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Abstract: Federated learning, a data privacy-focused distributed learning method, trains a model by
aggregating local knowledge from clients. Each client collects and utilizes its own local dataset to train
a local model. Local models in the connected federated learning network are uploaded to the server.
In the server, local models are aggregated into a global model. During the process, no local data is
transmitted in or out of any client. This procedure may protect data privacy; however, federated
learning has a worse case of example forgetting problem than centralized learning. The problem
manifests in lower performance in testing. We propose federated weighted averaging (FedWAvg).
FedWAvg identifies forgettable examples in each client and utilizes that information to rebalance
local models via weighting. By weighting clients with more forgettable examples, such clients
are better represented and global models can acquire more knowledge from normally neglected
clients. FedWAvg diminishes the example forgetting problem and achieve better performance.
Our experiments on SVHN and CIFAR-10 datasets demonstrate that our proposed method gets
improved performance compared to existing federated learning algorithm in non-IID settings, and
that our proposed method can palliate the example forgetting problem.

Keywords: federated learning; example forgetting event; weighted averaging

1. Introduction

In general, deep learning training runs a single centralized model on a large, integrated,
and well-balanced dataset. However, in real life, collecting high quality data is an expensive
labor because data has become more decentralized and personalized. The rising demand
for data privacy precludes certain data from collection. Those uncollectible data cherish
rich knowledge. Federated learning is a methodology to access and utilize that knowledge.
In a federated learning network, a client is the collector, owner, and user of its data, whereas
the server has no access privilege to a client’s data. Since there is only so much a single
client may collect and store, an allied effort is demanded for server and clients to train a
viable global model [1–5].

A standard training process of federated learning begins with the server distributing
copies of an initialized global model to participating clients. Clients train the copied
local models with their own local data. Trained local models are transferred to the server.
The server aggregates the local model parameters to update the global model parameters.
This indirect approach to decentralized data destabilizes training, lowering performance
compared to the traditional centralized deep learning, that is a single machine directly
accessing data to train a centralized model.

To address the inherent issues of federated learning, we focused on the concept
of example forgetting event, a phenomenon inspired by catastrophic forgetting [6–8].
Catastrophic forgetting occurs in a continual learning environment when a model fails
a task previously learned after learning a new task. If a model is to learn two tasks
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consecutively, first task A then task B, it is known that the model’s performance on task A
will drop after learning task B. On the other hand, an example forgetting event happens
when a model loses its previously acquired knowledge on a data point during training.
While a model is training on data batches, the model will successfully predict data x on a
certain point. However, after training on some more batches, the prediction on x will fail.

We presumed that a similar information loss phenomenon will occur for federated
learning. For a federated learning environment, we defined forgettable examples as those
in which a forgetting event occurs immediately after the global model update. In other
words, the local model will succeed in predicting these data before aggregation but global
model after aggregation will not. These data are forgotten. Other data that are not forgotten
are unforgettable examples. Via various experiments, we discovered that forgetting events
occur more frequently in a federated learning environment than a typical centralized
learning environment (single central model training).

Based on these discoveries, we suggest a novel method for federated learning, Fed-
WAvg: federated weighted averaging by example forgetting events. Our method reorga-
nizes the weight of each client according to the number of forgettable examples in each
round. By implementing weighted averaging as an aggregation method, global models are
able to show higher performance in highly unbalanced distribution of decentralized data.

2. Development of Federated Learning

In the early stages of deep learning, the training a model for a task generally occurred
as the following scenario. Researchers collect a substantial amount of samples to build a
rich, integrated, and well-balanced dataset. They design a single centralized model that will
interpret the samples and return results in accordance to the intended task. The researchers
make modifications after analyzing the results. They could gather more samples, clean
out the dataset, tune hyperparameters, or test different neural network architectures. This
has been the case in many environments even outside of the laboratories. Now that deep
learning-based artificial intelligence has achieved a certain level, the recent trend is to make
practical and industrial use out of it. Researching and developing a deep learning model is
one thing; however, commercializing is another. The application of artificial intelligence is
facing numerous issues from not only engineering but also law and cost.

In real life, collecting data for a specific target task is highly expensive. Even so, there
are only so much data any party could have control over because of privacy issues and
corresponding legal disputes. Moreover, with modern communication technology, raw
data is becoming more decentralized and personalized. In blatant terms, data collection
has become a pricey labor with only restricted access privilege; thus, valuable knowledge
is being neglected. Federated learning was proposed henceforth.

Federated learning is a method of training a global model via aggregating multiple
local models. In a federated learning network, multiple nodes communicate with each
other to share knowledge without transmitting the training data. Usually a central node,
a server owned by the developers, will update the global model. Other nodes, machines of
application/service users, will have their own local datasets and train local models. These
nodes are called clients.

The goal of federated learning is to achieve collective knowledge whilst protecting
data privacy in a distributed data environment. That is, the main feature of federated
learning is to amalgamate decentralized or shattered knowledge without transmitting data.
Since sending data to a server or another client has a chance of violating data privacy, data
are strictly utilized within the client; hence, the model aggregation. Transmitting local
models instead of data allows the protection of data privacy. Therefore, researchers are able
to use a larger scope of sensitive data, indirectly. Since the advantage of utilizing normally
inaccessible data is highly beneficial in data driven industry, various studies are being
actively conducted [6,7,9].

FedAvg [1] defines the standard training process of modern horizontal federated
learning [10]. It communicates model parameters between servers and clients. Local model
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parameters are aggregated via an averaging algorithm. The averaged parameters become
the global model parameters. Since FedAvg requires averaging corresponding local model
parameters and updating global model parameters, it is vital that every node shares the
same neural network architecture. In doing so, we can find the equivalent parameters
by position to average or overwrite. FedAvg mainly focuses on the independently and
identically-distributed data environment. As it has already shown stable and suitable
performance, later research alters FedAvg to adapt in harsher non-IID environments.

FedProx [11] introduces proximal regularization terms to limit local updates and keep
the local model close to the global model. In other words, the proximal regularization term
reduces divergence of local models from the global model. FedProx tends to converge
faster in the early stage; however, the later stage performance is nearly the same as FedAvg.
SCAFFOLD [12] is an algorithm that attempts to solve the client drift problem. SCAFFOLD
finds global convergence by using a controlled variate for each client. FedNova [13] is a
normalized averaging method that eliminates objective inconsistency while preserving fast
error convergence. FedNova is complementary to gradient compression or quantization.
FedMA [14] takes an arduous approach. It continues to freeze layers one by one. It builds
up a common ground for every node and slowly reduces divergence by freezing parame-
ters. The development of FedAvg-based federated learning algorithms has been towards
lowering divergence of clients in non-IID. However, all these methods either result in
extremely slower convergence or require increased costs in computing and communication.

Recently, the field of federated learning has branched out to two new frontiers. The first
branch is personalizing. It embraces the divergence to a certain level instead of eliminating
it. Recent methods such as FedBN [15] and FedBABU [16] use certain layers as guidelines.
FedBN excludes batch normalization layers from aggregation. Each client keeps personal-
ized statistics to normalize input data. FedBABU separates neural network architecture
to the body and head. Only the body, the feature extractor, is updated whilst the head,
classifier, is frozen. The body will update in accordance to the fixed head. It also uses fine-
tuning after aggregation. Both methods achieve high performance in personalized settings.
However, if a personalized local model is evaluated in another client’s personalized setting,
it would falter. Moreover, these methods operate in a specific non-IID setting, FedBN using
different datasets for each client and one client per dataset, and FedBABU using the old
non-IID proposed in FedAvg [1]. The second branch is replacing the averaging algorithm
with knowledge distillation [17]. FedDF [18] and FedGen [19] both utilize knowledge
distillation as an aggregation technique instead of averaging algorithm. The replacement
allows each client to have a neural network that is specialized to its hardware properties.
Although knowledge distillation requires a certain number of data collected in the server,
ablation studies show that it can be replaced by randomly generated inputs. Still, the abla-
tion studies also note that the performance is enhanced when the distribution of inputs for
knowledge distillation resembles that of the local training datasets [18].

In summary, the development of federated learning is confronted on four fronts:
how to aggregate knowledge; should generalize or personalize, how to reduce drift or
divergence, and which non-IID to handle. As such, solving a federated learning problem
is accompanied by the risk of having the solution being less effective in other federated
learning situations.

3. Example Forgetting in Federated Learning

A learning event occurs to a data sample when a neural network can successfully
perform the intended task on the sample for the first time. Once it is learned, our assumption
is that the model will be able to keep the knowledge. However, this is not the case.
A forgetting event may rise. A forgetting event is the contrary to a learning event. Once a
neural network loses the acquired knowledge of a trained sample, it will fail the task on
it [6–8]. This phenomenon has been an issue for some time and is well known. However,
this issue has not been dealt with in federated learning.
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3.1. Example Forgetting of FedAvg

To verify the issue exists in federated learning, example forgetting events in federated
learning and centralized learning are compared. We measure example forgetting events
in centralized learning as follows. We randomly batch the training data. During batch
training, a batch of data A, is fed forward to check if a model can correctly predict the target.
The margin error between the target and prediction is calculated and saved for future
reference. After the model is updated by another batch B, we once again feed forward
batch A. If the model predicted correctly for batch A previously but incorrectly after the
batch B update, or if the new margin error is larger than the previous, a forgetting event
has occurred.

Since personalized approaches have more than one model to track, FedAvg is chosen.
However, a global model is never trained but overwritten in FedAvg. Therefore, we define
example forgetting anew. An example forgetting event in federated learning is that a global
model losing knowledge of a data sample which was previously learned to a local model
before aggregation. Therefore, finding a forgetting event is different from centralized model
training. We evaluate the local training dataset on the local model before communication
then evaluate the same dataset on the global model. If an example is successfully classified
by a local model but misclassified by a global model, an example forgetting event has
occurred. When a global model is aggregated, the knowledge learned in each local model is
aggregated as well, resulting in an inevitable information loss. Hence, the newly distributed
local models are more likely to forget trained examples. We compared forgetting events in
federated learning to centralized learning. We recorded the number of forgetting events for
MNIST [20], FMNIST [21], SVHN [22], and CIFAR-10 [23] with DenseNet-121 model [24]
as shown in Table 1. In federated learning, compared to centralized learning, forgetting
events increased by 1989% in MNIST, 472% in FMNIST, 166% in SVHN, and 271% in
CIFAR-10. In particular, there was a huge difference in MNIST. The reason is that in the
case of the MNIST dataset, which is relatively easy to classify compared to other datasets,
example forgetting rarely occurs during centralized learning. In the case of federated
learning, the redistributed global model shows drastic forgetting events. The phenomenon
seems proportional to the classification difficulty of the dataset. For fair comparison, all
hyperparameters are fixed, but 200 epochs were given in centralized learning, and 40 rounds
of 5 epochs are given to each of the 5 clients in federated learning, so that the total epochs
for each client are set to be the same as the epochs of centralized learning.

Table 1. Occurrence of example forgetting events.

MNIST FMNIST SVHN CIFAR-10

Centralized 4044 22,951 84,748 57,717
Federated 80,437 108,415 140,984 156,426

Increase (%) 1989 427 166 271

3.2. Definition of Non-IID

The idea of non-IID in federated learning may seem unorthodox, not the situation itself
but the reason it should be considered. One of main considerations in federated learning
is data privacy [1,2,5]. No node should have access to another node’s data repository nor
should it openly share its data to others. This not only distinguishes federated learning
from parallel and distributed learning, it complicates many aspects of it. For example,
federated learning aggregates local models because it cannot train a single centralized
model directly from local datasets. Clients having computationally weak hardware would
be less of a problem for we could simply transmit the data to an advanced hardware. A
non-IID situation would be easily solved if the centralized control node could receive the
local data distribution from each client. The problem of training on biased or skewed
data could be rectified once it has the privilege to access and modify other nodes’ data.
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Considering all the obstacles from data privacy, one could even argue that federated
learning is business-oriented in nature.

The academic definition of non-IID is simply if connected clients have varying data
distribution [1,25]. Assume there is a dataset {x, y}. For a client k, the local data distribution
would be Pk(x, y). For any other connected client j, the federated learning network is non-
IID if Pk(x, y) 6= Pj(x, y). Some connected clients in the network may have the same local
data distribution; however, as long as there are clients with different distributions, we can
say it is still non-IID. Defining non-IID for a federated learning problem is discussing if it
abstractly simulates or simplifies a plausible real life situation. Therefore, a non-IID should
be convincing.

The non-IID in our problem is a cluster-level label size imbalance. That is, clients in
the same cluster share the same labels while each cluster has non-overlapping labels as
shown in Figure 1. To simplify the matter, the number of total local data samples is the
same for all clients. Such situations could occur due to location variations. If we are to
classify flower images, flower image data collected in one area would differ from those in
another area. Therefore, we could cluster nodes based on the data source location. Another
possible case would be diagnosing genetic diseases. Some genetic pools would be more
susceptible to some diseases.

Figure 1. ResNet-based network architecture used in experiment. An illustrative example of label-size
imbalanced non-IID. The clients in the first cluster A only has airplane and car data. The clients in
the second cluster B only has bird and cat data. The number of each class samples may vary for each
client, however, the total number samples are the same.

3.3. Example Forgetting in Non-IID

In considering federated learning, one can never dismiss non-IID. As mentioned in
Section 3.2, non-IID implemented is a cluster-level label size imbalance. The clients are split
into two clusters. Clients of a cluster have the same classes, and each cluster has different
classes. Each client has the same amount of data in total. However, the number of clients in
each cluster are disproportionate so that certain knowledge would be harder to acquire.
Note that the nodes, both server and clients, do not know which cluster each client is in
or even if such clusters exist because they do not have privilege to access another node’s
data. The dataset used is CIFAR-10. CIFAR-10 is an RGB-colored 32 × 32 image dataset of
10 classes. Each cluster is given two randomly chosen classes of data. Each client contains
1200 non-overlapping samples distributed via uniform random sampling.

A shallower variant of ResNet [26] is implemented as the backbone model for FedAvg.
It has four residual blocks followed by a global average pooling layer and a single fully
connected layer. Each residual block is consisted of two sets of a 3 × 3 convolutional layer
and a batch normalization layer. There are three shortcut connections made with a 1 × 1
convolutional layer and a batch normalization layer. Training proceeds normally as FedAvg
would as in Section 3.1, except iterating 100 rounds instead. At the end of each round,
the number of forgettable examples are recorded.

Table 2 has two clients for the first minor cluster and eight clients for the second
majority cluster. The records of forgettable examples, data samples which forgetting event
occurred, demonstrate that FedAvg highly favors the majority cluster. The reason for this is
that the classes in the majority cluster have a greater chance of being represented. It is easily
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assumable that such a tendency would be mitigated once the clusters are more balanced.
However, the following result begs to differ. Table 3 consists of four minority clients and
six majority clients. The records show that the overall tendency of learning is almost the
same as the 2-to-8 situation in Table 2. According to the results, the majority clients will
always be favored. While they achieve near zero forgettable examples, the minority clients
have almost no advance.

Table 2. Forgettable example counts in each client when non-IID (2-to-8).

Round Minor1 Minor2 Major1 Major2 Major3 Major4 Major5 Major6 Major7 Major8

10 1137 1148 55 73 90 84 103 93 60 79
20 1180 1185 63 38 38 57 66 57 47 60
30 1192 1197 34 22 39 32 45 36 28 39
40 1195 1189 22 12 24 25 29 27 23 22
50 1194 1196 21 8 22 17 27 24 19 22
100 1197 1129 0 1 0 1 2 0 3 5

Table 3. Forgettable example counts in each client when non-IID (4-to-6).

Round Minor1 Minor2 Minor3 Minor4 Major1 Major2 Major3 Major4 Major5 Major6

10 1188 1151 1180 1178 285 295 308 312 286 292
20 1191 1182 1182 1184 86 87 108 103 77 93
30 1194 1181 1191 1194 21 23 25 27 22 22
40 1186 1193 1181 1194 4 5 9 10 3 9
50 1189 1173 1183 1192 0 2 3 2 0 3
100 1121 1114 1130 1120 0 0 0 0 0 1

4. Proposed Method

As mentioned in the previous Section 2, we also make choices to define the federated
learning problem to solve. In our case, we propose a method to build a federated averaged
model in a label-skewed non-IID [25]. The primary focus of our proposed method is to
modify the aggregation method to consider relativity among clients based on the difficulty
of learning local data samples. Meanwhile, data samples are not leaked and only utilized
within the possessing client. Our definition of difficulty to learn derives from the fact
that some data samples tend to be forgotten during aggregation. Our proposed method
applies a hyperparameter to control the change of global model parameters to avoid
extreme divergence.

As mentioned in the previous Section 3, an example forgetting problem is more con-
cerning in federated learning than in centralized learning environment. We also observed
when there is an unbalanced distribution of data among clients, the averaging aggregation
would always favor the majority.

We propose federated weighted averaging (FedWAvg), which rebalances the global
model aggregation based on forgettable examples in clients. FedWAvg ensures the global
model is more influenced by knowledge that would normally be neglected in averaging ag-
gregation in a non-IID environment. It manipulates the weight of each client strengthening
those with more forgettable examples.

The goal of this method is to reduce information loss by model aggregation. The ob-
servations in Section 3 prove that the averaging algorithm is skewed towards the majority
cluster. The resulting global model will forget most of the information from the minority
cluster. This is shown in Tables 2 and 3. Forgetting nearly 90% of the minority (cluster) data
allows us to assume that the global model will fail on the intended task if the inferred input
is from the minority classes. Thus, FedWAvg aims to reduce the number of forgettable
examples—training data samples that are learned then forgotten—after aggregation, which
proves that information loss induced by model aggregation is mitigated.
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To achieve the above goal, FedWAvg counts forgettable examples every t rounds.
The clients send the number of forgettable examples to the server alongside with the local
model parameters. Since the number is a single integer, it would barely add to the size of
payload. In addition, because the number does not reveal anything about the raw training
data or its distribution, it is safe to be transmitted. The number of forgettable examples in
each client means how much information is lost in each client. A client with a high number
of forgettable examples means the local model did not contribute much to the global model.
Therefore, rebalancing clients inverse to the number of forgettable examples would assure
that less influential clients would have more influence, and vice versa. In our case, we used
simple normalization, dividing numbers of forgettable examples by the sum of them as in
Equation (1).

norm(X) =
X

∑ X
, (1)

However, applying normalization directly is not recommended because the weights,
made by normalizing the numbers of forgettable examples, could drastically change local
model parameters. To alleviate radical changes, we added updated ratio hyperparameter α.
The ratio α decides how much change the weights will have. If α is small, then there will be
less change.

(1− α) + α(norm(X)× N) where 0 ≤ α < 1, (2)

The N in Equation (2) is the number of clients. Multiplying the weights with the local
model parameters provides a rebalanced set of local models. This could be applied to any
averaging algorithm-based federated learning methods. In case of FedAvg, the recalcu-
lated local model parameters will be averaged; therefore, executing weighted averaging.
The complete process is explained in Algorithm 1.

Algorithm 1 Federated weighted averaging by example forgetting
Input:
Training data {X, Y}; neural network f ; neural network parameter θ;
global server g; number of clients N; local epoch E;
learning rate η; event period t; update ratio α
Output:
Global model parameter θg

1: procedure FEDERATED WEIGHTED AVERAGING
2: initialize θg; F ← list of N ones; W ← list of N ones
3: while not training done do
4: for n = 1 to N in parallel do . Clients execute in parallel
5: Ŷ ← fθ(X); Ŷg ← fθg(X)
6: θ ← θg
7: for e = 1 to E do
8: θ ← θ − η∇L(θ; X) . Update local model
9: end for

10: if current round modt == 0 then
11: F[n]← count(Ŷ := Y&&Ŷg 6= Y) . Upload forgettable example count
12: end if
13: end for
14: W ← (1− α) + α(norm(F)× N) . Calculate averaging weights (Equation (2))
15: θg ← 1

N ∑N
n=1 θn ×W[n] . Update global model

16: end while
17: return θg
18: end procedure
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5. Experiments and Results

Two experiments are conducted. The first experiment is conducted on SVHN [22] and
CIFAR-10 [23] datasets for an image classification task in a simulated federated learning
environment. The environment is a cluster consisted of virtual nodes. A single central node
that acts as the central server is connected to all other nodes, which are the local clients.
Each client has a connection only to the server. Accessing another client is prohibited.
The federated learning environment consists of nine clients. The training dataset is split
in two to form a non-IID settings for biased client cluster. Clients within the cluster
share the same classes but no class is shared among clusters. The first setting has two
minority clients and seven majority clients, and the second setting has two, three, and four
clients for each three clusters. For simplicity, we assumed every client is utilized in every
communication round and contributes to updating the global model. The same shallower
modification of ResNet in Section 3.3 is used as a backbone model f with an Adam optimizer.
Hyperparameters are learning rate η 0.001, weight decay 0.0, batch size 64, local epochs
E 10, communication rounds 200, and event period t 1. The test results are presented in
Tables 4 and 5. According to the results, in both datasets, SVHN (Table 4) and CIFAR-10
(Table 5), FedWAvg achieves higher accuracy than previous methods for both environment.
Still, FedWAvg performance is sensitive to the alpha hyperparameter.

Table 4. Test accuracy (%) for SVHN.

2:7 Top 2:7 Average 2:3:4 Top 2:3:4 Average

FedAvg [1] 53.83 53.49 48.29 34.62
FedProx [11] 70.60 57.89 73.83 59.14

SCAFFOLD [12] 53.09 50.28 19.01 15.02
FedNova [13] 56.33 52.25 42.11 32.21

FedWAvg (α = 0.1) 57.27 50.31 72.91 37.16
FedWAvg (α = 0.2) 76.07 54.60 87.37 63.84
FedWAvg (α = 0.3) 92.37 65.55 88.47 67.00

Table 5. Test accuracy (%) for CIFAR-10.

2:7 Top 2:7 Average 2:3:4 Top 2:3:4 Average

FedAvg 61.28 45.94 45.20 36.85
FedProx 48.35 46.32 46.55 39.52

SCAFFOLD 44.35 42.13 31.03 27.18
FedNova 54.53 50.79 48.03 39.44

FedWAvg (α = 0.1) 68.55 49.38 70.85 41.56
FedWAvg (α = 0.2) 51.80 46.26 74.70 50.92
FedWAvg (α = 0.3) 80.83 50.07 75.27 51.69

The second experiment compares the change of the number of forgettable examples
over rounds. The experiment setup is nearly the same but with the following changes.
There are only two clusters containing two clients and eight clients each. A cluster has
two classes designated. The dataset used is CIFAR-10. Each client contains 1200 non-
overlapping CIFAR-10 samples. Batch size is increased to 128 and communication round
is 500. α is 0.3. Tables 6–8 present the number of forgettable examples by three federated
learning methods. FedAvg (Table 6) and FedProx (Table 7) show nearly no improvement of
reducing forgettable examples. On the other hand, FedWAvg (Table 8) have the number of
forgetting examples in half by 200 rounds, although it seems to fluctuate after.
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Table 6. FedAvg forgettable example counts in each client when non-IID (2-to-8).

Round Minor1 Minor2 Major1 Major2 Major3 Major4 Major5 Major6 Major7 Major8

100 1197 1129 0 1 0 1 2 0 3 5
200 1169 1164 0 0 0 0 0 0 0 0
300 1008 1012 0 0 0 0 0 0 0 0
400 1030 1023 0 0 0 0 0 0 0 0
500 1065 1063 0 0 0 0 0 0 0 0

Table 7. FedProx forgettable example counts in each client when non-IID (2-to-8).

Round Minor1 Minor2 Major1 Major2 Major3 Major4 Major5 Major6 Major7 Major8

100 1200 1193 3 6 6 7 13 13 8 11
200 1170 1172 1 0 1 0 2 0 0 0
300 1185 1184 0 0 0 0 0 1 0 0
400 1190 1177 0 0 0 0 0 2 0 0
500 1157 1147 0 0 0 0 0 0 0 0

Table 8. FedWAvg forgettable example counts in each client when non-IID (2-to-8).

Round Minor1 Minor2 Major1 Major2 Major3 Major4 Major5 Major6 Major7 Major8

100 1193 1196 5 3 0 2 3 0 1 3
200 527 514 3 7 1 3 4 5 4 4
300 644 672 3 1 1 1 2 1 0 1
400 461 463 2 2 1 4 1 3 5 3
500 504 496 4 6 7 5 2 1 3 3

6. Discussion

The results of the first experiment show that our proposed method has stronger
adaptation for extreme non-IID cases where a group of clients have less influence on the
global model compared to other clients. FedWAvg expresses exceptional strength when
groups are mildly differed in number but hierarchical, nonetheless. By the results of the
second experiment, we can tell that our method is running as intended by its design.
Combined, we suggest that having less forgetting events has contributed to enhancing the
performance of the global model. A vital issue to note is that the performance is highly
sensitive to the update ratio hyperparameter α. Currently, α is a hyperparameter, but could
be developed to automatized. That is a topic of future research.

The parity between top performance and average performance is too large to ignore.
Therefore, we executed a 1000 round training with the same setup as the second exper-
iment. In the beginning, the global model fluctuates greatly every round. Over time,
the amplitude decreases. Moreover, the number of forgettable example track records show
that, beyond 400 rounds, the numbers stay within 450 to 500 range. It is converging to a
certain degree. Presumably, this pattern occurs due to the fact that weights change every
round since the event ratio t is 1. The drop of forgettable examples in minor clients after
a successful weighted aggregation afflicts the averaging weights. The averaging weights
then reduce the influence of weaker—minority cluster—clients causing the global model
to drastically lose knowledge previously obtained from weaker clients. In the next round,
this will be amended only to be broken again in the upcoming round. In other words,
recalculating averaging weights every round creates disincentive to weaker clients. When
the global model performs adequately, it causes the global model to lose their knowledge
in the next round. Then, the loss of knowledge creates incentive to weaker clients again.
Before verifying our presumption, we sought to inspect possible sources of the pattern. It
could have been affected by the non-IID environment. The result is visualized in Figure 2.

Figure 2 shows each result of FedWAvg (orange), FedAvg (green), and FedProx (blue)
in the same setup. Compared to FedWAvg, although the early trends are more stable,
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the mid and end performances oscillate just as FedWAvg. Even so, the general performance
of FedWAvg is around 20% better than the other two methods. While FedAvg’s performance
swings around 50% and FedProx’s performance is stuck between 50 and 60%, FedWAvg’s
performance is around 70% and higher. The common fluctuation in all three methods may
be caused by the harsh label size imbalance.

Figure 2. Test accuracy over communication rounds. The orange line is FedWAvg, green FedAvg,
and blue FedProx.

The oscillation of FedWAvg results in a larger disparity between top accuracy and
average accuracy than previous methods. Despite the comparatively higher general perfor-
mance and the presumptive possibility of environmental cause, it would be desirable to
reduce the amplitude, especially in the early stage of training. After monitoring 1000 rounds,
we estimate that the presumption is invalid. Controlling event period t may have some
alleviating effect but would not be an effective approach. Because averaging weights are
defined by the immediate situation, holding seemingly good weights does not alleviate the
issue. Moreover, the patterns in FedAvg and FedProx present that there will be fluctuations
regardless. FedAvg, especially, provides insights since FedAvg is practically FedWAvg with
fixed weight of ones. Technically, FedWAvg is FedAvg with variable averaging weights.

Another attempt was to try to freeze the classifier parameters. Since the classifier
does not update, freezing its parameters would induce feature extractors to learn to fit
the classifier. If the same classifier is shared for all clients, the classifier could function
like an answer sheet [16]. Thus, we have frozen the classifier and trained FedWAvg in the
same setup.

Figure 3 shows that there is an increasing trend with the classifier frozen (blue).
However, the difference is less than 10% and also requires costly communications. It
requires more than 700 rounds to see a distinguishable difference and 800 rounds to see
a significant difference. Moreover, the fluctuation is still apparent. Although parameter
freezing may increase the performance, it is blatantly inefficient.

Figure 3. Test accuracy over communication rounds with parameter freezing. The blue line is
FedWAvg with classifier frozen, and the orange line is FedWAvg without parameter freezing.
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7. Conclusions

We suggested a new definition of the example forgetting problem in accordance with
federated learning. We experimentally proved that the issue of example forgetting is worse
in federated learning than in centralized learning. We proposed a federated weighted aver-
aging algorithm (FedWAvg) that would weight local model parameters based on forgettable
examples in each client. By monitoring the change of the number of forgettable examples,
we proved that our method can lessen the information loss caused by model aggregation.
Our experiments show that FedWAvg is better suited in extreme non-IID cases compared to
previous methods. However, it has more to develop. The fluctuating performance caused
by the non-IID environment is yet to be solved. Furthermore, the sensitivity to the update
ratio hyperparameter should be copied for the method to be better stabilized.
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