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Abstract: In facial landmark detection, extracting shape-indexed features is widely applied in existing
methods to impose shape constraint over landmarks. Commonly, these methods crop shape-indexed
patches surrounding landmarks of a given initial shape. All landmarks are then detected jointly
based on these patches, with shape constraint naturally embedded in the regressor. However, there
are still two remaining challenges that cause the degradation of these methods. First, the initial
shape may seriously deviate from the ground truth when presented with a large pose, resulting in
considerable noise in the shape-indexed features. Second, extracting local patch features is vulnerable
to occlusions due to missing facial context information under severe occlusion. To address the issues
above, this paper proposes a facial landmark detection algorithm named Sparse-To-Dense Network
(STDN). First, STDN employs a lightweight network to detect sparse facial landmarks and forms a
reinitialized shape, which can efficiently improve the quality of cropped patches when presented
with large poses. Then, a group-relational module is used to exploit the inherent geometric relations
of the face, which further enhances the shape constraint against occlusion. Our method achieves
4.64% mean error with 1.97% failure rate on COFW68 dataset, 3.48% mean error with 0.43% failure
rate on 300 W dataset and 7.12% mean error with 11.61% failure rate on Masked 300 W dataset. The
results demonstrate that STDN achieves outstanding performance in comparison to state-of-the-art
methods, especially on occlusion datasets.

Keywords: facial landmark detection; shape-indexed feature; face shape constraint; biometrics

1. Introduction

Facial landmark detection, also known as face alignment, aims to localize landmarks
of given faces. It is an essential step in many face analysis tasks, e.g., face verification [1–3],
expression recognition [4–6], face editing [7,8] and face recognition [9,10].

In recent years, convolutional neural networks (CNNs) have promoted the progress of
robust facial landmark detection. However, the robustness of landmark detection on uncon-
strained faces still suffers from occlusion, illumination and large pose variation problems.

To achieve robust facial landmark detection, some works [11–13] impose face shape
constraint over all landmarks against occlusion. For example, LAB [11] imposes the shape
constraint by estimating the boundary information that is predicted by an additional
stacked hourglass network. However, facial boundary estimation significantly increases
computational costs. Other methods, such as MDM [12], learn the shape-indexed features
from local patches surrounding a mean shape to predict all landmarks, and the shape
constraint is encoded in the regressor. Figure 1 shows the local patches used to learn
shape-indexed features in existing methods. Figure 1a,b shows the problems with two
initialization strategies when presented with a large pose. The initial landmarks are
extremely far from the ground-truth landmarks. In addition, shape-indexed features only
provide coarse shape constraints, which are vulnerable to occlusion due to the lack of facial
context in local patches.
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sparse-to-dense

(a) random shape (b) mean shape

(c) STDN

Figure 1. Shape-indexed local patches of three sampling approaches where red points represent the
initial landmarks and green points represent the ground-truth landmarks. (a,b) show the sampling
result using the random shape and mean shape, respectively, as initial landmarks on a face with large
pose variation. (c) shows our sampling approach, in which the local patches capture the ground-truth
landmarks more precisely than the other two approaches.

This paper proposes a sparse-to-dense network (STDN) to reduce the noise data under
large pose variations and handle the occlusion problem in facial landmark detection. The
process is functionally divided into two stages: the patch resampling stage and the relation
reasoning stage. In the patch resampling stage, STDN adopts the sampling method as
shown in Figure 1c. First, STDN downsamples the mean shape into sparse landmarks and
then crops large-sized local patches by using these sparse landmarks. This allows us to use
a lightweight network to predict a set of offset values based on these large-sized patches.
Then, according to these offsets, the mean shape is adjusted to a reinitialized shape. In the
relation reasoning stage, the input is the small-sized local patches cropped surrounding the
reinitialized shape. The whole features, learned based on such small-sized patches, are used
to predict the whole face shape. A group-relational module exploits the geometric relations
between facial components, which first disentangles the nose feature from all features to
constrain the other facial components according to the geometric relations. Meanwhile, all
features play a role in imposing the global shape constraint. The main contributions of this
work are summarized as follows:

• We propose a sparse-to-dense network (STDN), a two-stage framework, to reduce the
noise data with large pose variations and address the severe occlusion problem;

• We suggest a sparse to dense patch sampling strategy to efficiently improve the quality
of the cropped local patches with large pose variations;

• We take advantage of a group-relational module to handle the severe occlusion prob-
lem, which learns the geometric relations between facial components to enhance the
shape constraint against occlusion.

2. Related Work

Facial landmark detection falls into three main categories, i.e., classic methods, co-
ordinate regression methods and heatmap regression methods. Although these methods
have achieved great success, it is still challenging to deal with severe occlusion and large
pose variations.

Classic methods, such as ASM [14] and AAM [15], are based on statistical shape models.
They use the principal component analysis (PCA) method to model the appearance and
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shape by updating the coefficient vector, which can minimize the difference between shape-
based appearance and input images. However, these methods only rely on the appearance
features so that the performances of models tend to severely degrade when dealing with
occlusion and faces with large pose variations.

Coordinate regression methods directly predict the coordinates of landmarks from
the input image using regression models without relying on appearance models. These
methods [12,16–22] typically utilize a coarse-to-fine manner to update the shape iteratively.
DR [18] used a global layer to estimate the initial shape and then uses multiple local layers
to update the shape iteratively. Park et al. [20] pretrained a feature extraction network
to learn local feature descriptors from global facial features, which led to a higher face
alignment accuracy. TR-DRN [21] designed a two-stage network to solve the initialization
issue, which used the full face region for rough prediction in the global stage and refined
landmarks in different parts of the face in the local stage. DAC-CSR [22] separated the face
into multiple domains to train the domain-specific cascaded shape regression (CSR). Then,
it used the dynamic attention-controlled method to select the appropriate subdomain CSR
for landmark refinement. Coordinate regression methods take a small amount of time and
ameliorate the robustness of the classic methods when facing the easy occlusion, but are
not robust enough to handle the severe occlusion.

Some regression methods [23–25] also learn regression models based on the shape-
indexed features that were first proposed in ESR [23]. It used the mean shape as the initial
shape and gradually updated the landmarks by predicting the offset based on the local
features extracted surrounding the initial shape. Wu et al. [24] considered that different
face shapes should have various regression functions. Therefore, the model they proposed
can automatically change the regression parameters according to current face shapes to
better approximate the ground-truth shapes.

Heatmap regression methods [11,26–32] obtain the heatmap by generating a Gaussian
distribution over the channels; the point with the highest response on the predicted heatmap
is liable to be the prediction. DU-Net [27] used a quantized densely connected U-Net for
effective facial landmark localization and used a K-order dense connection to achieve
better detection accuracy with fewer parameters. AWing [29] designed a loss function of
heatmap regression that achieved a greater penalty for foreground pixels and a smaller
penalty for background pixels. ADC [31] combined global and local feature information
for facial landmark detection without sacrificing image resolution and quality. Heatmap
regression methods can achieve good performance, but they require deep networks and
many parameters, resulting in complicated calculations and slow detection.

In recent years, with more attention to severe occlusion and large pose variations, an
increasing number of works [16,33–41] have aimed at overcoming such obstacles in facial
landmark detection. RCPR [16] detected the occlusion area while estimating the landmarks,
and used the occlusion proportion of the area to weight the regressor. PCD-CNN [33] took
the detected 3D face pose as the initial condition to detect landmarks under large pose
variations. ODN [34] achieved robustness for occlusion by applying adaptive weights
to facial regions and restored low-rank features of occluded regions by exploiting the
geometric structure of the face. LUVLI [35] used a stacked hourglass network to jointly
estimate landmark locations, the uncertainties of these predicted locations, and the visibility
of landmarks. CCDN [36] proposed a cross-order cross-semantic deep network to activate
multiple related facial parts, which fully explored more discriminative and fined semantic
features to solve the problems of partial occlusions and large pose variations. MTAAE [37]
proposed a multi-task adversarial autoencoder network based on the idea of multi-task
learning, which could learn the more representative facial appearance and improve face
alignment performance in the wild. SAAT [38] proposed a sample-adaptive adversarial
training approach, in which the attacker generated adversarial perturbations to reflect
the weakness of the detector, and the detector must improve its robustness to adversarial
perturbations to defend against adversarial attacks. DSCN [39] proposed a dual-attentional
spatial-aware capsule network to improve the ability to capture the spatial positional
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relations between landmarks by using the capsule network that can remember the location
information of the entity. MSM [40] used spatial transformer networks, hourglass networks
and exemplar-based shape constraint to detect landmark under unconstrained conditions.
Fard et al. [41] designed two teacher networks, a Tolerant-Teacher and a Tough-Teacher,
to guide the lightweight student network. The Tolerant-Teacher was trained using soft-
landmarks created by active shape models, while the Tough-Teacher was trained using
the ground truth landmarks. Meanwhile, they designed an assistive loss to determine the
landmarks of teacher network prediction as positive or negative auxiliary.

3. Methods

As illustrated in Figure 2, the sparse-to-dense network mainly consists of two stages:
the patch resampling stage and the relation reasoning stage. The first row of Figure 2
shows the patch resampling stage. This stage aims to improve the quality of shape-indexed
patches cropped under large pose variations, which is beneficial for learning robust shape-
indexed features. The second row of Figure 2 shows the relation reasoning stage, which
exploits facial components’ geometric relations to enhance the shape constraint in order to
achieve robust detection on severe occlusion faces.

down-sample

crop patches 

...
crop patches

prediction 68 patches

mean  shape

sampling

initial  sparse 
re-initialized

dense landmark  
detection network

lightweight networkinput image

offset values

+

sampling

Figure 2. Overall architecture of the proposed network. It consists of two stages: the patch resampling
stage (the first row) and the relation reasoning stage (the second row). The downsample operation in
the first row averages the coordinates of the landmarks in each facial part according to the predefined
indexes. The + operation in the first row adds the offset values of the corresponding sparse landmarks
to the coordinates of all landmarks in each facial part of the mean shape.

3.1. Patch Resampling Stage

As shown in the first row of Figure 2, according to the predefined indexes, except for
the cheek, the rest of the mean shape is downsampled into six landmarks corresponding
to six facial parts: left eyebrow, right eyebrow, left eye, right eye, nose and mouth. This
operation does not include the cheek because the landmarks of the cheek are distributed
along the entire edge of the face and cannot be represented by a single point. These sparse
landmarks allow us to crop large local patches that are fed into a lightweight network to
acquire the offset values. Subsequently, all offset values are applied to the original mean
shape to form a reinitialized shape, which is used to crop small shape-indexed patches.
This resampling operation allows the STDN to improve the quality of shape-indexed
patches, and thus, STDN extracts more robust shape-indexed features compared with
existing methods.

Figure 3 depicts the sparse landmark detection diagram. The mean face shape is
downsampled into six sparse landmarks as the initial shape S0, and each landmark in this
shape represents a facial part. Actually, it is the average of all landmarks in the specific
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facial part. The offset values ∆Sn are predicted based on the shape-indexed patches of
100× 100 size that are cropped surrounding the initial landmark. It is expressed as:

∆Sn = f (I, Sn−1), (1)

where I is the input face image of size 384× 456, Sn−1 is the output shape of the last iteration,
and f (·) represents the regression function of the lightweight network. The current shape
Sn is obtained by updating Sn−1 and used as the initial shape for the next iteration:

Sn = Sn−1 + ∆Sn. (2)

mean shape

down-sample sampling

+

input image

 

convolutional layer

max-pooling operation

fully connected layer

offset values

initial shape 

Figure 3. Sparselandmark detection diagram.

Take the sum of the offset of each iteration as the final offset values:

∆S =
N

∑
n=1

∆Sn, (3)

where N denotes the maximum number of iterations and is set to 2 in our implementation.
The parameters of this network are updated by minimizing the following loss function:

Loss =
N

∑
n=1
‖∆Sn − (S∗ − Sn−1)‖2

2, (4)

where S∗ represents the ground truth of sparse landmarks generated after the downsam-
pling operation.

The reinitialized shape S̄ is derived by applying the offset value of the corresponding
sparse landmark to all landmarks in the facial part of the mean shape:

S̄ =
J⋃

j=1

(Sj
0 + ∆Sj), (5)

Sj
0 is the j-th facial part of the mean shape, and

⋃
denotes the operation of concatenating

all six facial parts (i.e., both eyebrows, both eyes, nose and mouth). The landmarks of the
cheek are taken directly from the mean shape. The reinitialized shape, which is used as the
initial shape of the second stage is more similar to the ground truth than the mean shape.

3.2. Relation Reasoning Stage

An observation of unconstrained faces shows that the eyes and the eyebrows are often
occluded by hair or sunglasses, the mouth may be occluded by food or microphone, and
the cheek may be self-occluded due to large pose variations. Only the nose area is rarely
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completely occluded, as it is located in the central region of the face. Considering all the
above, we argue that the nose can be used as an anchor to constrain other facial components.
The facial components are divided into six groups based on the inherent structure: the
left group, including the left eyebrow and the left eye; the right group, including the right
eyebrow and the right eye; the nose group; the mouth group the left cheek group; and the
right cheek group, as shown in Figure 4.

Figure 4. Diagram of face division. Landmarks of the same color are divided into a group.

The relation reasoning stage employs a dense landmark detection network to exploit
the shape constraint against occlusion, as shown in Figure 5. In this stage, the dense
landmark detection network predicts the offset value at each iteration so that the initial
shape will be gradually updated through multiple iterations. At the first iteration, the dense
landmark detection network uses two candidate shapes to initialize: the reinitialized shape
or the mean shape. The mean shape is used to avoid overfitting caused by heavily relying
on the reinitialized shape. The probability of the reinitialized shape and the mean shape
being chosen is ε and 1− ε, respectively. At the subsequent iterations, the prediction from
the previous iteration is used for initialization. After obtaining the dense initial landmarks,
we feed the cropped small-sized patches into the dense landmark detection network. This
network uses three convolutional layers to extract shape-indexed features from small-sized
patches. A fully connected layer is employed to transform shape-indexed features into
whole features. The whole features are used to directly predict all landmarks; they are also
used to combine with the shape-indexed features as the fusion features, which are used
as the input of the group-relational module for grouping prediction. The group-relational
module first uses the fusion features to extract features of the anchor group (i.e., nose) and
predict the landmarks of the nose. It then uses the features of the anchor group and the
fusion features to deduce the features of other groups and predict their landmarks. This can
make full use of the structural relationship between facial components, so that the network
can predict the landmarks in the case of severe occlusion.

Specifically, the three convolutional layers extract shape-indexed features F based on
local patches of 34× 34 size that are cropped surrounding initial landmarks from the image
of 384× 456 size. These shape-indexed features are first mapped into the whole features fg
and then predict a global offset value as follows:

fg = tanh(W1
g ∗ F + b1

g)

∆yg = W2
g ∗ fg + b2

g,
(6)

where ∆yg denotes the global offset value, tanh denotes a nonlinear activation function,
W1

g denotes the weights of the input-to-hidden fully connected layers, and b1
g denotes the

biases. W2
g and b2

g are the weights and biases of the prediction layer. In the group-relational
module, we introduce the shape-indexed features F into each facial group to supplement
the contextual information when occlusion occurs, and the whole features fg are also
introduced to provide the global shape constraint. For the anchor group (i.e., nose), its
offset value can be formulated as follows:

fn = tanh(W1
n ∗ (F⊕ fg) + b1

n)

∆yn = W2
n ∗ fn + b2

n,
(7)
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where fn denotes the nose group features and ∆yn denotes the offset value of all landmarks
in the nose group. Even if the nose is partially occluded by other objects, shape-indexed
features and global shape constraint still have the capacity to reason the robust nose feature.
For other groups, in addition to the global constraints, the nose feature fn is also introduced
for relation reasoning. Taking the left group as an example, the offset of the left group is
formulated as follows:

fl = tanh(W1
l ∗ (F⊕ fg ⊕ fn) + b1

l )

∆yl = W2
l ∗ ( fl ⊕ fn) + b2

l .
(8)

mean shape

..... F

patches

CNN

1-∈

∈

fc

fc

fc

fc

fc

fc

fc

fc

fc

fc

fc

fc
re-initialized 

shape

i=1

i>1

average 

nose shape

left shape

right shape

mouth shape

left cheek shape

group-relational module
fcfcright cheek shape

fn

fl

fr

fm

frc

flc

fg

the whole face shape

Figure 5. Illustration of a dense landmark detection network that exploits a group-relational module
to reason the relations between facial groups. The mean shape and the reinitialized shape are used as
candidates for initialization. ⊕ is the concatenation operation.

All group offsets are combined into an overall offset:

∆yo = ∆yn ⋃∆yl ⋃∆yr ⋃∆ym ⋃∆ylc ⋃∆yrc, (9)

where ∆yo denotes the prediction of the group-relational module,
⋃

denotes the operation
of concatenating all the offsets, ∆yn, ∆yl , ∆yr, ∆ym, ∆ylc, and ∆yrc denote the offset of the
nose group, the left group, the right group, the mouth group, the left cheek group and the
right cheek group, respectively.

The averaged offset value of ∆yg and ∆yo is output as the current result:

∆y =
1
2
(∆yo + ∆yg), (10)

and the dense landmark detection network is iterated to output the prediction:

yi = yi−1 + ∆yi, (11)
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where yi represents the coordinate of all landmarks at the i-th iteration. Mathematically,
the network parameters are updated by minimizing the following objective function:

min
I

∑
i=1
‖y∗ − (yi−1 +4yi)‖2

2, (12)

where I, y∗, yi−1 and 4yi denote the maximum iteration number, which is set to 3, the
ground-truth landmarks, the results of the previous iteration, and the offset at the i-th
iteration, respectively.

4. Experimentation
4.1. Datasets and Evaluation Metrics

The performance of the proposed framework STDN was validated on three datasets:
300 W [42], COFW68 [43] and Masked 300 W [13].

300 Faces In-the-Wild Challenge (300 W): This dataset [42] includes a total of 3837 faces.
Each face is annotated with 68 landmarks. In our experiments, 3148 images are used as the
training set, which are from the training set of LFPW and HELEN and the whole AFW. We
investigate our approach by following the widely used evaluation setting: the LFPW and
HELEN testing set as Commonset (554), the IBUG dataset as Challengingset (135), and the
union of them as Fullset (689).

Caltech Occluded Faces in the Wild (COFW68): As proposed in [16], the COFW
dataset collects faces under various occlusions and large pose variations in real life. It
contains 1852 images. Each face is annotated with 29 landmarks. In our experiment, the
re-annotated testing set [43] with 68 landmarks is used to verify the effectiveness of dealing
with occlusion.

Masked 300 W: Masked 300 W is proposed in [13], which focuses on masked faces. It
is generated by directly wearing a mask on each face. To further verify the robustness of
the proposed STDN on the severely occluded face, the experiments are conducted with a
cross-dataset setting: trained on the training set of 300 W and tested on three subsets of
Masked 300 W.

Evaluation Metrics

Normalized mean error (NME), the curve of cumulative error distribution (CED) and
the failure rate (FR) were used as evaluation metrics. The NME is defined as follows:

NME =
1
K

K

∑
k=1

∥∥Sk − S∗k
∥∥2

2
L ∗Ωk

(13)

where Sk and S∗k denote the predicted shape and ground truth shape, K denote the number
of samples in a test set, and L, Ωk denotes the landmark number of each face and the
inter-ocular distance, respectively. The CED describes the proportion of predicted data that
falls below a certain NME threshold. FR is calculated as the proportion of samples with a
mean error greater than a given threshold to all samples tested, it is defined as follows:

FR =
Ne>e0

N
(14)

where e0 is the set threshold, which was set to 0.1 in the experiment, Ne>e0 represents
the samples for which the normalized mean error is greater than the threshold, and N
represents all samples participating in the test.

4.2. Implementation Details

In the patch resampling stage, a lightweight network is trained to detect 6 landmarks
using 100× 100 local patches. It starts from two convolutional layers with a stride of 1 and
32 channels for feature extraction. The convolution kernel sizes are 7× 7 and 3× 3, and
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each layer is followed by a max-pooling operation. After that, two fully connected layers
with 512-D and 12-D map features into landmark values, where 12-D is the dimensionality
of landmark coordinate values. The detailed descriptions of the architectures, including
the input and output shapes of each layer and the kernel sizes, are shown in Table 1. For
this lightweight network, the following hyperparameters were set: an initial learning rate
of 0.001, a decay factor of 0.1 and a batch size of 64.

Table 1. Architecture of the lightweight network used in the patch resampling stage.

Layers Input Shape Output Shape Kernel

conv1 6× 100× 100× 3 6× 94× 94× 32 [7× 7, 32]
pool1 6× 94× 94× 32 6× 47× 47× 32 [2× 2, 32]
conv2 6× 47× 47× 32 6× 45× 45× 32 [3× 3, 32]
pool2 6× 45× 45× 32 6× 22× 22× 32 [2× 2, 32]

fc1 6× 22× 22× 64 1× 512 -
fc2 1× 512 6× 2 -

Next, in the relation reasoning stage, fine detection of landmarks is carried out, in
which three convolutional layers (7× 7, 3× 3, 3× 3 kernel size) are used to extract shape-
indexed features from 34× 34 size local patches. Each convolutional layer with a stride
of 1 and 32 channels is followed by a max-pooling layer. After that, the features are fed
into the group-relational module. Each branch network uses two fully connected layers
with 512-D and d, where the value of d changes according to the number of landmarks
in the corresponding group. The detailed descriptions of the architectures, including the
input and output shapes of each layer and the kernel sizes, are shown in Table 2. For this
network, an initial learning rate of 0.0002 and a decay factor of 0.97 were used.

Table 2. Architecture of the dense landmark detection network used in the relation reasoning stage.
The value of d changes according to the number of landmarks in the group.

Layers Input Shape Output Shape Kernel

conv1 68× 34× 34× 3 68× 28× 28× 32 [7× 7, 32]
pool1 68× 28× 28× 32 68× 14× 14× 32 [2× 2, 32]
conv2 68× 14× 14× 32 68× 12× 12× 32 [3× 3, 32]
pool2 68× 12× 12× 32 68× 6× 6× 32 [2× 2, 32]
conv3 68× 6× 6× 32 68× 4× 4× 32 [3× 3, 32]
pool3 68× 4× 4× 32 68× 2× 2× 32 [2× 2, 32]

fc1 68× 2× 2× 64 1× 512 -
fc2 1× 512 68× 2 or d -

4.3. Comparison with State-of-the-Art Methods
4.3.1. Evaluation on the 300 W Dataset

Table 3 shows the comparisons of the sparse-to-dense network (STDN) with state-
of-the-art methods on 300 W [42] dataset. Compared with the same type of coordinate
regression methods [12,13,18,21,34,41,44,45], STDN significantly outperforms other meth-
ods on Commonset, Challengingset, and Fullset. A recent coordinate regression method,
SRN [13], which has comparable performance, can solve occluded faces by exploring the
spatial dependence between different facial components over long and short distances.
However, it does not perform well on faces with large pose variations. RMTL [45] focuses on
using the complementary information between facial landmark localization and expression
recognition to improve performance, and the proposed residual learning module enables
the two tasks to learn complementary information from each other. Our method STDN
focuses on obtaining enough information from face images to locate landmarks without
multitasking. The proposed STDN achieves an NME value of 5.33% on the Challengingset.



Appl. Sci. 2022, 12, 5828 10 of 16

Table 3. NME (in %) of 68-point landmark detection on 300 W.

Method Challenging Common Full

Heatmap
regression

LAB [11] (2018) 5.19 2.98 3.41
SAN [26] (2018) 6.60 3.34 3.98
DFL [28] (2019) 7.20 4.11 4.72
RWAN [30] (2019) 7.37 3.21 3.97
ADC [31] (2020) 7.04 2.83 4.23
3FabRec [32] (2020) 5.74 3.36 3.82
MTAAE [37] (2021) 7.48 4.30 5.30

Coordinate
regression

MDM[12] (2016) 7.48 4.03 4.46
DR [18] (2016) 13.80 4.51 6.31
TR-DRN [21] (2017) 7.56 4.36 4.99
ODN [34] (2019) 6.67 3.56 4.17
AVS [44] (2019) 6.49 3.21 3.86
SRN [13] (2021) 5.86 3.08 3.62
RMTL [45] (2021) 5.50 3.00 3.49
mnv2 [41] (2022) 6.13 3.56 4.06
STDN (Ours) 5.33 3.02 3.44

In comparison with the heatmap regression methods [11,26,28,30–32,37], the proposed
STDN can still exceed most of the methods on three subsets. However, heatmap regression
methods always stack deeper networks, so they are slower to compute and require a larger
number of parameters. For example, in terms of inference speed, our method can achieve
31 FPS, outperforming LAB [11] (11 FPS) by a large margin.

Figure 6 shows the CED curves of STDN compared to the methods [12,46–51]. It can
be seen that STDN significantly outperforms these open-source face alignment methods.
Figure 7 shows the qualitative results of STDN on 300 W [42]. Under large pose variations
and occlusion, the predictions from STDN still ensure the overall face shape.

Figure 6. The CED curves for three subsets of 300 W.

Figure 7. Representative results on 300 W.
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4.3.2. Evaluation on COFW68 Dataset

To further prove the robustness of STDN when handling occluded faces, we conducted
a cross-dataset evaluation on COFW68 [43] dataset, which covers different occlusions. In
this setting, COFW68 is only used for testing, not training. Table 4 shows the performance
compared with other methods on COFW68. We find that only LAB [11] outperforms ours
in terms of NME, but STDN achieves the lowest failure rate. LAB [11] is a heatmap-based
method, which is computationally expensive. The qualitative results of COFW68 are
visualized in Figure 8.

Table 4. NME (in %) of 68-point landmark detection on COFW68.

Method NME FR (0.1)

HPM [43] (2014) 7.46 -
OSRD [52] (2014) 9.27 -
TCDCN [53] (2015) 8.05 6.31
LBF [54] (2016) 13.7 -
CRASM [19] (2016) 8.02 -
MDM [12] (2016) 6.32 4.31
LAB [11] (2018) 4.62 2.17
ODN [34] (2019) 5.87 2.84

STDN (Ours) 4.64 1.97

Figure 8. Representative results on COFW68.

4.3.3. Evaluation on Masked 300 W Dataset

Although COFW68 [43] and the Challengingset of 300 W [42] contain a large number
of real-life occlusions, these occlusions are often small, and severe occlusions, such as
medical masks, are rarely seen. Table 5 shows the comparison results with state-of-the-art
methods [12,46,49,50,55,56] on Masked 300 W [13]. The proposed STDN achieves the best
performance on three subsets. Figure 9 displays the visualized predictions of STDN on
Masked 300 W [13]. Our predictions demonstrate that STDN can reason for rational face
structures even under severe occlusions.

Table 5. NME (in %) of 68-point landmark detection on Masked 300 W.

Method Challenging Common Full

CFSS [46] (2015) 19.98 11.73 13.35
MDM [12] (2016) 15.66 8.42 9.83
SHG [49] (2016) 13.52 8.17 9.22
FAN [55] (2017) 10.81 7.36 8.02
SBR [50] (2018) 15.28 9.72 10.65
DHGN [56] (2020) 12.19 8.98 9.61

STDN (Ours) 9.64 6.51 7.12



Appl. Sci. 2022, 12, 5828 12 of 16

Figure 9. Example images from Masked 300 W.

4.3.4. Analysis

From the above results, it can be seen that STDN demonstrates competitive perfor-
mance compared with state-of-the-art approaches. This is mainly due to three advantages:
(1) Compared with existing methods based on shape-indexed features, STDN obtains a
high-quality reinitialized shape that can be used to crop high-quality local patches; (2)
the shape constraints implied in shape-indexed features may fail under severe occlusion,
and GPR further explores the spatial relationships between facial groups to strengthen the
shape constraints; and (3) compared with LAB [11], which imposes shape constraints by
predicting facial boundary information, STDN has a faster inference speed.

4.4. Ablation Study
4.4.1. Investigation of the Effectiveness of the Two Stages

To investigate the impact of the patch resampling stage (PRS) and the group-relational
module (GRM) on landmark detection, four experiments were carried out on 300 W [42]:
(1) PRS and GRM were removed from STDN as baseline, the prediction was obtained by
two fully connected layers; (2) PRS was added to the baseline; (3) GRM was added to the
baseline, the shape-indexed patches were cropped by using a mean shape; and (4) PRS and
GRM were added to the baseline. The results are shown in Table 6. Both PRS and GRM
can achieve improvements in detection accuracy. The best performance is achieved when
integrating both PRS and GRM into the STDN.

Table 6. Ablation experiments of the patch resampling stage (PRS) and the group-relational
module (GRM).

Method Challenging Common Full

baseline 6.31 3.23 3.82
baseline + PRS 5.55 3.07 3.55

baseline + GRM 5.58 3.05 3.54
baseline + PRS + GRM 5.33 3.02 3.44

4.4.2. Investigation of Different Group Strategies

We further investigated the different strategies of facial group division. To report the
experiments, four group divisions were exploited, as shown in Figure 10. GRM* divides
the whole face into three groups: the upper group includes eyes and eyebrows, the lower
group includes nose and mouth and the cheek group; GRM** divides the whole face
into five groups: the eyebrows group, the eyes group, the nose group, the mouth group
and the cheek group; GRM*** divides the whole face into four groups: the upper group
includes eyebrows and eyes, the nose group,the mouth group and the cheek group; GRM
is a face division method used in STDN. These divisions explore the geometric relations
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between facial components. The results are reported in Table 7, which indicates that the
best performance can be achieved by dividing the face into five groups with the nose as
the center.

Figure 10. Strategies for dividing face shape into different facial groups.

Table 7. Ablation experiments of different group division strategies on 300 W. *, **, *** indicate the
results using the different group division strategies as shown in Figure 10.

Method Challenging Common Full

STDN with GRM* 5.57 3.09 3.57
STDN with GRM** 5.53 3.06 3.54
STDN with GRM*** 5.48 3.04 3.51

STDN with GRM 5.33 3.02 3.44

4.4.3. Investigation of Hyperparameters

In the relation reasoning stage, the hyperparameter ε is introduced to avoid overfitting.
We increased the value of ε from 0 to 1 in steps of 0.1 and reported its role in localization
accuracy in Table 8. The results show that STDN achieves the best performance when ε is
set to 0.5.

Table 8. Ablation experiments of hyperparameter ε on 300 W Challengingset.

ε 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
NME 7.28 5.41 5.40 5.41 5.38 5.33 5.41 5.45 5.46 5.59 5.54

5. Conclusions

This paper proposes a sparse-to-dense network (STDN) to deal with occlusion prob-
lems. The proposed framework employs a patch resampling approach to improve the
quality of shape-indexed patches, which is helpful for extracting robust shape-indexed
features. Moreover, the STDN exploits the group relations between facial components
to handle occluded faces using a carefully designed group-relational module. Extensive
experiments were conducted to evaluate the performance of the STDN in normal conditions
and occlusion. The experimental results show that STDN improves by 9.16% on Fullset
compared to the baseline, achieves 5.33% on the Challengingset, and improves by 15.53%
compared to the baseline, which fully demonstrates that STDN outperforms most current
methods in terms of robustness against occlusion. Currently, STDN only considers the nose
as an anchor to constrain other facial groups, future work can learn occlusion-adaptive
group relations to make full use of the spatial relations of faces, and also consider learning
differential loss function, which aims at adaptively focusing on the occluded region.
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