analysis results.

• Identification of (formal and
informal) roles and of
expertise associated with
team members.

Path dependence

• Two teams with identical
present states may have
very different
past trajectories.

• The path taken to reach a
present team network goes
on to influence the future.

• Intertwining of
perspectives of past,
present, and future.

• How can we take account of
the history of the team and the
related interactions?

• How can we simultaneously
take account of different
potential evolutions of the team
organisation in the future?

• The presence of numerous
factors affecting the evolution
of team dynamics and the
related performance.

• Understanding of deviations
from the expected path.

• Awareness that interpretation
of the present team network
affects interpretation of what
might come to be in
the future.

• Identification of the most
relevant factors affecting the
evolution of team dynamics
and team performance.

• Differentiation between
deviation errors to correct vs.
opportunity to explore.

• Support to long-term
decision making.

• Support to predictive risk
mitigation, i.e., interpretation
of possible future trajectories.
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Table 1. Cont.

Concept Implications Challenges Benefits

Sensitivity to
initial condition

• Difficulty of distinguishing
between randomness and
non-randomness results.

• A fully determined process
can have multiple possible
team network and/or
outcomes.

• Inability to evaluate the
initial conditions of teams
with infinite accuracy.

• Is the concept of ‘weak signals’
useful when considering the
networks? Should they be
included in the analyses?

• How can teamwork factors that
subsequently turn out to be
important be distinguished from
those that do not (i.e., those
which are just random)?

• Questioning unquestioned
assumptions and past
relationships between team
behaviours/dynamics and
team performances.

• Awareness of the potential
uncertainty associated with the
future evolution of the team
networks.

• Identification of initial
conditions affecting team
networks and
team performance.

• Pursuing events otherwise
understood as deviations.

• Understanding deviations as
opportunities, pursuing the
most favourable ones.

Emergence and
systemness

• The interplay between
micro- and
macro-organisational levels.

• What emerges at a higher
hierarchical level is not
reducible to the sum of the
parts of lower hierarchical
levels and, therefore, not
amenable to traditional
forms of ‘analysis’.

• The presence of
dyadic relationships.

• The presence of
self-assertive tendencies and
integrative tendencies.

• The interplay between
networks of health
organisations (hospitals,
house assistance
organisations, family
doctors, etc.) while
providing “combined”
health services.

• How can network tools be
adapted to avoid overly focusing
on either the micro- or
macro-organisational levels,
leading to a ‘micro-fallacy’
or ‘macro-fallacy’?

• How can we effectively ‘analyse’
networks of health organisations
by examining individuals and
communities of individuals?

• How can we distinguish what
information is needed from
whom, when, and how?

• How can we unveil
self-organising patterns?

• Easy formalisation through
networked representations.

• Both micro and macro
organisation levels can be
considered through
network analysis.

• Awareness that aggregate-level
effects from particular actions
or behaviours can lead to
uncertain and emergent
outcomes not discernible from
individual behaviour.

• Existence of countless
opportunities for collaboration
that may be unseen and
unpredictable from initial
conditions or directions.

• Feedbacks provided by
network analysis can also
enhance mutual trust.

• Systemic view as a way to
mitigate systemic risk effects.

Attractor states

• A team may be governed by
a specific attractor (e.g., a
team leader, a specific
configuration, etc.),
implying a repetition of past
patterns of development,
leading to the same or
similar
outcomes (determinism).

• The future team dynamics
and outcomes can
sometimes be guessed
because of this tendency for
unfolding patterns to repeat,
implying a degree of
usefulness for network
analysis tools for
discovering
related elements.

• To what extent can we change
the team outcomes if an attractor
is present? What is the balance
between changing some team
factors and leaving the team free
to develop?

• How can we investigate the
interactions between different
team components and,
eventually, among numerous
attractors? How can such
dynamics affect team outcomes?

• How can we disturb a focal
system (e.g., a hub, a community,
etc), including an attractor, into
the system? How can we
evaluate the emerging
potential conflicts?

• Awareness that team dynamics
and team outcomes can be
subject to determinism and not
only indeterminism.

• Identification of attractors (and
related potential effects on the
team) through advanced
network analysis tools.

• Exploration of why the
teamwork networks often
continue to look like the past
despite considerable effort to
change their course.

• Understanding of emergent
conflicts (e.g., creative conflict
and stressing conflict).



Appl. Sci. 2022, 12, 5841 7 of 22

Table 1. Cont.

Concept Implications Challenges Benefits

Complex
causation

• Team interaction and
collaboration dynamics are
typically characterised by
non-simple cause–effect
relations due to a complex
non-linear domino effect.

• The future state of the
team and the team
performance are not
simply conjunctions of the
previous states and
transition events.

• Complex systems and, in
particular, network theory
can be of great support for
such understanding.

• How can network tools be
adapted to take a broader
account of
teamwork complexity?

• How can we investigate human
behaviours and motivations as
determinants of
team performance?

• How can we comprehensively
evaluate the “current state” of
the teams?

• How can we take account of
rules/causes for future team
states and/or outcomes?

• Performance perceived by the
team is strongly influenced by
team satisfaction, which may
have implications on
team motivation.

• Broader and more
sophisticated understanding
of causes behind
team performance.

• Move away from simplistic
and ‘efficient’ cause–effect
relationships in team
interaction and
collaboration dynamics.

• Awareness that different
types of cause dominate in
different types of
team networks.

• Identification of “blurred
roles” and expectations to
achieve future objectives.

• Increasing closed-loop
communications (enhancing
mutual trust) and building
relationships of connection
and support.

• Understanding the complex
dynamics related to creativity
and problem-solving.

The irreversibility of time is a concept regarding history, intended as a complex
evolutionary path of the teams taken to the present thought the past and how they are
affected by many influencing factors, such as internal and external relations and interactions,
team configuration, accumulated bundle of skills and expertise of providers, stress or
fatigue, and past conflicts. Such factors are among the fundamental determinants of team
performance. Indeed, the peculiar combination of such variables leads to a single and
sometimes unique future of the team and organisation that cannot make simple predictions
with complete information about the past conditions. Typically, decisions during the team
life cycle and team operations lead to the irreversibility of the state of the organisational
system in which teams work. For example, decisions about possible team configurations are
essential determinants of the overall team performance, e.g., rostering policy for nurses and
providers; education and training of team members, as well as their mutual interactions;
scheduling and assignment of tasks that can influence both providers’ specialisation and
expertise; and fatigue and working stress.

Path dependence is strongly related to irreversibility of time but mostly refers to the
indeterminism of the future of a system, or at least a weak determinism, which is related to
the scarce possibility of identifying a finite number of trajectories for the system analysed.
The past influences the future, which is true for teams of health providers. Nevertheless,
two healthcare teams that perform similarly might have had a very different past and
evolution leading to two completely different paths.

A number of drivers in the team life cycle can determine such different paths, includ-
ing selected team configuration, skills and expertise of team members, their relationships
or interaction dynamics, personal experience, work specialisation, connection or interde-
pendence with external actors, changing patient conditions, contextual factors, etc. To
detect such trajectories and dependence, analysing the past is a necessary but not sufficient
condition, which means that researchers need to be able to continuously collect data from a
very complex system, characterised by a huge number of heterogeneous variables.
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Sensitivity to initial conditions focuses the attention on weak signal detection [45] and
mostly refers to the difficulty in complex systems to detect determined paths or processes
since it can be difficult to distinguish randomness and non-randomness in process trajecto-
ries; thus, it can be extremely hard to analyse team evolutionary trajectories in healthcare
organisations. Teams are highly dynamic systems with a huge number of possible future
paths depending on initial conditions, team configuration, growth, matured experience of
members, operational tasks, internal/external context factors, changing patient conditions,
etc. All these trajectories, mostly singular, can lead to very heterogeneous team behaviours
and, in turn, to very different outcomes.

Emergence and systemness is a focal concept for complexity science related to hierar-
chical layering and nesting level of the systems. This concept has significant implications
for the study of teams. Indeed, from the nonlinear interplay between micro- and macro-
organisational levels, new patterns can emerge at a higher hierarchical level in a way that
are not reducible to the sum of the parts of lower hierarchical levels and, therefore, not
amenable to traditional forms of ‘analysis’. For example, the referral process within a
practice can evolve over time as team members provide feedback and gain experience [46].

Regarding the systemness, it is related to the presence of several hierarchical levels
within the organisation or as the whole organisation since the organisation may be part
of a wider network. Healthcare organisations increasingly organise their service by teams
of practitioners and are inserted in healthcare ecosystems, i.e., networks of health organ-
isations (hospitals, house assistance organisations, family doctors, etc.). Focusing just
on a single level may be misleading and dangerous for understanding complex system
behaviours. High-level aggregations cannot be analysed by simply aggregating individual
behaviours since non-linear effects exist. The ability to consider both micro- and macro-
level analysis (e.g., individual, team, organisation, and district), as well as dynamically
aggregating data, patterns, and process outcomes by appropriate real-time business ana-
lytics, is really valuable for future studies in order to understand teams and the related
performance. Thus, the wide adoption of information systems in health organisations and,
more generally, the rise of smart technology, such as wearable sensors, can contribute to
providing both researchers and practitioners with a huge amount of data—potentially Big
Data—about teamwork in real time, as well as new enhanced computational data analysis
and visualisation capabilities. Such data and novel capabilities may enable a dynamic
analysis of teams and thus effective real-time management.

The concept of attractor states is mostly opposed to the previous ones and refers to
specific conditions, making the future system outcome deterministic. Different evolutionary
trajectories and characteristics of the system, independent of their past, can obtain the same
outcome or converge into the same final state if they share the same attractor state. In
health teamwork analysis, for example, the presence of an attractor can be related to the
detection of a significant driver related to team members (leadership) or a specific network
or team configuration, emergent coordination patterns or interaction dynamics, evolving
health technologies, as well as individual behaviour (possibly explaining the outcome or
performance of the team).

Finally, complex causation refers to the interaction between possible concomitant
causes, leading to a consequence, outcome, or performance. For health teams, it means that
the future state of the team and the team performance are not simply conjunctions of the
previous states and transition events, or simply due to the cause–effect relationship, but
rather due to a complex non-linear domino effect, which is typical in this domain. Team
interaction and collaboration dynamics, during and beyond work operations, are typically
characterised by non-simple cause–effect relations, whose understating can greatly benefit
from an appropriate model of analysis. Complex systems and, in particular, network theory
can be of great support for such understanding.

We consider a team as a social entity in which social relationships are interactions fostering
sense-making, learning, improvisation, and other functions [46,47]. Such teams are embedded
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in organisations where plenty of different practices and knowledge shape a variety of different
configurations which are difficult to map in a single coherent conceptual framework.

Building on complex analysis, network representations can provide significant advan-
tages to those organisations, in particular hospitals and healthcare centres, which own a
great amount of data and benefit from the opportunity to extract much more information
than it is reasonable to imagine. Network science tools are indeed useful to explain the
complex dynamics as well as to extrapolate information flowing through the different
layers of organisations, strategies, and knowledge, and across macro, meso, and micro
levels of observation.

Complex analysis also makes it possible to understand structures and functions under
a new perspective, which potentially allows for the introduction of innovative systems,
such as novel technology or strategies used to meet various conditions which are usually
difficult to conceptualise using standard tools [48].

Thus, the use of networks to represent complex systems is motivated by the large
availability of methodologies, measures, tools, and software [13,14,49]. Through networks
analysis, it is possible to recognise many different aspects of health-related systems and
adopted measures can be easily transformed into concepts [25,50]; moreover, the emergence
of hidden patterns or weak signals can be detected by means of consolidated theories. Ad-
ditionally, the progress in data availability, computing power, and appropriate algorithms
can make the systems easier to understand in the future.

There is a current tendency to rely on artificial intelligence or on machine learning to
obtain information from Big Data currently available [51,52]. These data-driven approaches
are fantastic methods for recognising and learning patterns in health environments, but
their results may be hard to interpret. Indeed, making sense of the patterns discovered and
linking them with possible underlying mechanisms may be very hard in such a context [12].
The use of complexity enables us to overcome such issues thanks to its capability in
understanding co-evolving systems.

Knowledge management becomes of crucial importance since team working in the health
environment should therefore adopt the new paradigm of complexity. Thus, learning can help
to achieve excellent performance, and continuous improvement can be achieved considering
multiple sources of knowledge as well as an inclination to accept new cultural paradigms.

Outcomes can be created by involving the exchange, sharing, and usage of information
among network members. This can enhance members’ access to sources of knowledge,
allow information mechanism tracing, and facilitate the assimilation and awareness of
information among members of the system. Knowledge flow will also allow members
to diversify and improve access to information and know-how, as well as diffuse best
practices, business experience, projects, and reports.

4. Case Study
4.1. Case Study Context and Analysis

In this section, we propose an empirical case study to support our conceptualisation
and to provide an example of how network analysis methods can be exploited to analyse
the teamwork dynamics of health teams and to improve the decision-making process.

We collected data from 75 breast surgeries in the Breast Unit of an Italian University
Hospital. All cases underwent breast quadrantectomy or breast mastectomies related to
cancer problems and were chosen randomly. These surgeries tend to present quite a high
level of task routineness [53], with the procedures being well defined beforehand.

Every breast surgery is carried out by two to four surgeons, assisted by two anaesthe-
siologists, one scrub nurse, and one assistant nurse. The surgeons involved in each surgery
are planned in a weekly unit-planning meeting and are defined based on their availability
and, mostly, on who followed the patient in the diagnostic phases.

To study the surgical team composition and its influence on performance, we collected
all the data related to the surgeons taking part in each surgery under investigation. In
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the end, we collected and analysed 212 surgeon distinct recordings for about 110 h of
surgery observed.

In addition, we also gathered the main features of the surgeries such as the duration,
the size of the operating team, and the number of people present in the operating room.

Finally, the surgical performance was evaluated through the occurrence of surgical
glitches as reported by the surgical register, given that providing a safe and effective
operation is the main goal of surgery and that a surgical glitch may have a highly relevant
repercussion on patient health and on hospital expenditure.

The details on network building and analysis are provided in Appendix A, while the
main results of the investigation are presented in the following section.

To summarise, the data collected were used to build a network composed of 75 surgeries,
which constitute the nodes, and 1236 links meaning that two nodes are connected if at least one
surgeon took part in both surgeries. Such a network is depicted on the right side of Figure 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 23 
 

surgery are planned in a weekly unit-planning meeting and are defined based on their 

availability and, mostly, on who followed the patient in the diagnostic phases. 

To study the surgical team composition and its influence on performance, we col-

lected all the data related to the surgeons taking part in each surgery under investigation. 

In the end, we collected and analysed 212 surgeon distinct recordings for about 110 h of 

surgery observed. 

In addition, we also gathered the main features of the surgeries such as the duration, 

the size of the operating team, and the number of people present in the operating room. 

Finally, the surgical performance was evaluated through the occurrence of surgical 

glitches as reported by the surgical register, given that providing a safe and effective op-

eration is the main goal of surgery and that a surgical glitch may have a highly relevant 

repercussion on patient health and on hospital expenditure. 

The details on network building and analysis are provided in Appendix A, while the 

main results of the investigation are presented in the following section. 

To summarise, the data collected were used to build a network composed of 75 sur-

geries, which constitute the nodes, and 1236 links meaning that two nodes are connected 

if at least one surgeon took part in both surgeries. Such a network is depicted on the right 

side of Figure 1. 

 

Figure 1. The network projection of the surgery rooms interactions (left panel) and correlations be-

tween glitches and centrality measures. In the left panel, red nodes indicate the occurrence of a 

glitch; in the right panel, for the p-values, we obtained 0.00234 for glitch–transitivity, 0.00318 for 

glitch–betweenness, 0.00592 for glitch–closeness, 0.00926 for glitch–degree, 0.0119 for glitch–pag-

erank, 0.0127 for glitch–eigenvector centrality, and 0.0209 for glitch–authority, while we obtained 

0.347 for glitch–Bonacich index and 0.393 for glitch–coreness (note that these last two correlations 

are depicted with the boxplot filled in grey). 

As reported in the Appendix A section, we obtained both the network of the individ-

uals’ interactions and the network of teams. We decided to analyse the latter since the 

Breast Unit is composed of a limited number of surgeons; thus, the network is not fully 

significant, as such a network has only 12 nodes. In cases where the staff is more numer-

ous, it is possible to extend the analysis to the individual network. 

4.2. Case Study Findings 

Figure 1. The network projection of the surgery rooms interactions (left panel) and correlations
between glitches and centrality measures. In the left panel, red nodes indicate the occurrence of a
glitch; in the right panel, for the p-values, we obtained 0.00234 for glitch–transitivity, 0.00318 for
glitch–betweenness, 0.00592 for glitch–closeness, 0.00926 for glitch–degree, 0.0119 for glitch–pagerank,
0.0127 for glitch–eigenvector centrality, and 0.0209 for glitch–authority, while we obtained 0.347 for
glitch–Bonacich index and 0.393 for glitch–coreness (note that these last two correlations are depicted
with the boxplot filled in grey).

As reported in the Appendix A section, we obtained both the network of the indi-
viduals’ interactions and the network of teams. We decided to analyse the latter since the
Breast Unit is composed of a limited number of surgeons; thus, the network is not fully
significant, as such a network has only 12 nodes. In cases where the staff is more numerous,
it is possible to extend the analysis to the individual network.

4.2. Case Study Findings

This section reports the main findings we obtained in the case study following the
procedures described in Appendix A. Thus, for more details on the methodology and
measurements exploited, please refer to such section.

Figure 1 displays the plot of the surgery network (left panel) and the correlations
between glitches and centrality measures (right panel). Such values were computed by
means of the classical Pearson correlation.
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The first main observable network characteristic is the distribution of the degree across
the network. It results in a random distribution with a mean of 32.96 connections for each
node. The absence of any notable degree distribution (e.g., log-normal, etc.) highlights the
fact that the network lacks the emergence of hubs, i.e., a similar number of surgeons have
operated and an excessive unbalanced workload does not emerge. Since this latter may
be identified as a problem associated with incidents [1,54,55], we cannot sustain the main
correlation between glitches and team fatigue.

Another argument which brings us in the direction of the absence of preferential staff
in terms of an elite subgroup of surgeons as well as in terms of team mix—seniors with
other senior members instead of seniors with junior members—is a neutral value of the
degree assortativity (see Appendix A for further details).

In this case study, the randomness of the degree distribution raises some challenges
for the understanding of deviations from the expected path and the unveiling of self-
organised patterns, mainly caused by the difficulties in knowing which dyads dominate in
the network.

However, the centrality measures provided interesting results, emphasising a relation-
ship between surgical team network and surgical performance, evaluated in terms of glitch
occurrence. Specifically, the negative correlation of transitivity and the positive correlation
of betweenness centrality (see Figure 1, right panel) with the glitches indicate that the
emergence of stable groups of surgeons might not be a good strategy for improving surgical
performances, at least in high routine surgery. These measures appear to reveal that a low
variability in the operating team composition—i.e., a potential attractor state—establishes a
path dependence that increases the probability of surgeries to experience a glitch in the fu-
ture. Thus, surgeons should work with different colleagues, instead of forming sub-groups
that work continuously together.

The reasons behind such evidence may be related to two main aspects. Firstly, if
the surgeons taking part in surgery have had different surgery experiences, they will be
able to face a wide spectrum of potential and unplanned issues [56,57]. In addition, by
collaborating with different colleagues, surgeons can observe and learn relevant “best
practices” to apply in the future [58,59]. The second reason is related to the fact that the
operating team very often establishes a very high “intimacy” so that they tend to pay
less attention to the specific tasks and to be more prone to distractions, increasing the
probability to face a glitch [1,60,61]. In these cases, the team members might introduce
a novel complex cause–effect relationship that alters the dynamics and, finally, the team
performance. This aspect seems to assume a particularly significant role in routine surgeries,
as breast surgery [4,62–65].

4.3. Managerial Implications

The results obtained and their interpretations provide hospital managers with relevant
managerial implications which are not immediately available considering the classical
statistical methods. Indeed, network analysis permits to highlight hidden patterns of cause
and effect in a very sophisticated way, providing managers with a further point of view on
their baseline of data.

The findings obtained in the case study were also debated with the hospital managers,
the Brest Unit managers, the surgeons, and the rest of the staff (i.e., anaesthesiologists,
scrub nurses, and other assistant nurses). This discussion permitted a sound interpretation
of the results and, most of all, an evaluation of the best potential solutions to improve
teamworking of surgical teams.

The two main managerial indications deriving from it are the following.
First, health managers should favour a greater rotation of the surgery team composition

avoiding, voluntarily or not, to form “sub-groups” of practitioners that work continuously
together. This solution provides surgical teams with the ability to face a wider spectrum of
potential problems and the ability to maintain a higher level of attention. These indications
may be valid not just for breast surgery but, more in general, for routine surgeries.
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Moreover, Breast Unit managers should pay attention to the task assignment during
the activity planning of the unit in order to better balance surgery and non-surgical activities
(e.g., diagnostic visits, ward activities, check-up visits, etc.) for each doctor, promoting
variety, e.g., turnovers. Thanks to a more appropriate surgical workload, the doctors should
be less subject to the stress induced by physical and psychological overload conditions,
improving the final performance of surgeries.

Although the analysis approach can be applied in many different health contexts, the
managerial implications described here tend to be valid only for the breast surgery and,
more generally, for the routine surgery.

5. Discussions on Network Science for Teamwork

Our findings help to deepen the discussion of the implications, challenges, and benefits
deriving from network science for teams working in the health sector, with the final aim of
revealing new directions and means for studying healthcare teamworking. In parallel with
Table 1 (Section 3), implications, challenges, and benefits are discussed in light of the six
complexity science concepts—i.e., irreversibility of time, path dependence, sensitivity to
initial conditions, emergence and systemness, attractor states, and complex causation [21].

Table 2 summarises, for each of the six concepts above, the results, the consequences,
and the benefits of the network analyses carried out. The reader should consider such
table as a “checklist” of the possible outcome of the analysis of healthcare teams through
network science.

Table 2. Summary of the implications, challenges, and benefits of network science application for
teamwork in the case study.

Concept Implications Challenges Benefits

Irreversibility of time

• Randomness of
degree distribution.

• Emergence of stable groups.

• The network implies a
mature process.

• No hub will emerge in
the future.

• Glitches are independent
from fatigue.

• Group thinking.

• Peculiar team dynamic
prevents
excessive workload.

• Straightforward alert
against group thinking.

• Dyads becomes explicit.

Path dependence

• Randomness of
degree distribution.

• High values of
clustering coefficient.

• The network implies a
mature process.

• Low variety in
team composition.

• Straightforward alert
against scheduling of
same sub-groups.

• Promotion of team variety
in the future.

• Support to predictive
risk mitigation.

Sensitivity to
initial condition

• Apparent randomness
of glitches.

• The team formation process
brings to a random degree
distribution, suggesting the
absence of
preferential selections.

• Team composition is a
weak signal.

• Second-order measures are
needed to
understand dynamics.

• Undercover and
understanding weak
signal as opportunities.

• Pursuing events otherwise
understood as deviations
or underestimated.
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Table 2. Cont.

Concept Implications Challenges Benefits

Emergence and
systemness

• Absence of
preferential dyads.

• No emergence of
relationships among
workload and glitches.

• Team scheduling operations
avoid the emergence of hub.

• Emergence of stable groups.

• Absence of preferential
staff mixing.

• Glitches appear under
systemic occurrence.

• Balanced workload.
• Stable groups correlate

with glitches.

• The dynamic prevents the
formation of an elite.

• Awareness that
aggregate-level effects
from particular actions or
behaviours can lead to
glitches and emergent
outcomes not discernible
from individual behaviour.

• Micro- and
macro-organisation levels
operate accordingly.

• Awareness of the
relationship between
stable groups and
surgical performances.

Attractor states

• Absence of hubs as attractor.
• Low variety in the

group composition.

• No repetitions of past
patterns of development,
leading to the same
or similar
outcomes (determinism).

• Establishment of a path
dependence that increases
the probability of glitches.

• Awareness that team
dynamics and team
outcomes can be subject
mainly to indeterminism
or unknown deterministic
aspects worth analysing.

• Identification of attractors
(and related potential
effects on the team) to
avoid glitches in the future.

Complex causation

• Team interaction and
collaboration dynamics are
typically characterised by a
non-simple cause–effect
relations due to a complex
non-linear domino effect.

• The future state of the team
and the team performance is
not simply in conjunction
with the previous states and
transition events.

• Complex system and
particularly network theory
can be of great support for
such understanding.

• Broader account of
teamwork complexity.

• Human behaviours and
motivations as
determinants of
team performance.

• The “current state” of the
teams is known in a
broader sense.

• Rules which cause team
satisfaction may have
implications on
team motivation.

• Broader and more
sophisticated
understanding of causes
behind team performance.

• Move away from
simplistic and ‘efficient’
cause–effect relationships
in team interaction and
collaboration dynamics.

• Awareness that different
types of cause dominate in
different types of teams.

• Identification of “blurred
roles” and expectations to
achieve the
future objectives.

• Increasing closed loop
communications
(enhancing mutual trust)
and building relationships
of connection and support.

• Understanding the
complex dynamics related
to creativity and
problem solving.
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6. Conclusions

The contingent and evolutionary nature of complex systems, such as healthcare or-
ganisations, entails that our understanding of the system has to be continually updated
and revised [66]. Indeed, the turbulence and dynamism which characterise such a complex
operational environment ask for continuous changes to the frames of the adopted inter-
pretative models as the boundaries of complex systems cannot be identified objectively,
completely, and definitively [20].

Looking at the more specific literature, to our best knowledge, there is not yet a
general and rigorous framework for the application of network science to team studies in
healthcare. In the attempt to provide some first elements of such a framework, the main
contribution of this paper is to set out a number of explicit implications, challenges, and
benefits for teamwork in healthcare derived from network science (See Tables 1 and 2),
which can successfully represent such complex systems. Moreover, we highlighted a list of
enabling concerns to consider for addressing network science in this field. Finally, empirical
evidence provided by a real case study shows the potential benefits deriving from network
science-enabled analysis in such a context. Though the results obtained in the case study
can be considered specific for the breast surgery, the approach of analysis proposed may
be applied to analyse healthcare teams in different settings (e.g., emergency department
teams, multidisciplinary cancer teams, laparoscopic surgery teams).

Undoubtedly, the efficiency and effectiveness of healthcare systems may widely benefit
from a complexity theory lens and, specifically, from the application of network science.
Indeed, network theory and related methods/tools can offer new interpretative and predic-
tive models to understand team behaviours and performance drivers. In this aim, effective
tools supporting health providers, based on network science, are expected to be highly
desirable. However, although technologies are very critical to support real-time data col-
lection and analysis, a proper culture and an enabling environment can be essential in
any health organisation for exploiting network science tools and to thrive with a valuable
contribution (at all levels).

This research is not exempt from limitations. Drawing on a single case study, our
case results might be affected by the specific application and cultural context. This is a
common issue for many studies involving human resources and their behaviours, and
clearly limits the results from being generalised [67]. Moreover, even though the number
of network tools and indicators considered was high, the study is clearly not conclusive.
Other significant implications, challenges, and benefits of network science application for
teamwork, which are not discussed in Table 2, might exist.

As a future development, it might be interesting to increase the network aspects
observed and to repeat this study in different application and cultural contexts to confirm
our findings and to strengthen the practical recommendations. In addition, we urge
researchers to apply the approach of analysis used in the case study for studying different
healthcare teams, e.g., the emergency teams, to further confirm the effectiveness and the
extensibility of such approach. Finally, future studies should investigate the possibility of
implementing network methods, models, and tools into health decision support systems
for supporting managers and providers in daily and long-term decisions regarding the
management of work teams.
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Appendix A

The mathematical description of networks is found in graph theory [68]. A graph G = (V, E)
is composed of a set V of n nodes, which represent the elements of the system, and a set
E of m links that define the interactions between nodes. We refer to a node by an index i,
allowing a one-to-one correspondence between an index and a node.

The graph representation allows for the calculation of several measures that reveal the
network characteristics. As the network science approach includes social network analysis
(SNA), this paper considers the main centrality values [49], which represent the relative
importance of a node within a graph, with the assertion that a higher centrality index of
a node can increase its perceived centrality in the graph. Moreover, centrality measures
assess the involvement of nodes in contributing to the cohesiveness of the network [69,70].

The concept of centrality has an inherent ambiguity; there is no point in including all
measures in one method [71]. Deciding which option to choose requires consideration of
the specificity of the measures and the requirements of different applications. There are
several quantities describing the centrality that depend on the type of statistics on which
they are based; the most commonly used are reported in Table A1.

To build our networks, we considered a database of surgeries where we extracted all
the teams of surgeons for each of them. For each surgery, the database reports the main
characteristics, such as the team composition, the duration, and the patient age. To be noted
that all the sensitive data were anonymised to be complied with the ethical protocols. In
addition, we respected the privacy of the study participants since we did not observe the
operating activities carried out during the surgery but the team composition.

In fact, we restricted our analysis to the data useful for building the “networks”, i.e.,
the corresponding team of participants (surgeons, nurses, etc.), and if in those surgeries
was reported a glitch (as a binary variable, 0 no glitch, 1 if a glitch occurred). Since data
were a simple merge of teams and binary variables, and since the outcome was a network,
it was not necessary any pre-processing procedures, as, for instance, those reported in [72].

Such data were used to build a bipartite network in which there are the 12 surgeons in
one side and 75 surgeries on the other side (see the central network in Figure A1). A link
appears when a surgeon took part to a surgery; thus, the degree of a node on the right side
is the number of surgeons within the team. The data processing, the network analysis, and
all simulations were conducted using the software R [73] with the igraph package [74] and
some other package for data manipulation and for correlations. In particular, we computed
correlations using the package inspectdf available on CRAN (https://cran.r-project.org/
web/packages/inspectdf/index.html, accessed on 20 April 2022).

Note that surgeons who took part in a surgery where a glitch occurred on the left
side are reported as red node, and nodes on the right side correspond to surgeries where a
glitch happened.

It is a common procedure to study bipartite networks projecting them into one of their
partitions [75]. The procedure is very easy, and nodes of one partition are connected to
each other according to their connection pattern to nodes on the other partition. Figure A1
reports the left and the right projections of the starting network: the bottom one (bottom
in Figure A1) is composed of surgeons—a link can appear when the joints take part in
a same surgery (34 links in total), and the top one (top in Figure A1) is composed of
surgeries—a link can appear when two nodes are connected if at least one surgeon took
part in both surgeries (1236 links in total). Note that the left network is weighted since it
reports the number of common surgeons and has nodes of a colour gradient proportional
to the number of glitches, i.e., green when no glitches occurred and dark red when the
maximum number of glitches occurred for the correspondent surgeon. We considered a
glitch any medical/procedural problem that might affect the patient (e.g., for example

https://cran.r-project.org/web/packages/inspectdf/index.html
https://cran.r-project.org/web/packages/inspectdf/index.html
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small bleedings, incorrect counting of gauzes, imperfect stitching, and defects in sampling
for cancer tests). In our analysis, we mainly focused on the right projection (surgeries) for
which we computed the main centrality measures, namely the degree centrality, transitivity,
closeness centrality, betweenness centrality, eigenvector centrality, PageRank, Bonacich
index, authority, and, finally, coreness. In Table A1, we report a short glossary of the used
centrality measure with their meaning. For further details, please refer to [49,76].

In addition, we computed the degree distribution which has basically a random
shape with a mean of 32.96 connections for each node. The absence of any notable degree
distribution (e.g., log normal, etc.) highlights the fact that our network lacks hubs, i.e.,
surgeons operated in a similar number of surgeons.

The absence of degree correlation is also confirmed by another measure called degree
assortativity [77], which is computed as the degree–degree Pearson correlation coefficient r.
A network is disassortative when a tendential link connects two nodes of different degree,
then r is negative and has a value which lies in the range −1 ≤ r < 0; a network is assortative
when a tendential link connects two nodes of similar degree, then r is positive and has a
value which lies in the range 0 < r ≤ 1; and, finally, a network is neutral if r = 0. In our test,
the network has degree assortativity r = 0.016; thus, we can consider it as neutral.

Table A1. A short glossary of centrality measures.

Measure Definition Meaning

Degree centrality (ki)

The number of links incident upon a
node, which can be interpreted as the
neighbourhood size of each member
within the network.

This highlights the immediate risk of a
node catching, whatever is flowing
through the network. It quantifies how
well it is connected to the other elements
of the graph. The degree centrality is an
indicator of the spread of node
connectivity along the graph and is a
crucial gauge in defining the
network organisation.

Transitivity (Ci)
For any node i is the fraction of the
connected neighbours of i.

It determines the capacity of link
creations among neighbours, i.e., the
tendency in the network to create
stable groups.

Closeness centrality (CC)

The natural distance between all pairs of
nodes is defined by the length of their
shortest paths. Thus, the more central a
node is, the lower its distance is to all
other nodes.

This value measures how long it takes to
spread information from a member to all
others sequentially.

Betweenness centrality (CB)
The number of times a node acts as a
bridge along the shortest path between
two other nodes.

This measure reveals the intermediary
members that are essential for connecting
different regions of the network.

Eigenvector centrality (CE)
The influence of a node in a network
according to the number and the quality
of its connections.

Indeed, a node with a smaller number of
high-quality links has more power than
one with a larger number of
mediocre contacts.

Pagerank A node has high rank if the sum of the
ranks of its in-edges is high.

It quantifies the overall importance of a
component based on the relative
importance of the components it is
part of.
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Table A1. Cont.

Measure Definition Meaning

Bonacich index (CBP)
The power of a node is recursively
defined by the sum of the power of
its alters.

Positive values imply that members
become more powerful as their alters, i.e.,
neighbours, come to be more powerful,
while negative values imply that
members are more powerful only as their
alters become weaker, as occurs in
competitive or antagonistic relations.

Authority (Kleinberg centrality scores)
(CA)

A node is an authority if it is linked by
hubs; it is a hub if it links to authorities.

A node is important if it receives many
links from other important sources.

Coreness

The k-core of the graph is a maximal
subgraph in which each vertex has at
least degree k. The coreness of a vertex is
k if it belongs to the k-core but not to the
(k + 1)-core.

It helps identify tightly interlinked core
areas in a network.

In order to discover the reasons behind a glitch, we studied the relationships between
the occurrence of glitch and centrality measures via Pearson correlation, and Figure A2
shows that centrality measures as transitivity negatively correlates with glitches, while
betweenness, closeness, degree, PageRank, and eigenvector centrality positively correlate
with glitches. Finally, the Bonacich index and coreness are not significant.

Table A2 shows the numerical values for Pearson correlation, also considering the
p-value and the lower and upper values of the confidence interval for the correlations.

We statistically validate the obtained correlations by computing probability p of finding
higher values considering a standard procedure [78] in which we compare a null model of
our network in which all links are randomly rewired.

The procedure consists in considering the degree sequence of our network, i.e., the
non-decreasing list of all the degree, and then creates 1000 networks via random rewiring
of connections by preserving the degree sequence. For each of them, we recomputed the
Pearson correlation, and considered the glitches still present in the same nodes in the
original configuration.

In Table A2, we report a column where we counted the times in which the correlation
was higher with respect to the original values (see column of p). As it is possible to see,
for transitivity, closeness, and degree, it never happens that a random ensemble performs
better than in the original case, while for betweenness it happens in a very few cases. These
values highlight the fact that surgeons behave under a human agency which captures
non-linear interactions; thus, the above-reported measures are meaningful in order to
understand team behaviours.
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2 Glitch–betweenness 0.348 0.00224 0.131 0.533 67/1000

3 Glitch–closeness 0.324 0.00453 0.105 0.513 0/1000

4 Glitch–degree 0.307 0.00744 0.0857 0.499 0/1000

5 Glitch–pagerank 0.296 0.00985 0.0743 0.490 1000/1000

6 Glitch–eigenvector centrality 0.294 0.0106 0.0714 0.488 770/1000

7 Glitch–authority 0.272 0.0181 0.0483 0.470 994/1000

8 Glitch–Bonacich index −0.111 0.344 −0.330 0.119 276/1000

9 Glitch–coreness 0.101 0.390 −0.129 0.320 995/1000
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