
Citation: Farid, G.; Cocuzza, S.;

Younas, T.; Razzaqi, A.A.; Wattoo,

W.A.; Cannella, F.; Mo, H. Modified

A-Star (A*) Approach to Plan the

Motion of a Quadrotor UAV in

Three-Dimensional Obstacle-

Cluttered Environment. Appl. Sci.

2022, 12, 5791. https://doi.org/

10.3390/app12125791

Academic Editor: Seong-Ik Han

Received: 14 April 2022

Accepted: 3 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Modified A-Star (A*) Approach to Plan the Motion of a
Quadrotor UAV in Three-Dimensional
Obstacle-Cluttered Environment
Ghulam Farid 1 , Silvio Cocuzza 2,* , Talha Younas 1, Asghar Abbas Razzaqi 3, Waqas Ahmad Wattoo 1,
Ferdinando Cannella 4 and Hongwei Mo 3

1 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Sahiwal Campus,
Sahiwal 57000, Pakistan; farid.anjum@yahoo.com or farid.anjum@cuisahiwal.edu.pk (G.F.);
talha.younas@cuisahiwal.edu.pk (T.Y.); waqas@cuisahiwal.edu.pk (W.A.W.)

2 Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
3 College of Automation, Harbin Engineering University, Harbin 150001, China;

asghar.abbas.razzaqi@gmail.com (A.A.R.); mhonwei@163.com (H.M.)
4 Industrial Robotics Facility, Italian Institute of Technology, 16163 Genoa, Italy; ferdinando.cannella@iit.it
* Correspondence: silvio.cocuzza@unipd.it; Tel.: +39-049-8276793

Abstract: Motion-planning algorithms play a vital role in attaining various levels of autonomy for
any ground or flying agent. Three-dimensional (3D) motion-planning is interesting, but rather
complex, especially for flying agents such as autonomous unmanned aerial vehicles (UAVs), due
to the increased dimensionality of space and consideration of dynamical constraints for a feasible
trajectory. Usually, in 3D path search problems, it is hard to avoid extra expanded nodes due to
increased dimensionality with various available search options. Therefore, this paper discusses and
implements a modified heuristic-based A* formalism that uses a truncation mechanism in order to
eradicate the mentioned problem. In this formalism, the complete motion planning is divided into
shortest path search problem and smooth trajectory generation. The shortest path search problem is
subdivided into an initial naïve guess of the path and the truncation of the extra nodes. To find a
naïve shortest path, a conventional two-dimensional (2D) A* algorithm is augmented for 3D space
with six-sided search. This approach led to the inclusion of extra expanded nodes and, therefore, it
is not the shortest one. Hence, a truncation algorithm is developed to further process this path in
order to truncate the extra expanded nodes and then to shorten the path length. This new approach
significantly reduces the path length and renders only those nodes that are obstacle-free. The latter
is ensured using a collision detection algorithm during the truncation process. Subsequently, the
nodes of this shortened path are used to generate a dynamically feasible and optimal trajectory
for the quadrotor UAV. Optimal trajectory generation requires that the plant dynamics must be
differentially flat. Therefore, the corresponding proof is presented to ensure generation of the
optimal trajectory. This optimal trajectory minimizes the control effort and ensures longer endurance.
Moreover, quadrotor model and controllers are derived as preliminaries, which are subsequently
used to track the desired trajectory generated by the trajectory planner. Finally, results of numerical
simulations which ultimately validate the theoretical developments are presented.

Keywords: heuristic search; 3D A-star search; quadrotor; UAV; motion planning; trajectory generation

1. Introduction

Scientific developments in the field of micro unmanned aerial vehicles (UAVs) have
made it possible to accomplish numerous daily life challenges for which human deploy-
ment may possess a probable life risk, e.g., surveillance of damaged nuclear reactors,
reconnaissance missions in hostile environments, surveillance of damaged buildings in
earthquake-affected areas, etc. [1–6]. In recent warfare zones, UAVs can act as smart mobile

Appl. Sci. 2022, 12, 5791. https://doi.org/10.3390/app12125791 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12125791
https://doi.org/10.3390/app12125791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8895-4460
https://orcid.org/0000-0001-9746-4642
https://doi.org/10.3390/app12125791
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12125791?type=check_update&version=2

Appl. Sci. 2022, 12, 5791 2 of 21

weapons, which can search for a specific target by recognizing the facial features or other
prescribed characteristics of the target. Due to its vertical takeoff and landing (VTOL),
perching ability, and quasi-stationary flight attributes, the quadrotor UAV has garnered
much attention from the research community as compared to other UAVs [7,8]. For any
robot, the central motive for novelties and research expansions is to bring about ultimate
autonomy and intelligence. Therefore, during the past several years, researchers have
contributed significantly in the fields of design, intelligent control, trajectory generation,
and motion-planning to enhance the autonomy level of micro quadrotor UAVs [9–15].

Motion-planning has widely been investigated for robots operating in various kinds
of environments, and several methods exist to search for a path in obstacle-cluttered
environments [16–20]. Dijkstra is an earlier and simpler version developed to find the
shortest path on a map. Later, it was improved, and the subsequently developed algorithm
is known as a greedy best-first search algorithm, which works in a similar fashion as does
Dijkstra. However, the latter incorporates guided search through heuristics, which helps in
estimating how far the goal is from any current vertex. The Dijkstra algorithm works in all
directions simultaneously and is therefore computationally costly for three-dimensional
motion-planning. However, it is guaranteed to find the shortest path. Contrarily, greedy
best-first search algorithm works in a guided direction and runs quickly. However, the path
found is not guaranteed to be the shortest. Therefore, it only focuses on the cost to reach the
goal point and ignores the cost of the path, which is the major drawback of this algorithm.
The promising solution is the combination of both aforementioned algorithms, and the
consequence is known as A* algorithm, i.e., A-star. A* is the most popular algorithm in
pathfinding problems, and it has been used extensively in numerous ground robotic path
search applications [17–22]. Extension of A* to 3D space poses the issue of exploration of
extra nodes that result in a suboptimal path. Such suboptimal paths will render a trajectory
that increases the control effort of the UAV and obviously reduces the flight endurance.

Autonomous navigation of a micro quadrotor UAV through obstacles cluttered in a
three-dimensional space requires fast search algorithms featuring the ability of map-reading
in order to generate a shortest collision-free path between initial and final positions. The
generated shortest path must be dynamically feasible, smooth, and optimal [23–28]. A
typical motion-planning problem involves two entities; one is the determination of the
shortest collision-free path between start and final goal positions using the search algorithm,
and the other is the generation of a dynamically feasible trajectory by taking into account
the found shortest path [29–31]. Most of the commonly used search algorithms for solving
autonomous robot navigation problems are graph-theory-based, and the generated shortest
path always contains infinite curvatures [32–35]. This ultimately implies certain unwanted
limitations on quadrotor mission profile, i.e., quadrotor dynamics cannot handle infinite
curvatures and it must stop at these points. To eradicate this limitation in our work, the
shortest path found by the search algorithm is handed over to a trajectory generation
algorithm, which generates a dynamically feasible and optimal trajectory with finite and
smooth curvatures. The vibration of the UAV frame [36,37] and the motion of a robot
manipulator mounted on the UAV [38] might affect the system dynamics and motion
planning, and this will be investigated in future works. In particular, a reactionless motion
of the manipulator [39–42] will be beneficial because it will not significantly affect the
system dynamics.

Most of the search algorithms present in the literature have only been investigated
for ground robotic applications, and therefore, their implementation is limited only to two-
dimensional cases. However, this paper augments a heuristic-based A* search algorithm
from a two-dimensional scenario to three-dimensional space, and this work specifically
involves a quadrotor UAV traversing the generated shortest path. The major contribution
of this paper is the development of modified A* formalism in order to plan a motion for
a quadrotor UAV in a 3D space. This includes the generation of a dynamically feasible
trajectory to reduce the control effort as well. In 3D space, a conventional A* approach
may expand extra nodes if its expansion is kept to six neighboring sides. Therefore, in

Appl. Sci. 2022, 12, 5791 3 of 21

many scenarios, the searched 3D path may not be the shortest one and can involve extra
nodes. In this work, we have modified the conventional approach of an A* algorithm by
developing a truncation algorithm which takes the path nodes computed using A* as input.
The modified approach guarantees a collision free shortest possible path by truncating
the extra nodes. These nodes of the determined shortest path are then used to generate a
dynamically feasible trajectory using the differential flatness theorem. Various constraints
have been considered in order to generate an optimal trajectory using the Euler–Lagrange
formalism. This optimal trajectory reduces control effort and enhances the flight endurance
of the UAV. Subsequently, the generated trajectory is followed autonomously by a micro
quadrotor UAV in order to validate the developments of this work.

The rest of the paper is organized as follows: Section 2 presents a dynamical model of
micro quadrotor UAV and controller structure which are subsequently used to traverse the
generated trajectory. Section 3 explains the modified A* algorithm and trajectory generation.
Section 4 illustrates the results of numerical simulations performed in MATLAB. Finally,
Section 5 concludes the contribution and developments of this study.

2. Preliminaries
2.1. Modeling

A brief discussion on quadrotor modeling is presented in this section. The model
is derived using Newton–Euler methodology, which has subsequently been used to de-
rive a model-based flight controller. Referring to Figure 1, two reference frames are used
to describe the motion of the aerial vehicle. The frame fixed to body is represented by
B =

[
bx by bz

]
, while the frame attached to the earth is characterized by E =

[
ex ey ez

]
.

The earth-fixed frame is also known as inertial reference frame in most of the studies. The
rotational motions across x, y and z-axes are called roll, pitch and yaw, respectively. These
are symbolized by vector [φ θ ψ]

T , and the corresponding body angular rates are repre-

sented by ωB = [p q r]T .

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 21

contribution of this paper is the development of modified A* formalism in order to plan a
motion for a quadrotor UAV in a 3D space. This includes the generation of a dynamically
feasible trajectory to reduce the control effort as well. In 3D space, a conventional A* ap-
proach may expand extra nodes if its expansion is kept to six neighboring sides. Therefore,
in many scenarios, the searched 3D path may not be the shortest one and can involve extra
nodes. In this work, we have modified the conventional approach of an A* algorithm by
developing a truncation algorithm which takes the path nodes computed using A* as input.
The modified approach guarantees a collision free shortest possible path by truncating the
extra nodes. These nodes of the determined shortest path are then used to generate a dy-
namically feasible trajectory using the differential flatness theorem. Various constraints
have been considered in order to generate an optimal trajectory using the Euler–Lagrange
formalism. This optimal trajectory reduces control effort and enhances the flight endurance
of the UAV. Subsequently, the generated trajectory is followed autonomously by a micro
quadrotor UAV in order to validate the developments of this work.

The rest of the paper is organized as follows: Section 2 presents a dynamical model
of micro quadrotor UAV and controller structure which are subsequently used to traverse
the generated trajectory. Section 3 explains the modified A* algorithm and trajectory gen-
eration. Section 4 illustrates the results of numerical simulations performed in MATLAB.
Finally, Section 5 concludes the contribution and developments of this study.

2. Preliminaries
2.1. Modeling

A brief discussion on quadrotor modeling is presented in this section. The model is
derived using Newton–Euler methodology, which has subsequently been used to derive
a model-based flight controller. Referring to Figure 1, two reference frames are used to
describe the motion of the aerial vehicle. The frame fixed to body is represented by 𝐵 =𝑏 𝑏 𝑏 , while the frame attached to the earth is characterized by 𝐸 = 𝑒 𝑒 𝑒 .
The earth-fixed frame is also known as inertial reference frame in most of the studies. The
rotational motions across x, y and z-axes are called roll, pitch and yaw, respectively. These
are symbolized by vector 𝜙 𝜃 𝜓 , and the corresponding body angular rates are rep-
resented by 𝜔 = 𝑝 𝑞 𝑟 .

Figure 1. Quadrotor model with reference frames.

From Newton–Euler equations, the position 𝜁 of the center of quadrotor body and
velocity 𝑉 can be expressed as:

Figure 1. Quadrotor model with reference frames.

From Newton–Euler equations, the position ζE
O of the center of quadrotor body and

velocity VE
O can be expressed as:

dζE
O

dt
= VE

O (1)

dVE
O

dt
= −gez + R

FB
m

ez (2)

Appl. Sci. 2022, 12, 5791 4 of 21

dR
dt

= R S(ωB) (3)

where g is gravity, FB is vertical thrust, m is body mass, R is rotation matrix and S(ωB) is a
skew symmetric matrix.

S(ωB) =

 0 −r q
r 0 −p
−q p 0

 (4)

In the inertial reference frame, the rate of change of angular momentum of the quadro-
tor body relative to its origin is equal to the total moment that results from all external
forces that acts on the quadrotor body. This can be written as:

dEHE
O

dt
= τB (5)

The τB is the net moment of the body produced by the external forces and torques
about the origin O, while HE

O is the angular momentum in inertial reference frame E and
is equal to IOωE

B . The term IO denotes an inertia tensor with O as its origin; ωE
B is body

angular rates in the inertial reference frame and is equal to pbx + qby + rbz.
Equation (5) can be written in the body reference frame as follows:

dEHE
O

dt
= τB (6)

where dB HB
O

dt = Ix
.
pbx + Iyqby + Izrbz, ωB × HB

O is the Coriolis effect and ω ×

0
0

IrΩr

 is

gyroscopic effect.
Ix 0 0
0 Iy 0
0 0 Iz

.
p
.
q
.
r

+

0 −r q
r 0 −p
−q p 0

Ix 0 0
0 Iy 0
0 0 Iz

p
q
r

+

qIrΩr − 0
0− pIrΩr

0

 =

τBφ

τBθ

τBψ

 (7)

As the name suggests, a quadrotor possesses four actuator entities called rotors, which
produce two major dynamic terms. One is vertical thrust, or the lift force, and the other
is the moment around the axis of rotation of the rotors. Lift force is central to performing
any type of quadrotor maneuver, and its various combinations give the following four
control terms:

FB = b
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4

)
τBφ = lb

(
Ω2

4 −Ω2
2

)
τBθ = lb

(
Ω2

3 −Ω2
1

)
τBψ = d

(
Ω2

4 + Ω2
2 −Ω2

3 −Ω2
1

)

(8)

where b and d represent thrust and drag factors, respectively, while Ωi represents
propeller speed.

The rotation sequence R(z, ψ)× R(x, φ)× R(y, θ) is used for rotation matrix R and the
transformation from Euler angular rates to body angular rates is

p
q
r

 =

cos θ 0 − cos φ sin θ

0 1 sin φ
sin θ 0 cos φ cos θ

.
φ
.
θ
.
ψ

.

Characterizing l as the distance of rotors from the center of mass of the body, replacing
FB with U1 and

[
τBφ τBθ τBψ

]T with
[
lU2 lU3 U4

]T and assuming transformation

Appl. Sci. 2022, 12, 5791 5 of 21

from Euler angular rates to body angular rates as identity, we can extract the following
mathematical model of the quadrotor UAV from Equations (1)–(8):

..
x = (cos ψ sin θ + cos θ sin φ sin ψ)

1
m

U1 (9a)

..
y = (sin ψ sin θ − cos ψ cos θ sin φ)

1
m

U1 (9b)

..
z = −g + (cos φ cos θ)

1
m

U1 (9c)

..
φ =

.
θ

.
ψ

(
Iy − Iz

Ix

)
− Ir

Ix

.
θΩr +

l
Ix

U2 (10a)

..
θ =

.
φ

.
ψ

(
Iz − Ix

Iy

)
+

Ir

Iy

.
φΩr +

l
Iy

U3 (10b)

..
ψ =

.
φ

.
θ

(
Ix − Iy

Iz

)
+

1
Iz

U4 (10c)

where Ix, Iy and Iz are the terms of inertia tensor, Ir symbolizes rotor inertia and Ωr is the
relative speed of cross coupled rotor pairs and is equivalent to Ω2 + Ω4 −Ω1 −Ω3.

2.2. Controller Design

The controller equations derived here incorporate the control law partitioning scheme
from [43], which yields an affine nonlinear type of flight controller by cancelling the nonlin-
ear terms. The cancellation of these terms renders a system with unit mass. This facilitates
the tuning of the controller gains, as these become independent of system parameters.
The whole control structure of the flight controller is divided into two blocks: inner and
outer loop blocks. The inner loop block holds three attitude states (roll, pitch and yaw)
and one Cartesian state (altitude state), while the outer loop block holds two remaining
Cartesian states (x and y). The partitioning scheme is only applied to the inner block, while
a linearization assumption is made in order to derive a relationship between the inner and
outer control blocks.

2.2.1. Inner Loop Controller

To devise a controller for attitude states, considering attitude dynamics from
Equation (10) and by writing moment equation for each corresponding state, we have

τφ

τθ

τψ

 =

lU2
lU3
U4

 =

Ix

..
φ

Iy
..
θ

Iz
..
ψ

+

.
θ Iz

.
ψ−

.
ψIy

.
θ

.
ψIx

.
φ−

.
φIz

.
ψ

.
φIy

.
θ −

.
θ Ix

.
φ

+

.
θ IrΩr − 0
0−

.
φIrΩr
0

 (11)

τφ

τθ

τψ

 =

Ix 0 0
0 Iy 0
0 0 Iz

..
φ
..
θ
..
ψ

+

Iz − Iy 0 0

0 Ix − Iz 0
0 0 Iy − Ix

.
θ

.
ψ

.
φ

.
ψ

.
φ

.
θ

+

.
θ IrΩr

−
.
φIrΩr

0

 (12)

τ = I1
..
Θ + I2Λ

(.
φ,

.
θ,

.
ψ
)
+ G

(.
φ,

.
θ,

.
ψ, IrΩr

)
(13)

where τ =

τφ

τθ

τψ

, I1 =

Ix 0 0
0 Iy 0
0 0 Iz

,
..
Θ =

..
φ
..
θ
..
ψ

, I2 =

Iz − Iy 0 0

0 Ix − Iz 0
0 0 Iy − Ix

,

Λ
(.

φ,
.
θ,

.
ψ
)
=

.
θ

.
ψ

.
φ

.
ψ

.
φ

.
θ

, and G
(.

φ,
.
θ,

.
ψ, IrΩr

)
=

.
θ IrΩr

−
.
φIrΩr

0

.

Appl. Sci. 2022, 12, 5791 6 of 21

The model-based part of the partitioning control scheme generates the following input
command, which, in fact, is a computed torque term:

τ = ατ′ + β (14)

where α = I1 and β = I2Λ
(.

φ,
.
θ,

.
ψ
)
+ G

(.
φ,

.
θ,

.
ψ, IrΩr

)
.

Equations (10) and (11) lead to following:

..
Θ = τ′ (15)

By defining error as e = Θd −Θ, where Θd =

φd
θd
ψd

 and Θ =

φ
θ
ψ

, we can formulate

the servo part of the adopted control scheme as:

τ′ =
..
Θd + Kd

.
e + Kpe (16)

..
Θ =

..
Θd + Kd

.
e + Kpe (17)

The following equation is derived from (17):

..
e + Kd

.
e + Kpe = 0 (18)

Equation (18) is a second-ordered differential equation in the error space and holds two
coefficients (gains). The careful tuning of these gains allows to obtain the desired response.

2.2.2. Outer Loop Controller

In order to formulate a partitioning-based control scheme for the outer loop, first
considering altitude state and replacing U1 with f , we can write the following from
Equation (9c):

(cos φ cos θ)U1 = m
..
z + mg (19)

f = (cos φ cos θ)−1 m
(..
z + g

)
(20)

f = α f ′ + β (21)

with α = m(cos φ cos θ)−1 and β = mg(cos φ cos θ)−1.
Thus, we can derive the following affine nonlinear controller equation:

..
z = f ′ (22)

Altitude error is defined as e = zd − z, where zd is desired altitude and z is current
altitude. We can write the servo portion of the control law as:

f ′ =
..
zd + Kd

.
e + Kpe (23)

..
z =

..
zd + Kd

.
e + Kpe (24)

The final controller equation will assume the following form:

f = m(cos φ cos θ)−1(..
zd + Kd

.
e + Kpe

)
+ mg(cos φ cos θ)−1

In order to formulate a correspondence between translational states Equation (9a,b)
and rotational states Equation (10a,b), a linearization assumption is made by considering
small roll and pitch angles, i.e., it is assumed that the UAV is around hovering state. This
assumption leads to following from translational dynamics represented by Equation (9a,b):

..
x = g(∆φ sin ψ + ∆θ cos ψ) (25)

Appl. Sci. 2022, 12, 5791 7 of 21

..
y = g(∆θ sin ψ− ∆φ cos ψ) (26)

Furthermore, we can extract the following desired roll and pitch commands:

φd =
1
g
(..

x sin ψd −
..
y cos ψd

)
(27)

θd =
1
g
(..

x cos ψd +
..
y sin ψd

)
(28)

In order to force the system to follow desired trajectory commands, the following
controller equations can be formulated:

..
x =

..
xd + Kd

.
e + Kpe (29)

..
y =

..
yd + Kd

.
e + Kpe (30)

The final forms of Equations (27) and (28) are:

φd =
1
g
((..

xd + Kd
.
e + Kpe

)
sin ψd −

(..
yd + Kd

.
e + Kpe

)
cos ψd

)
(31)

θd =
1
g
((..

xd + Kd
.
e + Kpe

)
cos ψd +

(..
yd + Kd

.
e + Kpe

)
sin ψd

)
(32)

In order to track a specified trajectory, a complete trajectory profile must be generated
from waypoints in an autonomous system. For a minimum snap trajectory, the desired
profile is

(
xd,

.
xd,

..
xd, x(iii)d , x(iv)d , yd,

.
yd,

..
yd, y(iii)d , y(iv)d , zd,

.
zd,

..
zd, ψd,

.
ψd,

..
ψd

)
.

3. Motion Planning

Moving from 2D to 3D poses various challenges, e.g., computational cost increases
substantially depending on the lattice size of the map and on the chosen strategy to visit
the neighboring vertices. Usually, in cases when classical path finding algorithms are
computationally slow, the problem can be solved quickly by incorporating a heuristic
function into classical approach. A heuristic function defines alternative branches in a
graph on the basis of available information and decides which branch needs to be followed.
It is quite probable that such an algorithm renders an exact possible solution of the problem.
The key objective of using a heuristic approach is to provide a reasonable solution in
a short time frame. Such a solution may not be superior to other possible solutions of
the problem; however, more quickly obtaining an approximation of the exact solution is
quite valuable in most applications. For a 3D case without any heuristics—e.g., a Dijkstra
algorithm—we may opt to include or exclude diagonal search along with the normal
six-sided search around a current voxel. The inclusion of the diagonal search increases
the case from a six-sided search to a 18-sided search, as shown in Figure 2. The latter
strategy increases the computational cost significantly. Obviously, an admissible heuristic
can minimize this search to find the next vertex, but it will still explore diagonal vertices
and will increase the computational cost. A* algorithm faces this same problem and poses
a great computational cost while performing 18-sided search. On the other hand, six-sided
search has less computation, but at the cost of extra expanded nodes which results in longer
paths. This section presents the key work of this paper: modifying the A* approach in order
to solve the problem that was just mentioned.

Appl. Sci. 2022, 12, 5791 8 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 21

𝜃𝑑 =
1

𝑔
(�̈�cos𝜓𝑑 + �̈�sin𝜓𝑑) (28)

In order to force the system to follow desired trajectory commands, the following

controller equations can be formulated:

�̈� = �̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒 (29)

�̈� = �̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒 (30)

The final forms of Equations (27) and (28) are:

𝜙𝑑 =
1

𝑔
((�̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒)sin𝜓𝑑 − (�̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒)cos𝜓𝑑) (31)

𝜃𝑑 =
1

𝑔
((�̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒)cos𝜓𝑑 + (�̈�𝑑 + 𝐾𝑑�̇� + 𝐾𝑝𝑒)sin𝜓𝑑) (32)

In order to track a specified trajectory, a complete trajectory profile must be generated

from waypoints in an autonomous system. For a minimum snap trajectory, the desired

profile is (𝑥𝑑 , �̇�𝑑 , �̈�𝑑 , 𝑥𝑑
(𝑖𝑖𝑖), 𝑥𝑑

(𝑖𝑣), 𝑦𝑑 , �̇�𝑑 , �̈�𝑑 , 𝑦𝑑
(𝑖𝑖𝑖), 𝑦𝑑

(𝑖𝑣), 𝑧𝑑 , �̇�𝑑, �̈�𝑑 , 𝜓𝑑, �̇�𝑑 , �̈�𝑑).

3. Motion Planning

Moving from 2D to 3D poses various challenges, e.g., computational cost increases

substantially depending on the lattice size of the map and on the chosen strategy to visit

the neighboring vertices. Usually, in cases when classical path finding algorithms are com-

putationally slow, the problem can be solved quickly by incorporating a heuristic function

into classical approach. A heuristic function defines alternative branches in a graph on the

basis of available information and decides which branch needs to be followed. It is quite

probable that such an algorithm renders an exact possible solution of the problem. The

key objective of using a heuristic approach is to provide a reasonable solution in a short

time frame. Such a solution may not be superior to other possible solutions of the problem;

however, more quickly obtaining an approximation of the exact solution is quite valuable

in most applications. For a 3D case without any heuristics—e.g., a Dijkstra algorithm—we

may opt to include or exclude diagonal search along with the normal six-sided search

around a current voxel. The inclusion of the diagonal search increases the case from a six-

sided search to a 18-sided search, as shown in Figure 2. The latter strategy increases the

computational cost significantly. Obviously, an admissible heuristic can minimize this

search to find the next vertex, but it will still explore diagonal vertices and will increase

the computational cost. A* algorithm faces this same problem and poses a great compu-

tational cost while performing 18-sided search. On the other hand, six-sided search has

less computation, but at the cost of extra expanded nodes which results in longer paths.

This section presents the key work of this paper: modifying the A* approach in order to

solve the problem that was just mentioned.

Figure 2. View of expanded voxels (6−sided search vs. 18−sided search). Figure 2. View of expanded voxels (6−sided search vs. 18−sided search).

3.1. Three−Dimensional Path Search Using Modified A−Star Approach

Definition 1. A heuristic refers to an estimate of the cost with the least value from any arbitrary
current vertex to the goal vertex.

Mathematically, a simplified version of the heuristic function can be written as follows:

f (n) = g(n) + h(n) (33)

where g(n) is cost of the path from starting point to current node n, and h(n) is the estimate
of the cost from current node to goal node.

Remark 1. In case, if h(n) = 0, then only g(n) plays a role in the algorithm, and A* is rendered
to the Dijkstra algorithm. On the other hand, if the value of h(n) is substantially large, the A*
will behave like the greedy best-first search algorithm. The value of h(n) plays a substantial role in
expanding the nodes. If its value is relatively smaller, the algorithm will expand more nodes, which
will make the path search slower. Contrarily, if its value is exactly equal to the cost of reaching from
current vertex to goal, it finds the best and shortest possible path without expanding extra nodes.
This ideality is difficult to achieve in three-dimensional (3D) cases, yet this algorithm is used in
most applications due to its substantial fast path search ability.

In the abovementioned perspective, a heuristic is a method of providing the algorithm
with some extra evaluative statistics in order to find a better path without thoroughly
searching every possible vertex. The Dijkstra algorithm does not incorporate any heuristic
function; it grows outwards from the start node and scans every vertex in the map to
discover the shortest path. This is why it can be computationally expensive. Therefore,
specifically for a 3D search problem, an admissible heuristic is central. In this work, the
adopted heuristic relies on Euclidean distance estimation.

Definition 2. A Euclidean heuristic gives a direct distance between current and goal points. For a
three-dimensional case, it can be written as:

h = sqrt
⌈(

vx(n) − vx(g)

)2
+
(

vy(n) − vy(g)

)2
+
(

vz(n) − vz(g)

)2
⌉

(34)

Another formalism known as the Manhattan heuristic gives summation of absolute
differences in current and goal coordinates. For three-dimensional cases, we can write this
mathematically as:

h = abs
(

vx(n) − vx(g)

)
+ abs

(
vy(n) − vy(g)

)
+ abs

(
vz(n) − vz(g)

)
(35)

where vi(n) and vi(g) denote current and goal nodes, respectively.

Appl. Sci. 2022, 12, 5791 9 of 21

Definition 3. A heuristic function is known as monotone or consistent if its estimate for any
current node is equal to or less than the estimated cost of reaching the goal from any neighbor of the
current node plus the cost consumed in reaching that neighboring vertex from current node.

Mathematically, for any current node n and neighboring node i, we can write a
consistent heuristic function as follows:

h(n) ≤ cost(n, i) + h(i) (36)

h(g) = 0 (37)

where cost(n, i) is the step cost of reaching vertex i from n.
It is important to note that a heuristic function must essentially be admissible, i.e., it

should never overestimate the cost of reaching the goal point. A consistent or monotonic
function is always admissible. However, an admissible heuristic is not always consistent
and therefore, it is made a consistent heuristic using the path-max equation as follows:

h′(i) = max(h(i), h(n)− cost(n, i)) (38)

An A* algorithm for three-dimensional path search is given in Algorithm 1. For 3D
cases, it expands more nodes than the required ones and this ultimately increases the path
length. Therefore, we have proposed another algorithm to cope with this problem in order
to generate an accurate and shortest possible path.

In Algorithm 1, fewer than six vertices have been visited in the neighborhood of the
current vertex in determining the next vertex on the route. This strategy allows us to restrain
the search algorithm from entering into a long computational mode, as there is a possibility
of visiting diagonal vertices in the neighborhood of current vertex. Diagonal search will
enable us to find a path that is closer to the exact solution, i.e., the shortest possible path,
at the cost of higher computation. However, paying a higher computational cost does not
guarantee an exact solution to our problem. Contrarily, nondiagonal searching affects the
searched path substantially, but a tradeoff has been determined between computational
cost and extra nodes. The computed path generated by the search algorithm is not fully
optimal and not even the shortest one. This can be seen in Figure 3, where path ABCD
searched by the augmented A* is not the shortest; path ACD is shorter compared to path
ABCD. After further iterations, we see that we can construct another route (the path AD)
which is the shortest one. The feasibility of all these iterated paths has been checked via
a collision detection algorithm (Algorithm 2) presented subsequently. Performing so few
iterations can provide an even shorter path, and we can skip some of the extra path nodes.
For this purpose, we have developed a truncation algorithm (Algorithm 3). Refined path
nodes can then be connected using any interpolation method. Any order of the polynomial
can be used for the purpose just conferred depending on the dynamical constraints of
the quadrotor [44]. We, in this work, have used differential flatness theory to build the
smooth trajectory.

Appl. Sci. 2022, 12, 5791 10 of 21

Algorithm 1 A* algorithm for three-dimensional path search (with 6-sided search).

1: Function P(n) = Astar3D(3D_Environment, start, goal)
2: list_open = nodes to be evaluated; %initially only starting node is present
3: list_closed = nodes which have been examined; % initially empty
4: list_open (start_node) = 0;
5: while (list_open =! empty) do
6: search the node with least f in list_open % the value of h(n) is same only for 6 neighbors, here
one can plan the strategy for 18-sided search as well.
7: n = node with least value of f;
8: remove n from the list_open
9: search the adj_cells of n % adj_cells infer adjacent cells
10: for (each adj_cell)
% for three-dimensional case 6 adjacent cells have been visited in this work, however these can be
up to 18 adjacent cells including the cells at the edges of a voxel holding the current vertex.
11: if (adj_cell = goal) then
12: stop the search
13: adj_cell.g = n.g + dis_adj_cell;
14: adj_cell.h = distance between adj_cell and goal;
15: adj_cell.f = Adj_cell.g + Adj_cell.h;
16: else if (node with same position as of adj_cell in list_open)
17: if (node.f < adj_cell.f)
18: skip adj_cell
19: end if
20: else if (node with same position as of adj_cell in list_closed)
21: if (node.f < adj_cell.f)
21: skip adj_cell
22: else
23: add node to list_open
24: end if
25: end if
26: end for loop
27: add n to list_closed
28: end while
29: P(n)= list_closed
30: return P(n)
31: end function

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 21

function is always admissible. However, an admissible heuristic is not always consistent
and therefore, it is made a consistent heuristic using the path-max equation as follows: ℎ (𝑖) = max ℎ(𝑖), ℎ(𝑛) − cost(𝑛, 𝑖) (38)

An A* algorithm for three-dimensional path search is given in Algorithm 1. For 3D
cases, it expands more nodes than the required ones and this ultimately increases the path
length. Therefore, we have proposed another algorithm to cope with this problem in order
to generate an accurate and shortest possible path.

In Algorithm 1, fewer than six vertices have been visited in the neighborhood of the
current vertex in determining the next vertex on the route. This strategy allows us to re-
strain the search algorithm from entering into a long computational mode, as there is a
possibility of visiting diagonal vertices in the neighborhood of current vertex. Diagonal
search will enable us to find a path that is closer to the exact solution, i.e., the shortest
possible path, at the cost of higher computation. However, paying a higher computational
cost does not guarantee an exact solution to our problem. Contrarily, nondiagonal search-
ing affects the searched path substantially, but a tradeoff has been determined between
computational cost and extra nodes. The computed path generated by the search algo-
rithm is not fully optimal and not even the shortest one. This can be seen in Figure 3,
where path ABCD searched by the augmented A* is not the shortest; path ACD is shorter
compared to path ABCD. After further iterations, we see that we can construct another
route (the path AD) which is the shortest one. The feasibility of all these iterated paths has
been checked via a collision detection algorithm (Algorithm 2) presented subsequently.
Performing so few iterations can provide an even shorter path, and we can skip some of
the extra path nodes. For this purpose, we have developed a truncation algorithm (Algo-
rithm 3). Refined path nodes can then be connected using any interpolation method. Any
order of the polynomial can be used for the purpose just conferred depending on the dy-
namical constraints of the quadrotor [44]. We, in this work, have used differential flatness
theory to build the smooth trajectory.

Figure 3. Various possible paths.

Figure 3. Various possible paths.

Obstacles cluttered in a three-dimensional environment can be defined as follows:[
ηxyz

]
=
[
ηx ηy ηz

]
(39)

Appl. Sci. 2022, 12, 5791 11 of 21

where
[
ηxyz

]
min

=
[
ηx ηy ηz

]
min and

[
ηxyz

]
max

=
[
ηx ηy ηz

]
max represent lower

and upper boundaries of obstacles in a three-dimensional environment, respectively.
The lower values of safe margins corresponding to lower boundaries can be calculated

as follows:
[Smin] =

[
ηx ηy ηz

]
min −

[
δx δy δz

]
−
[
Γx Γy Γz

]
(40)

Similarly, upper safe margins are

[Smax] =
[
ηx ηy ηz

]
max +

[
δx δy δz

]
+
[
Γx Γy Γz

]
(41)

where
[
δx δy δz

]
denotes safety margins, which must be kept between the UAV and the

obstacles during flight, while
[
Γx Γy Γz

]
is UAV size.

The boundary of the three-dimensional environment can be defined as[
Bxyz

]
=
[
Bx By Bz

]
. The lower and upper boundaries of the three-dimensional environ-

ment can be written as
[
Bxyz

]
min =

[
Bx By Bz

]
min and

[
Bxyz

]
max =

[
Bx By Bz

]
max,

respectively.

Lemma 1. If
[
Cx(n) Cy(n) Cz(n)

]
is greater than or equal to [Smin] and[

Cx(n) Cy(n) Cz(n)
]

is less than or equal to [Smax], the collision will occur.[
Cx(n) Cy(n) Cz(n)

]
represents the coordinates of current vertex.

Lemma 2. If the coordinates of current vertex
[
Cx(n) Cy(n) Cz(n)

]
are less than the lower

boundaries of the three-dimensional environment coordinates
[
Bxyz

]
min, the collision will occur.

Lemma 2 specifically defines the limits of the environment. A UAV is considered
in collision if it is outside the lower limits of the environment. Therefore, a mission is
considered successful only when a UAV stays inside its defined environment.

Lemma 3. If current vertex
[
Cx(n) Cy(n) Cz(n)

]
is greater than the upper boundaries of the

environment
[
Bxyz

]
max, the collision will occur.

With the exceptions of Lemmas 1–3, the collision will not take place. Therefore, it is
necessary for any safe flight of quadrotor UAV in a three-dimensional obstacle-cluttered
environment to not lie among the abovementioned lemmas. Based on these lemmas, a
collision detection algorithm is presented in Algorithm 2.

Algorithm 2 Collision detection algorithm.

1: input (3D_Environment, current vertex)
2: E = 3D Environment;
3: C(n) = current vertex;
4: E_min = min(E.obstacles); %lower boundary of the obstacles
5: E_max = max(E.obstacles); %upper boundary of the obstacles
6: minEo = E_min – margins – UAV_size;
7: maxEo = E.max + margins + UAV_size;
8: minEb = lower boundary of 3D Environment;
9: maxEb = upper boundary of 3D Environment;
10: if (Cx(n), Cy(n), Cz(n) ≥minEo && Cx(n), Cy(n), Cz(n) ≤maxEo)
11: return collision;
12: else if (Cx(n), Cy(n), Cz(n) < minEb)
13: return collision;
14: else if (Cx(n), Cy(n), Cz(n) > maxEb)
15: return collision;
16: else
17: return collision_free;
18: End if

Appl. Sci. 2022, 12, 5791 12 of 21

The rule of selecting the nodes, which constitutes the shortest path from the nodes
explored by the heuristic search algorithm, follows the equation:

dP = p(k)− p(k− 1) (42)

where dP denotes distance between the consecutive nodes, p(k) is the current node and
p(k− 1) is the previous node.

Remark 2. If dP follows either of the three lemmas mentioned previously, the node p(k− 1) lies on
the shortest path and hence will be used to generate the shortest trajectory.

Remark 3. If dP does not follow any of the three lemmas, the next node on the list provided by the
heuristic search algorithm will be examined using dP = p(k)− p(k− 1).

Based on Equation (42), Remarks 2 and 3, the proposed algorithm is presented as
Algorithm 3. This algorithm will truncate the extra nodes of the path that has previously
been obtained using the conventional A* algorithm. This proposed algorithm modifies
the conventional approach of the A* algorithm and produces the shortest possible path in
three-dimensional scenarios.

Algorithm 3 Proposed algorithm to refine the path obtained from conventional A* approach

1: function truncated_path = truncation(3D_Environment, P(n))
2: Truncated_path = P(1);
3: E.obstacles = 3D_Environment.obstacles;
4: for i = 2: length of path
5: P = P(i) − P(1);
6: if (collision between E.obstacles and P)
7: Truncated _path = P(i − 1) % store the node explored just before collision-node
into the truncated path list.
8: else if (i == length of path)
9: Truncated _path = P(i); % store last node in the truncated list
10: else
11: continue;
12: end if
13: end for loop

3.2. Trajectory Generation

For optimal trajectory generation, the following functional can be used:

χ(t) = argmin(x(t))

T∫
0

L
(

xn, xn−1, xn−2, ,
.
x, x, t

)
.dt (43)

In order to generate optimal trajectory χ(t), the following Euler–Lagrange equation
must be satisfied:

∂L
∂x
− d

dt

(
∂L
∂

.
x

)
+

d2

dt2

(
∂L
∂

..
x

)
+ . . . + (−1)n dn

dtn

(
∂L

∂x(n)

)
= 0 (44)

For a quadrotor UAV, n = 4 inputs create a fourth-order system with x and y states,
and this can be proved by the following differential flatness theorem.

Theorem 1. The inputs of the quadrotor are the function of selected flat outputs and their derivatives.

Proof of Theorem 1. Recalling translational states from Equation (9) and assuming the
linearized equation as:

m
..
x = (θ cos ψ + φ sin ψ)U1 (45)

Appl. Sci. 2022, 12, 5791 13 of 21

m
..
y = (θ sin ψ− φ cos ψ)U1 (46)

..
z = −g + (cos φ cos θ)

1
m

U1 (47)

The fourth derivative is taken as:

mx(iv) = (θcosψ + φ sin ψ)
..
U1 + 2(

.
θ cos ψ− θ sin ψ

.
ψ +

.
φ sin ψ + φ cos ψ

.
ψ)

.
U1

+(
..
θ cos ψ−

.
θ sinψ

.
ψ− θ sin ψ

..
ψ− θ cos ψ

.
ψ

2
+

..
φ sin ψ

+
.
φ cos ψ

.
ψ + φ cos ψ

..
ψ− φ sin ψ

.
ψ

2
)U1

(48)

my(iv) = (θsinψ− φ cos ψ)
..
U1 + 2(

.
θ sin ψ + θ cos ψ

.
ψ−

.
φ cos ψ + φ sin ψ

.
ψ)

.
U1

+(
..
θ sin ψ +

.
θ cos ψ

.
ψ + θ cos ψ

..
ψ− θ sin ψ

.
ψ

2
−

..
φ cos ψ

+
.
φ sin ψ

.
ψ + φ sin ψ

..
ψ + φcosψ

.
ψ

2
)U1

(49)

mz(iv) = −2(
.
θ cos φ sin θ +

.
φ sin φ cos θ)

.
U1 + 2(

.
φ

.
θ sinφ sin θ)U1

−(
.
φ

2
+

.
θ

2
)U1 cos φ cos θ + (cos φ cos θ)

..
U1

−(
..
φ sin φ cos θ +

..
θ cos φ sin θ)U1

(50)

Simplifying the rotational dynamics of quadrotor from Equation (10), we have:

..
φ = l

Ix
U2

..
θ = l

Iy
U3

..
ψ = 1

Iz
U4

 (51)

For brevity, normalizing the inertial and length terms in Equation (51), we find a direct
relation between the inputs and angular acceleration states. From Equations (48)–(51), we
can write:

m

x(iv)

y(iv)

z(iv)

 =

(
−

.
θ sin ψ

.
ψ− θ cos ψ

.
ψ

2
+

.
φ cos ψ

.
ψ− φ sin ψ

.
ψ

2
)

U1 + 2
(.

θ cos ψ− θ sin ψ
.
ψ +

.
φ sin ψ + φ cos ψ

.
ψ
) .

U1(
.
θ cos ψ

.
ψ− θ sin ψ

.
ψ

2
+

.
φ sin ψ

.
ψ + φ cos ψ

.
ψ

2
)

U1 + 2
(.

θ sin ψ + θ cos ψ
.
ψ−

.
φ cos ψ + φ sin ψ

.
ψ
) .

U1(
2
(.

φ
.
θ sin φ sin θ

)
−
(

.
φ

2
+

.
θ

2
)

cos φ cos θ

)
U1 − 2

(.
θ cos φ cos θ +

.
φ sin φ cos θ

) .
U1

+

(θ cos ψ + φ sin ψ) sin ψ cos ψ (−θ sin ψ + φ cos ψ)
(θ sin ψ− φ cos ψ) − cos ψ sin ψ (θ cos ψ + φ sin ψ)

cos φ cos θ −(sin φ cos θ)U1 −(cos φ sin θ)U1 0

..
U1
U2
U3
U4

(52)

The translational states of the quadrotor create a fourth-order system; therefore, the
control input directly relates to the snap of the position states. This completes the proof of
Theorem 1. �

In order to achieve minimum control effort, we must minimize the snap of the transla-
tional states. To attain the goal just mentioned, the optimal trajectory χ(t) will assume the
following form:

χ(t) = argmin(x(t))

T∫
0

L
(

x(iv), x(iii),
..
x,

.
x, x, t

)
·dt (53)

where L
(

x(iv), x(iii),
..
x,

.
x, x, t

)
·dt is equal to

(
x(iv)

)2
·dt for minimum snap trajectory.

Appl. Sci. 2022, 12, 5791 14 of 21

Now the Euler—Lagrange equation can be solved as:

∂L
∂x
− d

dt

(
∂L
∂

.
x

)
+

d2

dt2

(
∂L
∂

..
x

)
− d3

dt3

(
∂L

∂x(3)

)
+

d4

dt4

(
∂L

∂x(4)

)
= 0 (54)

This will yield the following condition:

x(viii) = 0 (55)

The solution of Equation (55) yields the optimal trajectory of the following form:

χ(t) = λ0 + λ1t + λ2t2 + · · ·+ λmtm where m = 7 (56)

The trajectory computed above is one-dimensional and serves only for one segment.
However, for a quadrotor UAV, to perform an autonomous flight through obstacles, the
dimensionality of the trajectory is four and includes x(t), y(t), z(t), ψ(t). Moreover, for
a shortest path search problem, there are usually n trajectory segments for n + 1 number
of waypoints, including start and goal points. We can formulate a trajectory for multiple
dimensions and multiple segments as:

pi(t)x(t),y(t),z(t),ψ(t) = λi0 + λi1t + λi2t2 + · · ·+ λimtm ∀ i = 0 · · · n and m = 7 (57)

pi(t)x(t),y(t),z(t),ψ(t) =
m

∑
j=0

λijtj (58)

Using Equation (57), a complete trajectory can be formulated over various time slots
as follows:

P(t)x(t),y(t),z(t),ψ(t) =

m
∑

j=0
λ0jtj t0 ≤ t < t1

m
∑

j=0
λ1jtj t1 ≤ t < t2

...
m
∑

j=0
λnjtj tn ≤ t < tn+1

(59)

where m defines the degree of polynomial.
To solve the coefficients of Equation (59), some constraints must inevitably be consid-

ered. These constraints are explained subsequently.

3.2.1. Constraints on Positions

For n + 1 intermediate points, there are usually n trajectory sections, and in this case,
each trajectory section is represented by a seventh-order polynomial. These polynomials lie
between intermediate points, and the positions of these points are well defined. Therefore,
these polynomials must pass through these well-defined positions of the intermediate
points at various allocated time stamps. Mathematically, we can write this as follows:

pi(ti−1) = ξi−1 (60a)

pi(ti) = ξi (60b)

where i = 1 · · · n, ti−1 is the initial time and ti denotes the final time for ith polyno-
mial, while the terms ξi−1 and ξi are the initial and the final positions for ith polynomial,
respectively.

3.2.2. Constraints on Derivatives

For the higher-ordered dynamics of the quadrotor, it is pertinent to guarantee smooth
transitions at intermediate points from one trajectory section to the next. Therefore, in order

Appl. Sci. 2022, 12, 5791 15 of 21

to serve the purpose just mentioned, successive derivatives of adjacent polynomials at each
intermediate point must be kept equal. The order of the plant dynamics defines the deriva-
tive indices that will ensure the smooth switching between adjacent trajectory sections.

p(k)i−1(ti) = p(k)i (ti) where i = 1 · · · n, and for m = 7, 1 ≤ k ≤ 4 (61)

3.2.3. Constraints on Start and Goal Points

In a trajectory of multiple segments, there are always start and goal points, and a
quadrotor must be at rest in these points. Therefore, we can impose the constraints on these
points with respect to the position of these points and their kth successive derivates.

p(k)i (0) = 0 (62a)

p(k)i (tn) = 0 (62b)

where the derivative index is 0 ≤ k ≤ 3 for the seventh-degree polynomial.
Applying the abovementioned constraints to the nodes, which are obtained after the

truncation process in the shortest path search problem, we can formulate the problem in
the following form to calculate the coefficients of the optimal trajectory:

λn(m+1)×1 = T−1
n(m+1)×n(m+1)·ξn(m+1)×1 (63)

where λ is the coefficients’ matrix, T is the time series matrix, and ξ denotes defined values
of positions and their successive derivatives.

4. Simulations

This section presents the results of numerical simulations, and MATLAB is used
to elaborate upon the findings and developments of this paper. Initially, the controller
conferred earlier was developed along with the model of the quadrotor UAV in order to
track the computed final trajectory. The model parameters and controller gains, that have
been used in the simulation environment, are listed in Tables 1 and 2, respectively. Because
any path search algorithm requires a map and start and goal points, a three-dimensional
environment containing the obstacles was modelled in MATLAB. The concept of real-time
tall buildings is used to model the obstacles. Subsequently, the start point and the goal point
were defined in the constructed obstacle-cluttered environment. Figure 4 illustrates the 2D
and 3D views of the environment. Before handing this map over to the search algorithm,
meshing is performed, which divides the whole map into small, cubical, interconnected
blocks. Mesh size is decisive in performing the computation. A relatively smaller mesh
size would compute a more optimal and shorter path but would do so at the cost of heavy
computational power. Figure 5 demonstrates the map environment with meshing. This
map is handed over to the A* search algorithm, which subsequently finds a shorter path
between start and goal points. Figure 6 shows the progression of the search algorithm in
2D and 3D views. The shortest path found by the augmented A* algorithm is illustrated in
Figure 7, which shows 2D and 3D views.

Table 1. Model parameters.

Parameter Value Unit

Mass (m) 0.2 kg
Arm length (l) 0.09 m

Inertia (Ix) 0.00026 kgm2

Inertia (Iy) 0.00026 kgm2

Inertia (Iz) 0.00040 kgm2

Gravity (g) 9.81 m/s2

Appl. Sci. 2022, 12, 5791 16 of 21

Table 2. Controller gains.

Controller Parameter Value

Outer Loop Controller Kp(x, y, z) 2
Outer Loop Controller Kd(x, y, z) 1.4
Inner Loop Controller Kp(φ, θ, ψ) 7
Inner Loop Controller Kd(φ, θ, ψ) 0.3

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 21

Figure 4. Map containing obstacles and start and goal points (2D and 3D views).

Figure 5. Meshing of the obstacle-cluttered environment (2D and 3D views).

Figure 6. Augmented A* search in progress through the meshed environment (2D and 3D views).

Figure 4. Map containing obstacles and start and goal points (2D and 3D views).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 21

Figure 4. Map containing obstacles and start and goal points (2D and 3D views).

Figure 5. Meshing of the obstacle-cluttered environment (2D and 3D views).

Figure 6. Augmented A* search in progress through the meshed environment (2D and 3D views).

Figure 5. Meshing of the obstacle-cluttered environment (2D and 3D views).

Technically, after the completion of the algorithmic search, the path found is still
not the optimized version. Specifically, in a three-dimensional case, the path can further
be optimized depending on the situation. Moreover, the shortest path found after the
truncation process contains infinite curvatures at the corner points and traversal of the path
using any quadrotor UAV is rather challenging. This requires smoothing of these corner
points by incorporating any higher-ordered polynomial. The fifth-order polynomial is used
to shape these corner points to reduce the curvatures to a finite extent. Consequently, the
found shortest path is optimized further by smoothing the corner points. The 2D and 3D
views of this process can be seen in Figure 8.

Appl. Sci. 2022, 12, 5791 17 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 21

Figure 4. Map containing obstacles and start and goal points (2D and 3D views).

Figure 5. Meshing of the obstacle-cluttered environment (2D and 3D views).

Figure 6. Augmented A* search in progress through the meshed environment (2D and 3D views). Figure 6. Augmented A* search in progress through the meshed environment (2D and 3D views).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 21

Figure 7. Path generated by conventional A* algorithm between start and goal points (2D and 3D
views). This path contains extra expanded nodes.

Technically, after the completion of the algorithmic search, the path found is still not
the optimized version. Specifically, in a three-dimensional case, the path can further be
optimized depending on the situation. Moreover, the shortest path found after the trun-
cation process contains infinite curvatures at the corner points and traversal of the path
using any quadrotor UAV is rather challenging. This requires smoothing of these corner
points by incorporating any higher-ordered polynomial. The fifth-order polynomial is
used to shape these corner points to reduce the curvatures to a finite extent. Consequently,
the found shortest path is optimized further by smoothing the corner points. The 2D and
3D views of this process can be seen in Figure 8.

Figure 8. Extra node truncation followed by optimal trajectory generation.

The final version of the generated trajectory is then given to the conferred flight con-
troller as desired Cartesian commands. The controller successfully traverses the trajectory
and steers the quadrotor UAV through the obstacle-cluttered space autonomously. The
progression of trajectory traversal can be seen in Figure 9. After the follow-up of the de-
sired trajectory, the quadrotor UAV successfully reaches the goal point, as shown in Fig-
ure 10. Finally, the controller performance is illustrated in Figure 11, where the desired

Figure 7. Path generated by conventional A* algorithm between start and goal points (2D and 3D
views). This path contains extra expanded nodes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 21

Figure 7. Path generated by conventional A* algorithm between start and goal points (2D and 3D
views). This path contains extra expanded nodes.

Technically, after the completion of the algorithmic search, the path found is still not
the optimized version. Specifically, in a three-dimensional case, the path can further be
optimized depending on the situation. Moreover, the shortest path found after the trun-
cation process contains infinite curvatures at the corner points and traversal of the path
using any quadrotor UAV is rather challenging. This requires smoothing of these corner
points by incorporating any higher-ordered polynomial. The fifth-order polynomial is
used to shape these corner points to reduce the curvatures to a finite extent. Consequently,
the found shortest path is optimized further by smoothing the corner points. The 2D and
3D views of this process can be seen in Figure 8.

Figure 8. Extra node truncation followed by optimal trajectory generation.

The final version of the generated trajectory is then given to the conferred flight con-
troller as desired Cartesian commands. The controller successfully traverses the trajectory
and steers the quadrotor UAV through the obstacle-cluttered space autonomously. The
progression of trajectory traversal can be seen in Figure 9. After the follow-up of the de-
sired trajectory, the quadrotor UAV successfully reaches the goal point, as shown in Fig-
ure 10. Finally, the controller performance is illustrated in Figure 11, where the desired

Figure 8. Extra node truncation followed by optimal trajectory generation.

Appl. Sci. 2022, 12, 5791 18 of 21

The final version of the generated trajectory is then given to the conferred flight con-
troller as desired Cartesian commands. The controller successfully traverses the trajectory
and steers the quadrotor UAV through the obstacle-cluttered space autonomously. The
progression of trajectory traversal can be seen in Figure 9. After the follow-up of the desired
trajectory, the quadrotor UAV successfully reaches the goal point, as shown in Figure 10.
Finally, the controller performance is illustrated in Figure 11, where the desired and tracked
Cartesian states of the model are displayed. The desired and tracked velocities are shown
in Figure 12. The results verify the effectiveness and the promising formulation of the
flight controller.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 21

and tracked Cartesian states of the model are displayed. The desired and tracked veloci-
ties are shown in Figure 12. The results verify the effectiveness and the promising formu-
lation of the flight controller.

Figure 9. Trajectory traversal using the quadrotor (2D and 3D views).

Figure 10. Quadrotor reaching the goal point after successful traversal (2D and 3D views).

Figure 9. Trajectory traversal using the quadrotor (2D and 3D views).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 21

and tracked Cartesian states of the model are displayed. The desired and tracked veloci-
ties are shown in Figure 12. The results verify the effectiveness and the promising formu-
lation of the flight controller.

Figure 9. Trajectory traversal using the quadrotor (2D and 3D views).

Figure 10. Quadrotor reaching the goal point after successful traversal (2D and 3D views). Figure 10. Quadrotor reaching the goal point after successful traversal (2D and 3D views).

Appl. Sci. 2022, 12, 5791 19 of 21Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 21

Figure 11. Desired and tracked trajectories (Cartesian states).

Figure 12. Desired and tracked velocity of each Cartesian state.

5. Conclusions

Motion-planning is central for any autonomous robotic system, and most of the

search algorithmshave only been studied for two-dimensional applications in the litera-

ture. In this paper, a detailed implementation and design of a modified A* search algo-

rithm for three-dimensional cases have been presented. With a conventional A* approach,

3D search poses the issue of exploration of extra nodes, which results in a suboptimal

path. Such suboptimal paths render a trajectory that increases the control effort of the

UAV and obviously reduces flight endurance. This issue has been solved by proposing a

modified A* approach based on a truncation algorithm that renders the shortest possible

path by removing extra nodes. To generate a dynamically feasible trajectory for a quad-

rotor, a detailed proof of differential flatness has been presented. Subsequently, path

nodes obtained by the modified A* approach were further processed by a flatness-based

trajectory generator in order to have a smooth and dynamically feasible trajectory, i.e., a

trajectory with finite curvatures. The adopted modified approach significantly reduced

the path length (see figures in the paper) and control effort of the UAV (as per the Euler–

Figure 11. Desired and tracked trajectories (Cartesian states).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 21

Figure 11. Desired and tracked trajectories (Cartesian states).

Figure 12. Desired and tracked velocity of each Cartesian state.

5. Conclusions

Motion-planning is central for any autonomous robotic system, and most of the

search algorithmshave only been studied for two-dimensional applications in the litera-

ture. In this paper, a detailed implementation and design of a modified A* search algo-

rithm for three-dimensional cases have been presented. With a conventional A* approach,

3D search poses the issue of exploration of extra nodes, which results in a suboptimal

path. Such suboptimal paths render a trajectory that increases the control effort of the

UAV and obviously reduces flight endurance. This issue has been solved by proposing a

modified A* approach based on a truncation algorithm that renders the shortest possible

path by removing extra nodes. To generate a dynamically feasible trajectory for a quad-

rotor, a detailed proof of differential flatness has been presented. Subsequently, path

nodes obtained by the modified A* approach were further processed by a flatness-based

trajectory generator in order to have a smooth and dynamically feasible trajectory, i.e., a

trajectory with finite curvatures. The adopted modified approach significantly reduced

the path length (see figures in the paper) and control effort of the UAV (as per the Euler–

Figure 12. Desired and tracked velocity of each Cartesian state.

5. Conclusions

Motion-planning is central for any autonomous robotic system, and most of the search
algorithmshave only been studied for two-dimensional applications in the literature. In
this paper, a detailed implementation and design of a modified A* search algorithm for
three-dimensional cases have been presented. With a conventional A* approach, 3D search
poses the issue of exploration of extra nodes, which results in a suboptimal path. Such
suboptimal paths render a trajectory that increases the control effort of the UAV and
obviously reduces flight endurance. This issue has been solved by proposing a modified
A* approach based on a truncation algorithm that renders the shortest possible path by
removing extra nodes. To generate a dynamically feasible trajectory for a quadrotor,
a detailed proof of differential flatness has been presented. Subsequently, path nodes
obtained by the modified A* approach were further processed by a flatness-based trajectory
generator in order to have a smooth and dynamically feasible trajectory, i.e., a trajectory
with finite curvatures. The adopted modified approach significantly reduced the path
length (see figures in the paper) and control effort of the UAV (as per the Euler–Lagrange
constraints). This obviously enhances flight endurance. A micro quadrotor UAV model
is then used to demonstrate the autonomous trajectory generation and tracking through

Appl. Sci. 2022, 12, 5791 20 of 21

cluttered obstacles in a three-dimensional space. This study can be further enhanced by
incorporating other path-planning algorithms, e.g., potential gradient, D*, D-lite, etc.

Author Contributions: Conceptualization, G.F. and H.M.; methodology, S.C.; software, G.F.; vali-
dation, T.Y., W.A.W. and H.M.; formal analysis, S.C.; investigation, G.F.; resources, W.A.W.; data
curation, T.Y.; writing—original draft preparation, G.F.; writing—review and editing, S.C. and F.C.;
visualization, A.A.R.; supervision, S.C., H.M. and F.C.; project administration, A.A.R. All authors
have read and agreed to the published version of the manuscript.

Funding: Part of this work was carried out in the framework of the project “DynAeRobot—Development
and validation of a new dynamically balanced aerial manipulator” (project no. BIRD213590), funded
under the BIRD 2021 programme promoted by the University of Padova.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Farid, G.; Mo, H.; Ali, S.M.; Liwei, Q. A review on linear and nonlinear control techniques for position and attitude control of a

quadrotor. Control. Intell. Syst. 2017, 45, 43–57.
2. Kendoul, F. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 2012, 29,

315–378. [CrossRef]
3. Liu, P.; Chen, A.Y.; Huang, Y.N.; Han, J.Y.; Lai, J.S.; Kang, S.C.; Wu, T.H.; Wen, M.C.; Tsai, M.H. A review of rotorcraft Unmanned

Aerial Vehicle (UAV) developments and applications in civil engineering. Smart. Struct. Syst. 2014, 13, 1065–1094. [CrossRef]
4. Özbek, N.S.; Önkol, M.; Efe, M.Ö. Feedback control strategies for quadrotor-type aerial robots: A survey. Trans. Inst. Meas.

Control. 2016, 38, 529–554. [CrossRef]
5. Zhang, X.; Li, X.; Wang, K.; Lu, Y. A Survey of Modelling and Identification of Quadrotor Robot. Abstr. Appl. Anal. 2014, 2014, 16.

[CrossRef]
6. Bullo, F.; Frazzoli, E.; Pavone, M.; Savla, K.; Smith, S.L. Dynamic Vehicle Routing for Robotic Systems. Proc. IEEE 2011, 99,

1482–1504. [CrossRef]
7. Mo, H.; Farid, G. Nonlinear and adaptive intelligent control techniques for quadrotor UAV—A survey. Asian J. Control 2019, 21,

989–1008. [CrossRef]
8. Tokekar, P.; Hook, J.V.; Mulla, D.; Isler, V. Sensor planning for a symbiotic UAV and UGV system for precision agriculture. In

Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013;
pp. 5321–5326.

9. Alexis, K.; Nikolakopoulos, G.; Tzes, A. On Trajectory Tracking Model Predictive Control of an Unmanned Quadrotor Helicopter
Subject to Aerodynamic Disturbances. Asian J. Control 2014, 16, 209–224. [CrossRef]

10. Besnard, L.; Shtessel, Y.B.; Landrum, B. Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance
observer. J. Frankl. Inst. 2012, 349, 658–684. [CrossRef]

11. Ghommam, J.; Charland, G.; Saad, M. Three-Dimensional Constrained Tracking Control Via Exact Differentiation Estimator of a
Quadrotor Helicopter. Asian J. Control 2015, 17, 1093–1103. [CrossRef]

12. Lee, D.; Jin Kim, H.; Sastry, S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control
Autom. Syst. 2009, 7, 419–428. [CrossRef]

13. Mellinger, D.; Michael, N.; Kumar, V. Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J.
Robot. Res. 2012, 31, 664–674. [CrossRef]

14. Xiong, J.-J.; Zhang, G. Discrete-time sliding mode control for a quadrotor UAV. Int. J. Light Electron Opt. 2016, 127, 3718–3722.
[CrossRef]

15. Zou, Y. Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. Int. J. Robust Nonlinear Control 2017,
27, 925–941. [CrossRef]

16. Chen, Y.-b.; Luo, G.-c.; Mei, Y.-s.; Yu, J.-q.; Su, X.-l. UAV path planning using artificial potential field method updated by optimal
control theory. Int. J. Syst. Sci. 2016, 47, 1407–1420. [CrossRef]

17. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified a Star Algorithm for a
Mobile Robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

18. Foead, D.; Ghifari, A.; Kusuma, M.B.; Hanafiah, N.; Gunawan, E. A Systematic Literature Review of A* Pathfinding. Procedia
Comput. Sci. 2021, 179, 507–514. [CrossRef]

19. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path
Planning in a Port Environment. IEEE Access 2021, 9, 59196–59210. [CrossRef]

20. Zheng, T.; Xu, Y.; Zheng, D. AGV Path Planning based on Improved A-star Algorithm. In Proceedings of the 2019 IEEE 3rd
Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing,
China, 11–13 October 2019; pp. 1534–1538.

21. Erke, S.; Bin, D.; Yiming, N.; Qi, Z.; Liang, X.; Dawei, Z. An improved A-Star based path planning algorithm for autonomous land
vehicles. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420962263. [CrossRef]

http://doi.org/10.1002/rob.20414
http://doi.org/10.12989/sss.2014.13.6.1065
http://doi.org/10.1177/0142331215608427
http://doi.org/10.1155/2014/320526
http://doi.org/10.1109/JPROC.2011.2158181
http://doi.org/10.1002/asjc.1758
http://doi.org/10.1002/asjc.587
http://doi.org/10.1016/j.jfranklin.2011.06.031
http://doi.org/10.1002/asjc.951
http://doi.org/10.1007/s12555-009-0311-8
http://doi.org/10.1177/0278364911434236
http://doi.org/10.1016/j.ijleo.2016.01.010
http://doi.org/10.1002/rnc.3607
http://doi.org/10.1080/00207721.2014.929191
http://doi.org/10.1016/j.proeng.2014.12.098
http://doi.org/10.1016/j.procs.2021.01.034
http://doi.org/10.1109/ACCESS.2021.3070054
http://doi.org/10.1177/1729881420962263

Appl. Sci. 2022, 12, 5791 21 of 21

22. Ghaffari, A. An Energy Efficient Routing Protocol for Wireless Sensor Networks using A-star Algorithm. J. Appl. Res. Technol.
2014, 12, 815–822. [CrossRef]

23. Castillo-García, P.; Muñoz Hernandez, L.E.; García Gil, P. Chapter 9—Trajectory Generation, Planning &Tracking. In Indoor
Navigation Strategies for Aerial Autonomous Systems; Butterworth-Heinemann: Oxford, UK, 2017; pp. 213–241.

24. Wang, G.-G.; Chu, H.E.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci.
Technol. 2016, 49, 231–238. [CrossRef]

25. Chen, Y.; Mei, Y.; Yu, J.; Su, X.; Xu, N. Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search
algorithm. Neurocomputing 2017, 266, 445–457. [CrossRef]

26. Contreras-Cruz, M.A.; Ayala-Ramirez, V.; Hernandez-Belmonte, U.H. Mobile robot path planning using artificial bee colony and
evolutionary programming. Appl. Soft. Comput. 2015, 30, 319–328. [CrossRef]

27. Liang, Y.; Juntong, Q.; Xiao, J.; Xia, Y. A literature review of UAV 3D path planning. In Proceedings of the 11th World Congress on
Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 2376–2381.

28. Lu, Y.; Xue, Z.; Xia, G.-S.; Zhang, L. A survey on vision-based UAV navigation. Geo-Spat. Inf. Sci. 2018, 21, 21–32. [CrossRef]
29. Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput.

Commun. 2020, 149, 270–299. [CrossRef]
30. Goerzen, C.; Kong, Z.; Mettler, B. A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance.

J. Intell. Robot. Syst. 2009, 57, 65. [CrossRef]
31. Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl. Based Syst. 2018, 158, 54–64.

[CrossRef]
32. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 2016, 86,

13–28. [CrossRef]
33. Goel, U.; Varshney, S.; Jain, A.; Maheshwari, S.; Shukla, A. Three Dimensional Path Planning for UAVs in Dynamic Environment

using Glow-worm Swarm Optimization. Procedia Comput. Sci. 2018, 133, 230–239. [CrossRef]
34. Kunchev, V.; Jain, L.; Ivancevic, V.; Finn, A. Path Planning and Obstacle Avoidance for Autonomous Mobile Robots: A Review. In

Knowledge-Based Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 537–544.
35. Dadkhah, N.; Mettler, B. Survey of Motion Planning Literature in the Presence of Uncertainty: Considerations for UAV Guidance.

J. Intell. Robot. Syst. 2012, 65, 233–246. [CrossRef]
36. Cocuzza, S.; Doria, A. Modeling and Identification of Vibrations in a UAV for Aerial Manipulation. Mech. Mach. Sci. 2021, 91,

182–190. [CrossRef]
37. Cocuzza, S.; Doria, A. Experimental vibration analysis and development of the dynamic model of a uav for aerial manipulation.

Int. J. Mech. Control. 2021, 22, 71–81.
38. Cocuzza, S.; Rossetto, E.; Doria, A. Dynamic interaction between robot and UAV in aerial manipulation. In Proceedings of the

2020 19th International Conference on Mechatronics—Mechatronika, Prague, Czech Republic, 2–4 December 2020. [CrossRef]
39. Cocuzza, S.; Pretto, I.; Debei, S. Least-squares-based reaction control of space manipulators. J. Guid. Control. Dyn. 2012, 35,

976–986. [CrossRef]
40. Tringali, A.; Cocuzza, S. Globally optimal inverse kinematics method for a redundant robot manipulator with linear and nonlinear

constraints. Robotics 2020, 9, 61. [CrossRef]
41. Tringali, A.; Cocuzza, S. Finite-horizon kinetic energy optimization of a redundant space manipulator. Appl. Sci. Switz. 2021, 11,

2346. [CrossRef]
42. Cocuzza, S.; Menon, C.; Angrilli, F. Free-flying robot tested on ESA parabolic flights: Simulated microgravity tests and simulator

validation. In Proceedings of the International Astronautical Federation—58th International Astronautical Congress, Hyderabad,
India, 24–28 September 2007; Volume 1, pp. 593–608.

43. Farid, G.; Mo, H.; Ahmed, M.I.; Ehsan, A. On control law partitioning for nonlinear control of a quadrotor UAV. In Proceed-
ings of the 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan,
9–13 January 2018; pp. 257–262.

44. Farid, G.; Hamid, H.T.; Karim, S.; Tahir, S. Waypoint-Based Generation of Guided and Optimal Trajectories for Autonomous
Tracking Using a Quadrotor UAV. Stud. Inform. Control. 2018, 27, 223–234. [CrossRef]

http://doi.org/10.1016/S1665-6423(14)70097-5
http://doi.org/10.1016/j.ast.2015.11.040
http://doi.org/10.1016/j.neucom.2017.05.059
http://doi.org/10.1016/j.asoc.2015.01.067
http://doi.org/10.1080/10095020.2017.1420509
http://doi.org/10.1016/j.comcom.2019.10.014
http://doi.org/10.1007/s10846-009-9383-1
http://doi.org/10.1016/j.knosys.2018.05.033
http://doi.org/10.1016/j.robot.2016.08.001
http://doi.org/10.1016/j.procs.2018.07.028
http://doi.org/10.1007/s10846-011-9642-9
http://doi.org/10.1007/978-3-030-55807-9_21
http://doi.org/10.1109/ME49197.2020.9286694
http://doi.org/10.2514/1.45874
http://doi.org/10.3390/robotics9030061
http://doi.org/10.3390/app11052346
http://doi.org/10.24846/v27i2y201810

	Introduction
	Preliminaries
	Modeling
	Controller Design
	Inner Loop Controller
	Outer Loop Controller

	Motion Planning
	Three-Dimensional Path Search Using Modified A-Star Approach
	Trajectory Generation
	Constraints on Positions
	Constraints on Derivatives
	Constraints on Start and Goal Points

	Simulations
	Conclusions
	References

