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Abstract: The large availability of clinical natural language documents, such as clinical narratives
or diagnoses, requires the definition of smart automatic systems for their processing and analysis,
but the lack of annotated corpora in the biomedical domain, especially in languages different from
English, makes it difficult to exploit the state-of-art machine-learning systems to extract information
from such kinds of documents. For these reasons, healthcare professionals lose big opportunities
that can arise from the analysis of this data. In this paper, we propose a methodology to reduce the
manual efforts needed to annotate a biomedical named entity recognition (B-NER) corpus, exploiting
both active learning and distant supervision, respectively based on deep learning models (e.g., Bi-
LSTM, word2vec FastText, ELMo and BERT) and biomedical knowledge bases, in order to speed
up the annotation task and limit class imbalance issues. We assessed this approach by creating an
Italian-language electronic health record corpus annotated with biomedical domain entities in a small
fraction of the time required for a fully manual annotation. The obtained corpus was used to train a
B-NER deep neural network whose performances are comparable with the state of the art, with an
F1-Score equal to 0.9661 and 0.8875 on two test sets.

Keywords: biomedical NER; corpus annotation; distant supervision; active learning; deep learning

1. Introduction

Nowadays, a huge amount of digitised information is produced in clinical and health-
care domains. A large part of this data is formed by or contains natural language (NL) texts,
such as electronic health records (EHRs), diagnoses, medical reports, or patient summaries.
Extracting and analysing the information in these documents has a great potential for
caregivers and policy makers, making possible to support and improve the quality of the
healthcare [1,2]. On the other hand, this huge amount of NL text can be processed only
through Natural Language Processing (NLP) systems able to automatically extract the re-
quired information. An essential NLP task for the Information Extraction (IE) from clinical
and biomedical NL documents is the biomedical named entity recognition (B-NER) [3],
namely the identification and the classification of words and multi-word expressions be-
longing to the biomedical domain. The information through NER can be leveraged for
many purposes, ranging from primary and secondary use analyses [4] to the support for
the standardisation and interoperability of clinical data [5].

Deep learning (DL)-based NER methodologies are actually the best performing ap-
proaches in terms of realising NER systems [6–8], but they actually have two main limits:
they are strictly language- and domain-dependent and they need a large annotated corpus
to train a deep neural network (DNN) with optimal results. The lack of annotated corpora is
one of the open issues related to automatic clinical document analysis [9]. An annotated cor-
pus can be obtained only through laborious and costly work performed by domain experts,
who must manually analyse and annotate a large number of documents, following precise
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guidelines in order to produce a high-quality corpus [10,11]. Thus, not many annotated
corpora are freely available, especially in the clinical domain and in languages different
from English. Some methods have been proposed in the literature trying to overcome the
lack of these important resources by using unsupervised machine-learning (ML) [12–14]
or rule-based (RB) approaches [15–17], but in both cases the quality of the results is not
comparable with that obtained through the manual efforts of domain experts. Other recent
works have leveraged cross-language approaches [18,19], but in these cases annotated
training and test sets in at least one language are required, in addition to knowledge bases
or multi-lingual language models. Methodologies able to ease the work of the experts in
the realisation of annotated corpora are required to narrow the gap between automatic and
manual annotation, to the end of speeding up the manual annotation process, lowering its
cost and reducing the needed efforts [20].

Interesting approaches for the annotation of corpora in an easier and less costly way
are based on active learning (AL) and distant supervision (DS). Active learning [21] is an
iterative annotation process supported by an ML model. In the first step of this approach,
a small dataset extracted from a bigger corpus must be manually annotated. This set is
then used to train a machine-learning classifier, to the end of annotating automatically
the rest of the corpus. Among these automatic annotations, a human oracle must select
the samples with presumably high utility to improve the classifier training, eventually
correcting wrong predictions caused by an incomplete or small available dataset. More
complex methodologies have been also proposed to improve the selection of the new
samples [22]. The selected new samples are then added to the annotated training set and
the ML model is retrained, improving the overall classification results in the prediction
phase of the unannotated corpus. This process can be iterated until stop criteria or optimal
performances are reached. AL methods can generate annotated corpora with less human
efforts, but often the data are biased, depending on the method used for the new samples’
selection during each iteration and on the content of the original corpus [23].

Distant supervision [24] is a completely automatic approach and exploits the knowl-
edge extracted from knowledge bases (KBs) such as thesauri or a dictionary, assuming
that if a string in text is included in a KB, then that string can be automatically annotated
as an entity. This approach has no human cost, but the resulting corpus usually suffers
from incomplete and noisy annotations. Incomplete annotations are named entities not
listed in the KB, which will not be automatically annotated in the training corpus. On
the other hand, a noisy annotation is a partial identification of a named entity, due to the
presence in the KB of only an entity part (e.g., missing some words of that entity) or due to
slight differences between the entity listed in the thesaurus and the one in the corpus (e.g.,
the use of a synonym of one of the words in multi-word entity, or a plural version of the
same word).

In this paper a methodology that leverages both AL and DS for the annotation of
B-NER clinical corpora is proposed, addressing some of the issues of both approaches
to improve the quality and the speed of the annotation process. Firstly, an AL-based
annotation is performed, exploiting a deep-learning NER architecture as an automatic
classifier. Then, biomedical KBs are used for DS annotation and dataset expansion through
data augmentation, with the purpose of mitigating the class imbalance problems [25] that
could affect the annotations obtained through AL. In the experimental assessment the
contribution of different pretrained Word Embedding (WE) models trained on a closed
biomedical domain corpus as input of the DNN is also analysed, in particular comparing
the contribution of word2vec [26], FastText [27] and ELMo [28] with a fine-tuned BERT
model [29] pretrained on a general domain corpus. The proposed approach was used to
easily and rapidly create an Italian language B-NER annotated corpus with very little effort
with respect to a fully manual annotation procedure. The obtained corpus was evaluated
on the aforementioned B-NER task, achieving performances comparable with the state of
the art, as demonstrated in the experimental assessment.

In summary, the main contributions of this paper are:
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• An automatic annotation methodology for B-NER corpora based on AL and DS
techniques;

• An analysis of the contribution of different clinical closed-domain WE models (includ-
ing word2vec, FastText and ELMo models), compared to a fine-tuned BERT model
trained on a general-domain document collection;

• The annotation of an Italian clinical B-NER corpus.

The paper is organised as follows: in the next Section 2, an overview of the recent
related works is presented, mainly focusing on methods for the annotation of texts from
clinical and biomedical domains. Then, the details of the proposed approach are described
in Section 3. In Section 4, the experimental assessment and the obtained results are shown
and discussed and, finally, in Section 5 the final considerations, conclusions and future
works are highlighted.

2. Related Works

Many methodologies devoted to the support of the annotation of an NER corpus
have been proposed in recent years. Some studies are related to the guidelines for manual
annotation of large corpora [10,11], which are very important for ensuring that the domain
experts will follow the same approach during the annotation process. Besides them, many
automatic and semi-automatic methods based on active learning and distant supervision
have been presented. In [30], several AL algorithms were implemented to produce and
assess corpora for a clinical text classification task in detail to determine the assertion
status of clinical concepts. The results demonstrated that AL strategies are able to generate
better classification models than the passive learning method such as random sampling.
In [20,22], different sample selections for AL methods devoted to the clinical concept
extraction task were proposed and evaluated, demonstrating their effectiveness in terms
of building effective and robust ML models, reducing the time and the efforts involved in
manual annotation. The authors of [31] described an AL method for the annotation of a
corpus formed by MEDLINE abstracts annotated with pathological named entities. They
proposed two different annotations, namely a short annotation that maps well defined
diseases, and a long annotation that describes longer statements related to pathological
phenomena and observations. Then, they defined an AL approach, which introduces
a sampling bias by focusing on the most uncertain annotation samples, generating the
annotated corpus. A clustering-based AL approach for B-NER is described in [32]. A
document vector representation is obtained through TF-IDF; shared nearest neighbour
(SNN) clustering is used to select documents with higher informative content during
the iterations of AL, following the assumption that documents sharing similar named
entities provide less information to the ML classifier. This AL method achieved a sensible
improvement compared with random selection.

The authors of [33] presented a method to support the annotation of proteins, lever-
aging and ensemble learning together with WE, recurrent convolutional neural network,
logistic regression and support vector machine models to effectively classify whether the
title of a journal publication provides the information needed to show that experimental
evidence of protein function for a given protein annotation is presented in the publication,
reducing the manual effort only to a simple final confirmation. Their approach proved to
outperform the transformer-based BioBERT model [34] fine-tuned on the same data.

The work described in [35] investigates whether conditional random fields (CRF)
can be efficiently trained for NER in German texts, by means of an iterative procedure
combining self-learning with a manual annotation—active learning—component, which
leverages a CRF-based annotation and a manual correction to iteratively increase and
improve the available dataset. Their results showed that their approach enabled the
training of more accurate models with the annotation of fewer, more relevant data points,
which are most helpful for modelling training.

In [36], the authors described an approach to deploy an annotated corpus for NER
with minimal data and a light effort from experts combining both statistical and rule-based
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approaches. The authors of [24] proposed a novel approach to mitigate the incomplete
and noisy annotations obtained from automatic annotation through DS. This approach
is based on an instance selector, exploiting reinforcement learning. The selector chooses
sentences from a candidate dataset to expand training data, improving the performances
of a DL NER architecture. The instance selector is trained on a reward provided by the
NER tagger. The authors of [37] provided a tool which is able to leverage and integrate the
information from many available biomedical knowledge bases with the purpose, among
the other things, of creating and annotating new corpora. In [38], the authors presented a
method to reduce human efforts for the annotation of a clinical text classification corpus,
exploiting weak supervision and deep representation. In detail, they annotated training
data using KBs and a rule-based approach, and then they used WEs as deep representation
features as input to different ML models. They proved that this approach is very effective
when used to train a convolutional neural network, but needs many training samples and
suffers when applied in multi-class problems. Other methods to annotate a corpus through
DS using domain KBs and rule-based approaches are discussed in [15,16]. In these latter
cases, the results are strongly dependent on the predefined rule set and the considered KBs.

In [39], a semi-supervised self-learning technique is presented to extend an Arabic
sentiment annotated corpus with unlabeled data. In detail, a long short term memory
(LSTM) neural network is used to train a set of models on a manually labeled dataset.
These models were then used to extend the original corpus, ensuring an improvement in
the Arabic sentiment classification task. In [40], an approach to automatically annotate
EHRs is described. First, a DS based on KBs is used to create an annotated training set.
Then, a weighted function of WEs was used to create a sentence-level vector representation
of relevant expressions, which are used to train an ML classifier, with the purpose of
assessing the presence, absence, or risk of urinary incontinence and bowel dysfunction. The
resulting model outperformed a other rule-based models for annotation with a significant
margin. In [41], the authors described an approach for the annotation of a B-NER corpus,
exploiting an automatic translator and knowledge bases, such as UMLS or ICD9, which
contain lists of medical domain terms. They first used automatic translators to convert
the English language annotated corpus into Italian. Then KBs were used to address the
limits of the machine translations when applied to the specific lexicon from the biomedical
domain, improving in this way the quality of the obtained corpus. In [42], the authors
proposed a method to enhance the performance of a DL biGRU-CRF model devoted to
clinical named-entity recognition in the French language, exploiting medical terminologies.
Regardless, we also compared the results of the proposed approach with a fine-tuned BERT
model pretrained on a generic domain Italian corpus, leveraging it for both the AL phase,
as well as for the analysis of the performances of the annotated biomedical NER corpus.

3. Methodology

The proposed annotation methodology can be split into two main phases: an iterative
active learning phase, followed by a distant supervision phase.

3.1. Active Learning

In the preliminary step of the methodology, human experts have manually annotated
a small number of documents extracted from an unannotated corpus. A small part of
these annotated documents is used as a training set of a DL model, whereas the remaining
annotated samples are used as a test set during all iterations of the AL phase, with the
purpose of assessing the improvement obtained in each step and providing a stop criterion
when no more performance increment is observed. The few samples of the training set can
lead to poor performances in the DL model; on the other hand, the reduced time and efforts
for the annotation of a small fraction of the whole corpus make this process affordable. At
this point, experts will not annotate more documents, but they must simply review a subset
of new documents from the whole dataset automatically annotated through DL, eventually
correcting the wrong or missing predictions. These new annotated samples are then added
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to the training set, in order to retrain the ML model with higher precision thanks to a
larger training set. The same procedure, namely the selection and review/correction of
new AL-annotated samples and the retraining of the DL model, must be iterated until
no further improvements of the ML results are observed. Figure 1 illustrates a schematic
representation of the proposed AL-based annotation procedure.

Manual 
annotation of  

a small corpus 
(Phase 1)

or
Review and 

Correction of 
AL-annotated 
documents

(Next Phases)

Train NN on the 
small manually 

annotated corpus
(Phase 1)

or
Retrain NN on 

larger training set 
annotated with 
AL and manual 

review
(Next Phases)

Automatic 
AL-based 

annotation of a 
subset of new 

documents

Include new 
annotated 

documents in the 
corpus to obtain a 
larger training set

Human Expert

Artificial Intelligence

Figure 1. Schematic representation of the active learning annotation procedure.

The iterative AL annotation, followed by a manual review of the data, improves the
quality of the obtained results with respect to a single-step AL annotation, because the
effort of the human experts allows to correct any missing or wrong annotation obtained
after each AL phase.

The selection of new samples from the dataset that will be annotated by the ML system
is demanded of the domain experts without further support of automatic algorithms, such
as those done in more complex AL approaches [22]. An improvement of the performance
of the automatic annotation system is obtained using WE models trained on a biomedical
closed domain corpus, as explained in Section 3.1.1. Deep neural network architectures are
actually the state-of-the-art approaches for the B-NER task [3]. Thus, a DNN architecture
for NER is used as an automatic ML classifier in the AL procedure. We adopted the classic
DNN model presented in [43], known as Bi-LSTM CRF. This architecture is formed by the
following layers: a bidirectional long short term memory (Bi-LSTM) character embedding
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layer, concatenated with a pretrained WE layer, a Bi-LSTM layer for words and a conditional
random field (CRF) layer, counting in total 166, 082, 553 parameters. The Bi-LSTM CRF
model offers both good performance and reasonable training times. Moreover, the BERT
model [29,34] pretrained on a general domain was also considered, in comparison with the
Bi-LSTM CRF architecture.

3.1.1. Closed Domain Embedding Models

As mentioned above, the proposed methodology requires the preliminary training
of an ML model in order to start the iterative AL process. In this first step, a manually
annotated training set that counts few examples is used. While it does not require a long
time to be manually annotated, its limited number of samples limits the performances of the
ML system trained on it. In order to mitigate this issue, we represented the input text using
WE models pretrained on biomedical-domain document collections [44], improving in this
way the performance of the NER DNN. A higher precision of the results during the AL
phase can provide a substantial help to the experts, further reducing the efforts required for
the selection and correction of new samples. In particular, following the results described
in [44–46], we conducted experiments with several WE models specifically trained on a
biomedical closed-domain corpus. For this purpose, a further collection of documents
related to the biomedical domain were collected in order to train the embedding models
(see Section 4.3 for further details on this corpus). Five different WE models are tested:
two word2vec (W2V) models [26], two fastText (FT) models [27], considering in both cases
skip-gram and cbow algorithms, and ELMo [28], a contextual embedding model, pretrained
on the Italian language biomedical domain, following the same approach presented for the
BioELMo model in English [47].

We analysed the performance of these embedding models when used to represent the
text in the first layer of the adopted DNN architecture, during the training of the AL model
in the preliminary step of the proposed method, when only a small manually annotated
training set is available. All embedding models during the subsequent steps of the proposed
methodology are also tested to better underline their contribution when a larger training
set is available. Finally, the results are compared with models trained on a very large Italian
language general domain corpora: a word2vec model [48], provided by ISTI-CNR (the
model is publicity available at https://github.com/MartinoMensio/it_vectors_wiki_spacy,
accessed on 6 June 2022), and a BERT model [29], fine tuned on the B-NER task, as better
explained in Section 3.1.2.

3.1.2. Fine-Tuned BERT Model

As explained above, we also adopted in our experimental assessment a BERT model [29],
with the main purpose of comparing the performance of the Bi-LSTM CRF model with
WEs trained on a biomedical closed-domain corpus, with a fine-tuned BERT model
pretrained on a general domain corpus. In particular, we adopted the bert-base-italian-
xxl-uncased model from the MDZ Digital Library team (dbmdz) BERT Italian model
(https://huggingface.co/dbmdz/bert-base-italian-cased, accessed on 6 June 2022). This
model is based on the BERT-base architecture, which is formed by a stack of 12 layers of
decoder-only transformers [49], 768 hidden dimensional states and 12 attention heads. This
model was pretrained on a very large general domain Italian corpus, whose size is 81 GB
and counts 13,138,379,147 tokens, exploiting the masked language modelling approach,
which consists in randomly applying a mask on a fraction of the words in the training
corpus, encoding in this way information of the sentences from both directions and training
at the same time the model to predict the masked words.

The transformer-based language models, such as BERT, allow for the transfer learning
of the knowledge acquired through the pretraining on large corpora, as well as for the
fine-tuning of the model on other tasks. Several pretrained BERT models are available in
the literature due to the long time and computational resources required for the pretraining
phase, as well as due to the need for collecting sufficiently large document collections. For

https://github.com/MartinoMensio/it_vectors_wiki_spacy
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these reasons, we were not able to pretrain the BERT model on a biomedical closed-domain
document corpus, neither a biomedical domain Italian language pretrained BERT model
is available.

3.2. Distant Supervision Dataset Augmentation

Corpora annotated using ML-based methods are often affected by the problem of
skewed class distribution [23]. An imbalanced class in the training set could limit the
performance of a DNN trained with such corpora [50]. Undersampling or oversampling
can help to mitigate the class imbalance problem [51], but undersampling can also lower
the overall performances, deleting samples of all classes. With the purpose of improving
the quality of the annotated corpus and resolving some of the problems related to class
imbalance, a distant supervised annotation and augmentation after the AL phase is pro-
posed. In detail, the annotated corpus is augmented with new samples belonging to the
imbalanced classes, obtained through DS-exploiting domain KBs. The KB must contain a
list of entities of the same class that must be augmented.

The dataset augmentation after the AL annotation is performed as follows. The
sentences containing at least one entity belonging to the imbalanced classes are extracted
from the corpus. Then, new sentences are obtained by substituting the named entities in
these sentences with new entities of the same class randomly extracted from the respective
KB. The process is iterated until a sufficient number of new sentences is obtained; that
is, the respective class is less imbalanced, and, at the same time, all the entities from
the KBs have been considered. In this way, we also include new entities in the dataset,
in addition to reducing the class imbalance. Moreover, the augmentation process also
oversamples the entities belonging to not imbalanced classes, providing in general more
samples for all classes. As demonstrated by the results described in Section 4, this improves
the overall performance, not only in the cases of imbalanced classes. Finally, the obtained
new sentences are randomly reinserted in the corpus.

The whole proposed annotation methodology, including both iterative AL and DS
phases, is represented in the block diagram depicted in Figure 2.
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Figure 2. Schematic representation of the active learning annotation procedure.
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4. Experimental Assessment and Discussion

In this section, in the following, after a description of the features of the original
dataset and the details of the obtained annotated corpus, the performances of the DNN
trained using the self-made corpus will be discussed, measured in terms of precision, recall
and F1-score and considering also the contribution of the closed-domain WE models.

4.1. B-NER Annotated Corpora

The original unannotated dataset is formed by the narrative parts of NL text extracted
from a set of 1011 anonymized EHRs in the Italian language, which has a total word count of
1, 657, 970. In detail, the dataset contains EHRs acquired from the eHealth systems of some
different hospitals in Italy. As mentioned above, the EHRs had been previously anonymized
and they are related to patients admitted to different departments of the hospitals. The
content of these documents is relatively homogeneous, containing the clinical diary of the
patients, where the causes of the admission to the hospitals, the diseases, the prognosis, the
follow-ups, the exams, the procedures and the prescriptions are described. Some sample
sentences extracted from two different EHRs (translated into English) are reported below.

• Found sub-capital fracture and dislocation of left shoulder and contusion of right hip caused
by accidental fall at home.

• Tomorrow follow-up exams.
• Patient admitted to cardiology from 9 February to 19 February due to episodes of arrhythmia,

likely secondary to chronic renal failure.

Eight different named-entity classes are identified, as shown in Table 1, following
UMLS semantic types [52] and considering at the same time possible real-world applications
of the trained ML models [2].

Table 1. Entity classes with corresponding acronyms and examples. The English translation of the
examples is in italics between parentheses.

Class Type Acronym Examples

Diseases and Symptoms DIS
Febbre (Fever), pressione alta
(High blood pressure), cirrosi

epatica (liver cirrhosis)

Drug names DRU Paracetamolo (Paracetamol),
antibiotico (antibiotic)

Departments DEP
Ortopedia (Orthopedics),

pronto soccorso (emergency
room)

Therapeutic procedures and
Medical Instruments THE

Ecografo (ultrasound scanner,
profilassi antitrombotica

(thrombosis prophilaxis), stent
(stent)

Body Parts BOD
Piede destro (right foot), testa

dell’omero (humeral head),
fegato (liver)

Measures MEA 30 cc, 12 mm, 120 bpm

Dates DAT 23 giugno 2012 (23 June 2012),
oggi (today), ore 12:30 (12:30)

Diagnostic procedures or lab
tests ANA

Radiografia (radiography),
valutazione cardiologica

(cardiac assessment), glicemia
(glycaemia), coronarografia

(angiography)

As explained in Section 3.1, in the preliminary step of the annotation process a small set
of documents formed by the text extracted from 25 randomly selected EHRs was manually
annotated by two domain experts. The annotation procedure was conducted according to
predefined guidelines, which describe general and specific annotation rules. The labelling
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process followed the IOB notation [53], i.e., each token belonging to an entity is labelled
with the corresponding class adding the prefix B (Begin) if it is the first token of the entity,
the prefix I for all subsequent tokens of the same multi-word entity and the tag O (Outside)
if the token does not belong to an entity. The result of the manual annotation is a small
dataset, which counts 7421 tokens and 1963 named entities, as shown in the first row
of Table 2. The experts worked for approximately eight hours to produce this dataset,
including the discussion about conflicts and disambiguation of the conflicting annotations.
To the end of providing a stop criterion for the iterative AL phase (see Section 3.1), a further
test set, which counts 21,133 tokens, was also manually annotated.

Table 2. Number of words and annotated entities in each step of the iterative AL annotation proce-
dure.

Step Word Number Entity Number

1 7421 1963
2 20,083 5621
3 32,856 9285
4 78,449 21,914
5 133,200 37,029
6 201,956 55,601
7 304,797 60,669

This small dataset is used to train the DNN Bi-LSTM-CRF [43] architecture. This DL
model has been used to automatically annotate new documents randomly extracted from
the whole dataset, starting the iterative AL phase. In each iteration, the human experts
had to review the correctness of the annotations produced by the DL model, eventually
correcting the wrong or the missing ones. They worked each step for approximately eight
hours, but, in this case, they were able to annotate wider datasets, thanks to the reduced
effort provided by the partial annotation of the data, as shown in Table 2. The new data
obtained in each iteration were added to the training set, producing a larger dataset, which
was used to retrain the DL model. The same process was iterated and at each step the
experts were able to speed up the annotation process, producing at the same time an
increasing number of annotations thanks to the higher precision of the DL model trained
on a larger and more complete dataset (see Table 2 for the details). The iterative AL process
was stopped after seven iterations (see Section 4.3) when no more notable performance
improvements of the ML model were observed. At the end of the AL phase, a corpus
counting 304,798 words and 60,669 entities was annotated.

The results shown in Table 2 demonstrate that the proposed approach allows one to
obtain a sensitive improvement of the time required for the annotation, with respect to a
fully manual process. In the first preliminary step, a human expert was able to annotate a
document collection formed by almost 8000 words in about 8 h, with a rate of 1000 words
per hour. The dataset obtained through the AL phase counts 304,797 words: considering
the same annotation rate of the preliminary step, the fully manual annotation of this dataset
would have required about 300 h. The proposed AL process required seven steps where the
experts reviewed and corrected the annotations of the new data obtained from the DNN for
about 8 h for each step, with a total manual effort of 56 h. Moreover, the process required
an average training time of the DNN equal to 1.5 h for each iteration (the training time
increases with larger training sets) on the hardware used for the experimental assessment
(see Section 4.2). In summary, the proposed iterative AL phase required in total about 66 h,
allowing one to obtain an annotated dataset in almost 1/5 of the time required by a fully
manual annotation.

Table 3 shows the distribution of the classes in the dataset obtained at the end of the AL
phase. We note that there are very few examples of DEP (Departments) and DRU (Drugs)
classes. This skewed class distribution can limit the performances of the ML systems, in
particular for these two specific classes (see next Table 7). Then, in order to mitigate the
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skewed class distribution, the annotated corpus was automatically augmented using DS
with our proposed approach, exploiting knowledge sources related to the more imbalanced
classes, such as a complete list of drugs and pharmaceutical substances extracted from the
Pharmaceutical Reference Book officially maintained by the Agenzia Italiana del Farmaco
(https://farmaci.agenziafarmaco.gov.it/bancadatifarmaci/cerca-farmaco, accessed on 6
June 2022), the Italian government agency in charge for drug administration, and a list of
medical departments was obtained from the main Italian medical centre (hospitals, clinical
facilities, etc.) websites. These two KBs were used to expand the corpus, applying the data
augmentation/oversampling, as described in Section 3.2. The final resulting annotated
corpus has a total word count equal to 1,699,028 and a total entity count equal to 424,776.
In Table 3, it is shown that the distribution of the samples after the DS augmentation clearly
reduces the original skewness.

Table 3. Number of entities in the annotated corpus before and after the application of DS entity ex-
pansion.

Class Type
Entity Number

No Expansion Expansion

MEA 12,168 65,668
DRU 2046 45,336
DEP 1099 25,469
THE 8170 46,900
BOD 11,423 33,203
DIS 31,179 125,059
DAT 4933 34,263
ANA 12,258 48,878

Total 60,669 424,776

The final corpus was split into a training set and a test set, randomly selecting about
15% of the data for the test and the remaining data for the training. In this way, the entity
classes, respectively, in the training set and the test set are distributed as shown in Table 4.
The test set was used to assess the performance of the DNN with the annotated corpus.

Table 4. Number of entities in the final annotated corpus, split into test set and training set.

Class Type
Entity Number

Test Set Training Set

MEA 9458 56,210
DRU 6624 38,712
DEP 3860 21,609
THE 6859 40,041
BOD 4539 28,664
DIS 17,354 107,705
DAT 4920 29,343
ANA 7055 41,823

Total 60,669 364,107

Finally, a further test set was also manually annotated by the domain experts, extract-
ing documents from a different medical domain document collection, with the purpose of
assessing the quality of the corpus obtained with the proposed methodology. The aforemen-
tioned document collection, named hereinafter out-of-corpus, is formed by short medical
notes and diagnoses from various medical departments and counts 15,728 words and 3816
entities. A common problem of the Bi-LSTM CRF B-NER architecture is that it often fails to
generalise to out of vocabulary words, namely words that do not appear in the training

https://farmaci.agenziafarmaco.gov.it/bancadatifarmaci/cerca-farmaco
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set [54]. Thus, we tested the DL model also on the out-of-corpus test set, which contains
many named entities not present in the original dataset.

4.2. Hardware

The AL phase requires the availability of hardware equipped with GPUs capable of
training the DNN in a reasonable time. The hardware used in our experiments was a dual
CPU Intel Xeon E5-2630, clocked at 2.2 GHz, with 256 GB of RAM and 1TB SDD, equipped
with four Nvidia Titan X 1080 GPU with 11 GB of VRAM. With this system, the average
time required to train the DNN during each iteration of the AL phase was about 1.5 h,
considering that the training time increases with the size of the dataset.

4.3. Performances

To verify the effectiveness of the annotated corpus, we evaluated the performance of
the same DNN used in the AL phase, trained on the obtained corpus. As explained above,
we also tested different WE models to represent the input of the DNN, whose details are
reported below.

Firstly, we considered a word2vec model [26] trained on a general domain Italian
language corpus, hereinafter called W2V ISTI, formed by a Wikipedia dump and a collection
of 31,432 novels [48]. This document collection is very large (242,261,172 sentences and
2,534,600,769 words), and its content is related to many knowledge fields. The training
parameters used for this model are: skip-gram algorithm, vector size 300, window size 10
and negative samples 10.

Then, a more specific biomedical closed domain text corpus, hereinafter BIO-Corpus,
was used to train the embedding models. This corpus was created considering different
biomedical sources, in detail: (i) a dump of a selection of Italian Wikipedia pages related to
medicine, biology, healthcare and other similar domains, following the procedure and the
tools described in [45]; (ii) the text extracted from the package leaflets of all drugs available
in Italy, downloading all pdf files from Agenzia Italiana del Farmaco (AIFA) and extracting
the corresponding text exploiting Apache Tika (https://tika.apache.org/, accessed on 6
June 2022) and some specific Python scripts; (iii) the text extracted from the Italian Medical
Dictionary of the Corriere della Sera (https://www.corriere.it/salute/dizionario/, accessed
on 6 June 2022) through a set of custom web scraping Python scripts; and (iv) the text
extracted from other Italian biomedical documents freely available online, such as scientific
papers, presentations, technical reports and other things, exploiting also in this case Tika
pipelines and Python scripts. The BIO-corpus is made up of 2,160,704 sentences and
511,649,310 words and it was used as a training set for five different WE models: two
word2vec (W2V) [26] models and two FastText (FT) models [27], considering in both cases
skip-gram and cbow algorithms and setting the vector size equal to 300, the window size
equals to 10, the negative samples equals to 10 and, in the case of FastText embeddings, the
char n-gram size varying from 3 to 6, as well as one contextual embedding model based on
ELMo [28]. These latter models trained on the BIO-Corpus were called, respectively, W2V
cbow, W2V skip, FT cbow, FT skip and ELMo.

Finally, we also tested the obtained annotated corpus by fine-tuning the BERT model
pretrained on a very large general domain corpus, previously described in Section 3.1.2.

Table 5 shows the results obtained on the manually annotated test set (see Section 3.1)
in the preliminary step of the AL phase when the DNN has been trained with few manually
annotated data. The results are in terms of F1-Score, precision and recall averaged over all
classes. It is possible to observe that ELMo embeddings trained on the BIO-Corpus and
used to represent the input to the DNN obtain performances sensibly higher than the other
cases, despite a training set with few samples. This can provide substantial help to the
experts during the next steps of the AL phase, further reducing the effort in the correction
of wrong predictions.

Thus, this model was selected for further steps of the AL phase for the annotation of
the B-NER corpus, as well as the input layer of the DNN used to test the effectiveness of the

https://tika.apache.org/
https://www.corriere.it/salute/dizionario/
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annotated corpus. Moreover, the experiments also considered the fine tuning of the BERT
model pretrained on a general domain document collection, that being the current reference
model for NER tasks in the literature and because it obtained performances comparable to
the ELMo case in the preliminary step of the proposed approach.

Table 5. Results in terms of F1-Score, precision and recall averaged on all classes obtained during the
first training of the DNN of the AL phase, using different pretrained embedding models.

WE Model F1-Score Precision Recall

W2V ISTI 0.4520 0.5274 0.4624
W2V cbow 0.3905 0.4764 0.3738
W2V skip 0.4734 0.6062 0.4131
FT cbow 0.3758 0.3976 0.4478
FT skip 0.4611 0.4438 0.4913
ELMo 0.6900 0.6758 0.7078
BERT 0.6787 0.6557 0.7034

The AL-based iterative annotation stopped when no further improvements to the
results were obtained. Seven iterations are considered empirically sufficient to produce in
the AL phase an annotated corpus with 304, 977 words and 60,669 entities. Table 6 shows
the performance improvements obtained in the test set at each step of the iterative AL
procedure, using the ELMo model with BiLSTM CRF and the BERT model. As shown
in Table 6, increasing the size of the annotated corpus during the steps of the iterative
AL phase improved the performances of both the ELMo and the BERT experiments. We
also note that the ELMo model pretrained on the biomedical domain corpus performs
slightly better when fewer data in the training set are available during the first iterations
of the procedure, while, when larger training sets are obtained during the AL phases, the
BERT model pretrained on a general domain corpus obtains slightly better results. In any
case, both models obtain comparable performances, demonstrating that a simpler neural
language model, such as ELMo, pretrained on the biomedical domain corpus obtains
performances comparable with the ones produced by a more complex DNN, such as
BERT, pretrained on a general domain corpus. Then, we focused the next phase of the
experimental assessment only on the ELMo model, investigating the contribution of the DS
data augmentation phase.

Table 6. Performance of the best performing DNNs (ELMo Bi-LSTM CRF and BERT fine tuned) at
each step of the AL phase of the annotation procedure, in terms of precision, recall and F1-Score
averaged over all classes.

ELMo BiLSTM-CRF BERT Fine Tuned

Iteration
Step Precision Recall F1-Score Precision Recall F1-Score

1 0.6758 0.7078 0.6900 0.6557 0.7034 0.6787
2 0.7195 0.7504 0.7346 0.7187 0.7517 0.7349
3 0.7269 0.7567 0.7406 0.7252 0.7638 0.7440
4 0.7364 0.7697 0.7522 0.7449 0.7738 0.7590
5 0.7552 0.7743 0.7646 0.7581 0.7849 0.7712
6 0.7629 0.7767 0.7695 0.7639 0.7915 0.7775
7 0.7635 0.7889 0.7760 0.7790 0.8001 0.7893

In Table 7, the results of the ELMo experiment obtained in the last step of the AL
phase are highlighted, showing the precision, recall and F1-Score obtained for each class of
the dataset. Observing at the same time the left column of Table 3, where the number of
entities of each class are shown, and Table 7, with the results obtained by the DNNs trained
on the corpus obtained at the end of the AL phase, it is possible to note that the worst
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performances were obtained in the cases of the entities belonging to the more imbalanced
classes, namely DRU (Drugs) and DEP (Departments), also limiting the average results.

Table 7. Performance of the ELMo Bi-LSTM CRF at the last step of the AL phase of the annotation
procedure, in terms of precision, recall and F1-Score for each class.

Entity Type Precision Recall F1-Score

MEA 0.8436 0.8599 0.8517
DRU 0.8085 0.3576 0.4959
DEP 0.1845 0.1404 0.1595
THE 0.5668 0.8459 0.6788
BOD 0.8283 0.8949 0.8603
DIS 0.8316 0.9125 0.8702
DAT 0.8905 0.9492 0.9189
ANA 0.8145 0.9137 0.8612

Average 0.7635 0.7889 0.7760

We introduced the DS data augmentation phase in order to limit this issue. After
the expansion and the balancing of the training set using the second part of the proposed
approach, where new sentences are obtained leveraging DS with domain KBs containing
lists of entities of two more imbalanced classes, the performance of the ELMo DNN trained
on the training set obtained with both the AL and DS phases are sensibly improved,
as shown in Table 8. In this case, we reported only the results obtained by the best
performing model, which was the Bi-LSTM CRF architecture with the ELMo embeddings.
This behaviour is expected, due to overfitting issues of the BERT model trained on very
large datasets [55].

In particular, comparing the obtained results for DRU and DEP classes in Table 8,
where the DS augmentation for balancing and expansion were applied for the annotation
of the training set after the AL, with the results achieved in the same class types shown in
Table 7, where only the AL is performed, it is possible to observe that the DS augmentation
applied to the most unbalanced classes DEP and DRU provided a sensible performance
boost. Moreover, we can also note an improvement in all the other classes thanks to the
oversampling performed during the DS data augmentation.

Table 8. Results obtained by the ELMo Bi-LSTM CRF trained with the final annotated corpus (AL
and DS augmentation) in terms of precision, recall and F1-Score for each class.

Entity Type Precision Recall F1-Score

MEA 0.9636 0.9675 0.9655
DRU 0.9863 0.9893 0.9878
DEP 0.9878 0.9860 0.9869
THE 0.9609 0.9636 0.9622
BOD 0.9203 0.9262 0.9232
DIS 0.9595 0.9634 0.9615
DAT 0.9783 0.9809 0.9796
ANA 0.9647 0.9718 0.9682

Average 0.9642 0.9679 0.9661

To the end of further verifying the effectiveness of the final obtained annotated corpus,
we also tested the DNN models on the out-of-corpus test set, previously described in
Section 4.1. This additional manually annotated test set was extracted from a different
document collection, which contains many entities not present in the dataset used to build
and annotate the training set. Table 9 shows the results obtained by the ELMo BiLSTM CRF
architecture trained on the final annotated corpus and tested on the out-of-corpus test set.
It is worth noting that, despite a slight performance drop, the DNN model still performs at
a good level, assessing the effectiveness of the obtained annotated training corpus.
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Table 9. Results in terms of precision, recall and F1-Score averaged on all classes obtained with the
DNN with ELMo embeddings trained on the final annotated corpus and tested on the out-of-corpus
test set.

Entity Type Precision Recall F1-Score

MEA 0.9374 0.9051 0.9210
DRU 0.6429 0.8824 0.7438
DEP 0.9000 1.000 0.9474
THE 0.7983 0.8559 0.8261
BOD 0.9112 0.8701 0.8902
DIS 0.8475 0.9278 0.8858
DAT 0.5608 0.9222 0.6975
ANA 0.9364 0.8805 0.9076

Average 0.8809 0.8986 0.8875

In summary, these results demonstrate that the DS data augmentation phase is capable
of further improving the quality of the dataset obtained from the previous iterative AL
phase, mitigating the issues of the AL related to unbalanced classes and out-of-corpus
named entities.

Finally, the next Table 10 reports the metrics averaged on all classes obtained by each
considered DNN model, namely the Bi-LSTM CRF with the various considered WE models
as input layer and the fine-tuned BERT model, trained on the final annotated dataset (AL
and DS) and tested on the out-of-corpus test set. The purpose of this last experiment is
to evaluate the contribution of different neural language models on a corpus containing
many named entities not present in the training set. The results in Table 10 show that the
WE model trained on a biomedical closed-domain document collection (W2V cbow, W2V
skip, FT cbow and FT skip) provides sensible improvements with respect to the W2V ISTI
model, trained on a general domain corpus. We also note that the WEs trained using the
skipgram algorithm provide improved performance with respect to the cbow algorithm.
The ELMo model produces the best performance, but the simpler W2V skip model also
obtains good results, although it does not reach the performance obtained by more complex
ELMo and BERT architectures. As in the previous case, the performances of the BERT
model are limited by the overfitting issues, although we adopted a drop-out rate equal to
0.7 to limit them, following the literature [55].

Table 10. Results in terms of F1-Score, precision and recall obtained by the DNN on the out-of-corpus
test set, using different pretrained WE models.

WE Model Precision Recall F1-Score

W2V ISTI 0.7794 0.7714 0.7714
W2V cbow 0.8047 0.8000 0.8010
W2V skip 0.8676 0.8464 0.8545
FT cbow 0.8164 0.8143 0.8125
FT skip 0.8367 0.8107 0.8213
ELMo 0.8809 0.8986 0.8875
BERT 0.7356 0.7246 0.7301

5. Conclusions

This paper presented an approach based on both active learning and distant super-
vision, which makes the manual annotation of a corpus for biomedical named entity
recognition (B-NER) a less costly process, reducing the efforts needed by human experts.
In detail, the method is based on a first AL phase, where a DNN architecture for NER
composed of a BiLSTM-CRF is used to support the manual annotation. When no further
improvements are achieved by the AL-based process, the corpus is augmented using DS,
exploiting domain KBs, in order to mitigate the class imbalance. Finally, an assessment of
the utility of using a WE model trained on a closed domain document collection as input
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for the DNN was carried out, considering word2vec, FastText and ELMo embeddings, and
also comparing the obtained results with the fine tuned BERT model pretrained on a very
large general domain document collection.

The approach was tested by creating an Italian language B-NER corpus used to train
different B-NER DNNs. The experiments demonstrated that the obtained corpus is capable
of training a B-NER DNN with very good performance, allowing one to annotate an NER
corpus in a fraction of the time required for a fully manual annotation. Moreover, they
showed that the pretraining of the ELMo contextual embedding model on a biomedical
closed domain corpus allows one to obtain results comparable with the more complex
BERT architecture pretrained on a very large general domain document collection, which
demands more computational resources.

The proposed annotation methodology can facilitate the development and the imple-
mentation of AI-powered information extraction and indexing systems, improving the
management of large natural language document collections, as well as supporting the
analysis and the extraction of knowledge from such documents. On the other hand, a limit
of the proposed approach is that KBs in the domain and the language of the annotations
must be available to apply the DS phase. Moreover, the method is not fully automatic,
requiring in any case human supervision, as well as a fully manual annotation in the
preliminary phase. It also requires the availability of DL-dedicated hardware to carry out
the AL phase in a reasonable time. Finally, the training of the NLM (in particular, the
BERT-based models) requires the collection of a very large closed-domain unannotated
document corpus, which in some cases may not be easy to obtain.

In future work, the B-NER DL model trained on the obtained annotated corpus on
more out-of-corpus documents, such as medical tweets or scientific papers, assessing the
effectiveness of the proposed annotation methodology will be evaluated. Moreover, we
want to collect a very large biomedical closed domain corpus in order to pretrain a domain-
specific Italian biomedical BERT model, following the BioBERT [34] approach, in order to
further test the proposed annotation approach.

Finally, the presented annotation methodology could be applied to other languages
and domains in order to demonstrate its general validity. In particular, the same approach
was also developed, tailored and tested for the annotation of a cyber security (CS) English
NER corpus, exploited for an innovative ML-based threat assessment methodology [56]
proposed in the EC-funded AI4HEALTHSEC project (https://www.ai4healthsec.eu, ac-
cessed on 6 June 2022). In this case, a large document collection was previously extracted
from a CS news website, allowing for the creation of an unannotated training set for the
neural language models, while CAPEC (https://capec.mitre.org, accessed on 6 June 2022)
and CPE (https://nvd.nist.gov/products/cpe, accessed on 6 June 2022) KBs were used in
the DS phase for the annotation of CS threats and the corresponding assets. Moreover, a CS
closed-domain BERT model was also exploited, confirming the effectiveness of the use of a
closed-domain transformer-based NLM.
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