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Abstract: A switching neural network control scheme, consisting of the adaptive neural network
controller and sliding mode controller, is proposed for underactuated formation reconfiguration in
elliptic orbits with the loss of either the radial or in-track thrust. By using the inherent coupling of
system states, the switching neural network technique is then adopted to estimate the unmatched
disturbances and design the underactuated controller to achieve underactuated formation recon-
figuration with high precision. The adaptive neural network controller works in the active region,
and the disturbances composed of linearization errors and external perturbations are approximated
by radial basis function neural networks. The adaptive sliding mode controller works outside the
active region, and the upper bound of the approximation errors is estimated by the adaptation law.
The stability of the closed-loop control system is proved via the Lyapunov-based approach. The
numerical simulation results have demonstrated the rapid, high-precision and robust performance of
the proposed controller compared with the linear sliding mode controller.

Keywords: spacecraft formation; formation reconfiguration; underactuated spacecraft; switching
neural network

1. Introduction

Spacecraft formation flight is rapidly becoming a hot topic of research in space with
its great potential for Earth observation, in-orbit services, deep space imaging and explo-
ration [1–3]. It decentralizes the functions of a single spacecraft into a group of smaller
ones, thereby reducing risk and cost and improving reliability and adaptability [4]. The
ability of these spacecrafts to reshape or retarget from one formation to another completes
the formation reconfiguration, greatly increasing the flexibility of formation missions. The
methods of formation reconfiguration using continuous thrust can generally be divided
into two categories: fully actuated and underactuated. Fully actuated means that there are
independent control channels in the radial, in-track and normal directions. The current
research on consensus with formation reconfiguration focuses on fully-actuated systems, a
series of control methods have been proposed for the full-actuated formation reconfigura-
tion mission such as sliding mode control, state Riccati equations, adaptive control, and
neural network control [5–7]. If the thrusters break down in one direction, the number
of independent controls of the system is less than the degrees of freedom, it becomes an
underactuated system, which cannot complete the reconfiguration mission, and the above
control schemes are then not applicable anymore. Although the installation of backup
thrusters can solve this problem, considering the need for light weight and miniaturization
of spacecraft in the future, it is more economical and effective to design an underactuated
control scheme.

Focusing on the fully actuated reconfiguration problems, scholars at home and abroad
have conducted much research, but seldom have works that deal with the underactuated
reconfiguration been reported in the literature. Leonard et al. examined the feasibility of
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formation control using only in-track differential atmospheric drag [8] and a linear feedback
controller for underactuated formation reconfiguration was designed by Kumar et al. [9].
Godard et al. designed a nonlinear controller for formation reconfiguration without in-track
thrust [10]. Yin et al. designed an impulsive control strategy for the elliptical relative mo-
tion based on the relative orbit elements [11]. Huang et al. derived the optimal analytical
solution for an underactuated formation reconfiguration in circular orbits and proposed
an underactuated controller for formation reconfiguration in elliptical orbits [12,13]. Ya-
suhiro proposed the control scheme to achieve the optimal formation reconfiguration with
bounded and small attitude changes using only a few thrusters [14]. The traditional forma-
tion reconfiguration control adopts the linearized CW equations [15] or Tschauner–Hempel
equations [16] to model the relative motion of the satellites within the formation and ig-
nores the external perturbation [17,18]. To overcome this requirement, neural networks are
capable of approximating arbitrary smooth functions on tight sets with arbitrary accuracy
and are therefore widely used to estimate nonlinear uncertainties in system dynamics.
Despite the ability to approximate with high accuracy, approximation errors still exist. As
a result, in most previous work [19–21], it was only possible to guarantee that the state
error was consistently and eventually bounded, or that it was arbitrarily small if the feed-
back gain [22] was sufficiently large. Neural network-based controllers need to add more
nodes when the application range increases in order to meet the higher accuracy, which
leads to a complex structure and too much computation for real-time in-orbit calculations.
Inaccurate estimation of the neural network will also affect the performance of the whole
controller and even cause the system to diverge. To address such issues, Xia et al. [23]
designed a spacecraft rendezvous and docking controller based on a coupled orbit-attitude
dynamic model by combining adaptive methods with the backstepping method using
switching functions. With similar methods, Sun et al. [24] proposed a neural networks
controller for spacecraft formation using only aerodynamic forces. Given that linearization
errors and external disturbances do exist in the dynamics of underactuated formation
reconfiguration in elliptic orbits, a switching neural network controller (SNNC) for the
underactuated spacecraft formation reconfiguration problem is proposed, using adaptive
neural network controllers to approximate the uncertainties in the neural active region and
using adaptive sliding mode controllers to approximate uncertainties outside the active
region. The proposed SNNC enhances the steady-state control accuracy and does not rely
on the upper bound of the uncertainties, thus, could improve the robustness of the system
against uncertainties. Compared with the existing related research, the main contributions
of this article can be summarized as follows.

1. The nonlinear terms and perturbations in the dynamics model of underactuated SFF
are estimated in real-time by a neural network to obtain higher control accuracy.

2. The adaptation laws of the radial-based neural networks derived by using Lyapunov’s
method are provided to estimate the unknown parameters of the system so that it is
not necessary to know the upper bound of the perturbation in advance.

3. The control scheme is able to complete the underactuated formation reconfiguration
task in elliptic orbits with the loss of radial or in-track thrust, improving the reliability
of the task completion.

The paper is structured as follows: Section 2 develops a model for the dynamics of
underactuated spacecraft formations in elliptical orbits; Section 3 details the closed-loop
state feedback controller design method, and numerical simulations are given in Section 4
to verify the performance of the proposed controllers. Finally, Section 5 concludes the
full text.

2. Dynamic Model of Underactuated SFF

Consider the chief spacecraft in the formation flying in elliptical orbits. As depicted in
Figure 1, two reference frames are used to describe the relative motion between the chief
and deputy, OEXIYI ZI is the Earth-centered inertial (ECI) frame with OE being the center
of Earth, and OCxyz is the local-vertical local-horizontal (LVLH) frame fixed at the center
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of the chief OC, where the x axis is pointing in the radial direction of the chief, the z axis is
normal to the orbital plane, and the y axis completes the right-handed frame.
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Therefore, the orbital equations of underactuated SFF can be written in the state space
form as [10].

.
X = AX + m−1

d (BiUi + DF), i = 1, 2, (1)

with

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ω2
C + 2n2

C αC 0 0 2ωC 0
−αC ω2

C − n2
C 0 −2ωC 0 0

0 0 −n2
C 0 0 0

, Bi =

[
03×2
Bi2

]
,

B12 =

 0 0
1 0
0 1

, B22 =

 1 0
0 0
0 1

, D =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

.

(2)

Denote the relative state vector of the deputy as X =
[
ρT .

ρ
T
]T

, where ρ =
[
x y z

]T
and

.
ρ =

[ .
x

.
y

.
z
]T are the relative position vector and relative velocity vector, respec-

tively, ωC = nC
√
(1 + e cos θ) is the angular velocity of the chief and αC = −2n2

Ce sin θ is

the angular acceleration of the chief, nC =
√

µ/R3
C, µ is the Earth’s gravitational constant,

RC is the radius of the deputy e and θ are, respectively, the eccentricity and true anomaly,

mD is the mass of the deputy spacecraft, F ∈ R3 =
[
dx dy dz

]T denotes the vector of total
disturbances including the nonlinear terms and perturbations. For the case without radial

control, the control input is denoted as U1 =
[
Uy Uz

]T
. For the case without in-track

control, the control input is denoted as U2 =
[
Ux Uz

]T
.

The controllability of the underactuated systems and the feasibility of reconfiguration
have been well investigated in the literature [13] and lead to the following lemma:
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Lemma 1. For the case without radial control, formation reconfiguration in elliptical orbit is
still feasible without any supplementary conditions. For the case without in-track control, it is
conditionally feasible provided that the condition x̃I(0) = x̃II(0) holds, where x̃I(0) and x̃II(0) are
the coordinate transformations of the relative radial positions of the chief and deputy spacecraft in
configuration I and configuration II respectively at the initial moment, and can be expressed as:{

x̃I(0) = (1 + e cos θ)xI(0),
x̃II(0) = (1 + e cos θ)xI I(0).

(3)

Since the uncontrollable state of the system x̃I(0) = (1 + eC cos θC)xI(0) keeps its
initial value constant during the reconfiguration process, the preconditions for achiev-
ing configuration II are naturally satisfied when the above conditions are met, so the
reconfiguration is still feasible in the case of in-track underactuated.

3. Controller Design
3.1. RBFNN

The radial basis function neural network (RBFNN) has been extensively used in
control system design because it can approximate any continuous nonlinear function with a
compact set and arbitrary accuracy [24,25], and can adapt and learn the dynamic properties
of uncertain systems. For a continuous nonlinear function f (X) ∈ Rn, a RBFNN can
approximate it on a compact as:

f (X) = W∗Th(X) + ε, (4)

where X is the input vector, ε is the approximation error of the unknown upper bound, W∗

is the ideal weight value of the network output, and h = [h1 h2 . . . hn]
T is the radial basis

function vector denoted as:

hj(X) = exp
(
−‖X− Cj‖2/(2b2

j )
)

, j = 1, 2, . . . , n. (5)

where hj(X) is the output of the jth neuron in the hidden layer, Cj and bj is the center and
width of the Gaussian basis function of the jth neuron, and n is the number of nodes of the
neural network.

3.2. Controller for the Case without Radial Control

Define the desired relative state of motion as Xd =
[
ρT

d
.
ρ

T
d

]T
, where ρd =

[
xd yd zd

]T
and

.
ρd =

[ .
xd

.
yd

.
zd
]T are the desired relative position vector and relative velocity vector,

respectively, and the desired dynamics equation for the elliptical orbital underactuated
formation can be formulated as follows:

.
Xid = AXid, i = 1 , 2. (6)

The error dynamics system obtained by making the difference between
Equations (1) and (6) is given by:

.
ei= Aei + m−1(BiUi + Di), i = 1 , 2. (7)

where ei = Xi − Xid is the error state vector. Then the error dynamics equation in the
absence of radial control can be rewritten as [13].{ .

e1u = A11e1u + A12e1a + m−1d1u,
.
e1a = A13e1u + A14e1a + m−1(U1 + d1a),

(8)
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with

A11 =


0 0 0 1
0 0 0 0
0 0 0 0

ω2
C + 2n2

C αC 0 0

, A12 =


0 0
1 0
0 1

2ωC 0

,

A13 =

[
−αC ω2

C − n2
C 0 −2ωC

0 0 −n2
C 0

]
, A14 =

[
0 0
0 0

]
.

(9)

where e1u = [ex ey ez
.
ex]

T, e1a = [
.
ey

.
ez]

T, d1u = [01×3 dy]
T and d1a = [dy dz]

T.
Note that e1u ∈ R4 and e1a ∈ R2, we make a linear transformation of e1u to obtain a new
variable e1u = C11e1u ∈ R2, where C11 ∈ R2×4 is the design parameter matrix denoting the
linear transformation for e1u from four dimensions to two dimensions,

C11 =

[
k11 k12 0 k13
0 0 1 0

]
(10)

where k11, k12 and k13 are the controller design parameters. Then the dynamics of e1u is
given by:

.
e1u = (C12 +

.
C11)e1u + C13e1a + m−1C11d1u (11)

with

C12 = C11A11, C13 = C11A12 =

[
k12 + 2ωCk13 0

0 1

]
. (12)

The sliding surface is then chosen as:

s1 = [s11 s12]
T
= α1e1u + [(C12 +

.
C11)e1u + C13e1a] ≈ α1e1u +

.
e1u, (13)

where α1 > 0 is a positive constant, the control law is designed as:

U1 = u1eq + u1s, (14)

where u1eq is the equivalent control and u1s is the reaching law, respectively designed as:

u1eq = −m̂A1 − δ1,
u1s =

.
s1 = −m̂C−1

13 [K1s1 + η1sigσ1(s1)],
(15)

with

A1 = C−1
13

[
(

.
C12 +

..
C11)e1u +

.
C13e1a + (C12 +

.
C11)(A11e1u + A12e1a) + C13e1a)

]
+(A13e1u + A14e1a) + α1C−1

13

[
(C12 +

.
C11)e1u + C13e1a

]
,

δ1 = C−1
13

[
(C12 +

.
C11)d1u

]
+ d1a + α1C−1

13 C11d1u,

sigσ1(s1) =
[
|s11|σ1sgn(s11) |s12|σ1sgn(s12)

]T,

(16)

where m̂ is the estimated value of the mass, and δ1 is the total disturbance. The total distur-
bance δ1 can be approximated by RBFNN in the active region. Substituting Equation (4)
into Equation (14) yields.

U1 = −m̂A1 −W∗T1 h(X)− ε1 + u1s, (17)

where X =
[

x y z
.
x

.
y

.
z
]T is the input vector. Although the RBFNN has the ability to

approximate the disturbance with high accuracy, the approximation error still exists. In
order to reduce the approximation error, the upper bound of the error needs to be updated
and estimated by the adaptive law. Defining φi as the upper bound of the estimation error
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εi, denote φ̂i = [φ̂i1, φ̂i2]
T as the estimate of φi, and Ŵ1 as the estimate of the neural network

weights, Equation (17) can be rewritten as:

U1 = −m̂A1 − Ŵ1
Th(X)− diag(φ̂11, φ̂12)sgn(s1) + u1s. (18)

The adaptive sliding mode control method is used to automatically adjust the control
gain to compensate for the uncertainty in the upper bound outside the active region, and
the control law is designed as:

U1 = −m̂A1 − δ̂1 + u1s, (19)

where δ̂1 is an estimate of the unknown upper bound of perturbations. A nonlinear function
}a,b(eρ) is chosen to construct the switching function [26].

}a,b(ei) =


0 , ‖ei‖ ≤ a,

1− cos2
(

π
2 sin2

(
π
2
‖ei‖2−a2

b2−a2

))
, a < ‖ei‖ < b,

1 , ‖ei‖ ≥ b,

(20)

where 0 < a < b are design parameters to determine the neural active region. The input to
the switching function is the error state ei. The switching control law combining the neural
network control law and the adaptive sliding mode control law is designed as:

U1 = −m̂A1 + (1− }a,b(eρ))un1 + }a,b(eρ)us1 + u1s, (21)

with
un1 = −Ŵ1

Th(X)− diag(φ̂11, φ̂12)sgn(s1),
us1 = −δ̂1.

(22)

The adaptive laws of m̂, Ŵ1, φ̂1 and δ̂1 in Equation (21) are designed as:

.
m̂ = γ1sT

1 A1,
.

Ŵ1 = (1− }a,beρ))ξ1h(X)s1
T,

.
φ̂ 1 = (1− }a,b(eρ))ξ2|s1|,.
δ̂1 = }a,b(eρ)ξ3s1,

(23)

where γ1 > 0, ξ1, ξ2 and ξ3 are diagonal positive definite matrices. To demonstrate the
stability of the closed-loop control system, consider the Lyapunov candidate function.

V1 = (1/2)(sT
1 ms1 + γ−1

1 m̃2 + tr(W̃1
Tξ1W̃1) + φ̃T

1 ξ−1
2 φ̃1 + δ̃T

1 ξ−1
3 δ̃1) (24)

where m̃ = m̂−m, W̃1 = Ŵ1 −W1
∗, φ̃1 = φ̂1 − φ1 and δ̃1 = δ̂1 − δ1 are the estimation

errors of m, W1
∗, φ1 and δ1, respectively. Taking the time derivative of Equation (24) and

substituting Equation (23) into the derivative of Equation (24) yields.
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.
V1 = sT

1 m
.
s1 + γ−1

1 m̃
.

m̂ + tr(W̃
T
1 ξ1

.
Ŵ1) + φ̃T

1 ξ−1
2

.
φ̂1 + δ̃T

1 ξ−1
3

.
δ̂1

= sT
1 m(A1 + m−1(U1 + δ1)) + γ−1

1 m̃
.

m̂ + tr(W̃
T
1 ξ1

.
Ŵ1) + φ̃T

1 ξ−1
2

.
φ̂

1
+ δ̃T

1 ξ−1
3

.
δ̂1

= −sT
1 (K1s1 + η1sigσ1(s1)) + sT

1 δ1 − sT
1 δ̂1 + tr(W̃

T
1 ξ1

.
Ŵ1) + φ̃T

1 ξ−1
2

.
φ̂1 + δ̃T

1 ξ−1
3

.
δ̂1

= −sT
1 (K1s1 + η1sigσ1(s1)) + sT

1 (1− })(−W̃1h(x) + ε1 − diag(φ̂1)sgn(s1)) + (1− })
(

sT
1 W̃1h(x) + φ̃1|s1|

)
= −sT

1 (K1s1 + η1sigσ1(s1)) + (1− })(sT
1 ε1 −φ1|s1|)

= −(1− })
2
∑

i=1
|s1i|(φ1i − ε1isgn(s1i))− sT

1 K1s1 − sT
1 η1sigσ1(s1)

≤ −(1− })
2
∑

i=1
|s1i|(φ1i − ε1isgn(s1i))− K11‖s1‖2 − η11‖s1‖σ1+1 < 0.

(25)

Therefore, the underactuated closed-loop system is asymptotically stable.

3.3. Controller for the Case without In-Track Control

Similar to the approach in the case without radial control, for the case without in-track
control, the error dynamics system can be rewritten as:{ .

e2u = A21e2u + A22e2a + m−1d2u,
.
e2a = A23e2u + A24e2a + m−1(U2 + d2a),

(26)

with

A21 =


0 0 0 0
0 0 0 1
0 0 0 0
−αC ω2

C − n2
C 0 0

, A22 =


1 0
0 0
0 1

−2ωC 0

,

A23 =

[
ω2

C + 2n2
C αC 0 2ωC

0 0 −n2
C 0

]
, A24 =

[
0 0
0 0

]
,

(27)

where e2u = [ex ey ez
.
ey]

T, e2a = [
.
ex

.
ez]

T, d2u = [01×3 dy]
T and d2a = [dx dz]

T.

The control input is U2 = [Ux Uz]
T.

Similarly, note that e2u ∈ R4 and e2a ∈ R2, a linear transformation e2u = C21e2u ∈ R2

is performed, and the matrix C21 is given by,

C21 =

[
0 k21 0 k22
0 0 1 0

]
. (28)

The dynamic equations of e2u can be expressed as:

.
e2u = (

.
C21 + C22)e2u + C23e2a + m−1C21d2u, (29)

with

C22 = C21A21, C23 = C21A22 =

[
−2ωCk22 0

0 1

]
. (30)

The sliding surface is then chosen as:

s2 = [s21 s22]
T
= α2e2u + [(P22 +

.
P21)e2u + P23e2a] ≈ α2e2u +

.
e2u, (31)

where α2 > 0 is a positive constant. The control law is designed as:

U2 = u2eq + u2s, (32)
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where u2eq is the equivalent control and u2s is the reaching law designed as:

u2eq = −m̂A2 − δ2,
u2s =

.
s2 = −m̂C−1

23 [K2s2 + η2sigσ2(s2)],
(33)

with

A2 = C−1
23

[
(

.
C22 +

..
C21)e2u +

.
C23e2a + (C22 +

.
C21)(A21e2u + A22e2a) + C23e2a)

]
+(A23e2u + A24e2a) + α2C−1

23

[
(C22 +

.
C21)e2u + C23e2a

]
,

δ2 = C−1
23

[
(C22 +

.
C21)d2u

]
+ d2a + α2C−1

23 C21d2u,

(34)

where K2 > 0, η2 > 0 are the positive constants. Then the switching control law combining
the neural network control law and the adaptive sliding mode control law is designed as:

U2 = −m̂A2 + (1− }a,b(eρ))un2 + }a,b(eρ)us2 + u2s, (35)

with
un2 = −Ŵ2

Th(X)− diag(φ̂21, φ̂22)sgn(s2),
us2 = −δ̂2.

(36)

The adaptive laws of m̂, Ŵ2, φ̂2 and δ̂2 in Equation (35) are designed as:

.
m̂ = γ2sT

2 A2,
.

Ŵ2 = (1− }a,b(eρ))ξ1h(X)s2
T,

.
φ̂2 = (1− }a,b(eρ))ξ2|s2|,.
δ̂2 = }a,b(eρ)ξ3s2,

(37)

where γ2 > 0, ξ1, ξ2 and ξ3 are positive definite diagonal matrices. Consider the Lyapunov
function V2 designed as:

V2 = (1/2)(sT
2 ms2 + γ−1

2 m̃2 + tr(W̃2
Tξ1W̃2) + φ̃T

2 ξ−1
2 φ̃2 + δ̃T

2 ξ−1
3 δ̃2) (38)

where W̃2 = Ŵ2 −W2
∗, φ̃2 = φ̂2 − φ2 and δ̃2 = δ̂2 − δ2 are the estimation errors of

W∗2 , φ2 and δ2, respectively. Similar to the method used in the stability proof of radial
underactuated, the same asymptotic stability of the closed-loop system can be proved for
the case without in-track control and will not be repeated.

4. Simulations

The performance of the proposed controllers will be demonstrated by simulating a
reconfiguration scenario and comparing the fuel consumption in two underactuated cases.
The chief satellite flies in elliptical orbits and the orbital elements for the chief are given in
Table 1.

Table 1. Initial orbital elements of the chief spacecraft.

Orbit Element Value

Apogee altitude/m 3× 106

Perigee altitude/m 5× 105

Inclination/deg 40
Right ascension of ascending node/deg 60

Argument of perigee/deg 270
True anomaly/deg 0
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The initial mass of the deputy is m = 10 kg, the deputy’s estimated mass is m̂ = 8 kg.
The matrix C ∈ R12×5 in RBFNN is chosen as:

C =

[
C1
C2

]
, (39)

with

C1 =



−1000 −500 0 500 1000
−600 −300 0 500 1000
−1000 −500 0 500 1000
−0.5 −0.25 0 0.25 0.5
−1.0 −0.5 0 0.5 1.0
−1.0 −0.5 0 0.5 1.0

,C2 =



−250 −125 0 125 250
−600 −300 0 500 1000
−500 −250 0 250 500
−0.3 −0.15 0 0.15 0.3
−0.5 −0.25 0 0.25 0.5
−0.5 −0.25 0 0.25 0.5

. (40)

4.1. Case without the Radial Control

The deputy’s initial state is XI(t0) =
[
0 1000 0 0.5 0 1

]T, the terminal state

of the deputy is XI(t f ) =
[
0 500 0 0.3 0 0.5

]T, given that J2 perturbation is the
main disturbance in LEO. A nonlinear dynamical model of J2-perturbed spacecraft relative
motion is introduced to evaluate the robustness of the system [27]. Meanwhile, another
periodic disturbance is also incorporated into the dynamical model expressed as:

D = Dm

sin(nCt)
sin(nCt)
cos(nCt)

, (41)

where Dm is a constant. Furthermore, the linear sliding mode controller (LSMC) was
introduced for comparative analysis [10]. For the case without radial thrust, the LSMC is
designed as:

UL1 = −m0((A13e1u + A14e1a) + P12(A11e1u + A12e1a) + c1(P12e1u + e1a) + K11sL1 + K12sigσ1(sL1)) (42)

The sliding mode surface is designed as sL1 = e1a + P12e1u + c1ẽ1u, where c1 > 0 is
the controller parameter. Furthermore, k11, k12 and k13, are selected according to ideas
given in [13]. The other control parameters for SNNC and LSMC are shown in Table 2. To
facilitate comparison between the two types of controllers, the controller parameters are
selected on the principle that similar control energy is consumed to complete the formation
reconfiguration mission.

Table 2. Closed-loop controller parameters without radial control.

Controller Parameter

SNNC

α1= 2× 10−3, γ1 = 1, k11 = 0.99
√

2|k12|,
k12 = −1.95

√
ωC, k13 = 1/

√
ωC, K1 = diag(2× 10−3, 3× 10−3),

η1 = diag(10−5, 10−6), ξ1 = diag(8.4× 10−5, 8.4× 10−5),
ξ2 = diag(4× 10−4, 8× 10−6),

ξ3 = diag(1.5× 10−6, 1× 10−7), a = 6, b = 50, σ1 = 0.5,
bj = 1.2× 103

LSMC
a1= 2× 10−3, k11 = 0.99

√
2|k12|, k12 = −1.95

√
ωC, k13 = 1/

√
ωC,

K11 = 10−3 · diag(2, 3), K12 = 10−6 · diag(10, 1), σ1 = 0.5

A comparison of the relative position errors and velocity errors of the SNNC and
LSMC are shown in Figures 2 and 3. Details of the trajectories of relative position errors
and relative velocity errors since T is also enlarged in the right side of Figures 2 and 3,
respectively, from which it can be seen that the steady-state relative position error for both
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types of controllers is in the order of 100 m. The steady-state error is smaller and the control
accuracy is higher with the SNNC compared to the LSMC controller.
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Comparisons of the SNNC and LSMC control input are depicted in Figure 4, with a
magnitude of 10−3 m/s2 and approximately 0.8 period to reach steady state. The reconfigu-
ration trajectory of the spacecraft is shown in Figure 5, which shows that the SNNC is able
to perform the formation reconfiguration mission and verifies the feasibility of formation
reconfiguration in the absence of radial thrust.
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To further compare the performance of the two types of controllers, the following
evaluation indicators are defined. Denote a = U/m as the control acceleration, then the
control energy consumption is defined as J =

∫ t f
t0

(aTa/2)dt, and the velocity incremental

consumption is defined as ∆V =
∫ t f

t0
‖a‖dt. ts is the settling time required for the relative

distance error ‖eρ(t)‖ to converge and remain within 1% of its initial value ‖eρ(0)‖, that is
∀t ≥ ts, ‖eρ(t)‖ ≤ 1%‖eρ(0)‖. The average steady-state relative distance error is defined as

ds = mean
ts≤t≤t f

{
‖eρ(t)‖

}
. (43)

Quantitative comparisons on the performance indices of these two controllers are
summarized in Table 3, showing that the SNNC has faster convergence and a 20.7%
reduction in steady-state error compared to the LSMC controller for the same amount of
control energy consumed, providing higher control accuracy.
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Table 3. Performance indices.

Case
Performance Index

ts, Orbit ds, m ∆V, m/s J, m2/s3

SNNC 0.82 1.03 0.77 4.61 × 10−4

LSMC 0.82 1.30 0.77 4.61 × 10−4

4.2. Case without the In-Track Control

For the case without in-track control, the LSMC is designed as

UL2 = −m0((A23e2u + A24e2a) + P22(A21e2u + A22e2a) + c2(P22e2u + e2a) + K21sL2 + K22sigσ2(sL2)). (44)

The sliding mode surface is designed as sL2 = e2a + P22e2u + c2ẽ2u, where c2 > 0 is
the controller parameter. The other control parameters for SNNC and LSMC are shown
in Table 4. Similar to the case without the radial control, the controller parameters are
selected on the principle that similar control energy is consumed to complete the formation
reconfiguration mission.

Table 4. Closed-loop controller parameters without in-track control.

Controller Parameter

SNNC

α2= 1× 10−3, γ1 = 1, k21 = −0.25, k22 = −500,
K2 = diag(1× 10−3, 3× 10−3), η2 = diag(1× 10−6, 1× 10−6),

ξ1 = diag(8× 10−6, 8× 10−6), a = 6, b = 50, ξ2 = diag(1× 10−6,
1× 10−9), ξ3 = diag(1.3× 10−9, 1× 10−8), bj = 1.2× 103, σ1 = 0.5

LSMC a2= 2× 10−3, k21 = −0.25, k22 = −500, K21 = diag(1× 10−3, 3× 10−3),
K22 = diag(1× 10−6, 1× 10−6), σ1 = 0.5

Time histories of the relative position errors and velocity errors of the SNNC and
LSMC are shown in Figures 6 and 7, details of the trajectories since T are also enlarged in
the right side of Figures 6 and 7, respectively, from which it can be seen that the steady-state
relative position error for both types of controllers is in the order of 100 m. The steady-
state error is smaller and the control accuracy is higher with the SNNC compared to the
LSMC controller.
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Figure 8 shows the comparison of the SNNC and LSMC control inputs, with a mag-
nitude of 10−3 m/s2 and a steady-state time of about 0.8 period. The reconfiguration
trajectory of the spacecraft is shown in Figure 9, which shows that the SNNC is capable
of managing the formation reconfiguration mission and demonstrating the feasibility of
formation reconfiguration with the loss of in-track thrust.
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A comparison of the performance indices for the two controllers is shown in Table 5.
Similar to the case with the loss of radial thrust, for the same amount of control energy
consumed, the SNNC has faster convergence and a reduction in steady-state error of
approximately 33.2% compared to the LSMC controller, providing higher control accuracy.
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Table 5. Performance indices.

Case
Performance Index

ts, Orbit ds, m ∆V, m/s J, m2/s3

SNNC 1.35 1.45 0.74 4.14 × 10−4

LSMC 1.46 2.17 0.74 4.14 × 10−4

5. Conclusions

In this paper, the SNNC for underactuated formation reconfiguration in elliptical orbit
is designed. A linear time-varying dynamical model is used to describe the relative motion
of the deputy satellite with respect to the chief. To guarantee trajectory tracking in the
presence of thrust failures and unmatched disturbance, the SNNC consisting of the adaptive
neural network controller and sliding mode controller is proposed. RBFNN is used to
approximate the uncertainty term in the dynamical system and an adaptive law derived
via the Lyapunov-based method is used to estimate the upper bound on the approximation
error, which avoids the requirement for a priori knowledge of the upper bound on the
approximation error and ensures the overall stability of the system. The SNNC, combining
the adaptive neural network with adaptive sliding mode work cooperatively, not only
improves the control accuracy, but also prevents the adverse effects of inaccurate neural
network estimation on the system. The simulation results indicate that the proposed SNNC
can obtain higher control accuracy than the LSMC and improve disturbance rejection
performance, and the proposed controller could be directly applied to a series of formation
reconfiguration missions in the near future. Furthermore, the controller can be adopted in
other similar relative orbital control problems, such as spacecraft rendezvous and hovering.
The current research focuses on formation reconfiguration in elliptical orbits. In future,
we plan to extend our current work in two directions. First, we will extend our work to
output feedback control schemes for underactuated spacecraft reconfiguration with the
loss of velocity measurements and thrust simultaneously. Second, we will extend our work
to similar reconfiguration problems in elliptic orbits using relative orbit elements to reduce
the tracking error.
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