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Abstract: The geomechanical parameters in underground engineering are usually difficult to de-
termine, which can pose great obstacles in underground engineering. A novel displacement back-
analysis method is proposed to determine the geomechanical parameters in underground engineering.
In this method, the problem of geomechanical parameter determination is converted into an optimiza-
tion problem, regarding the geomechanical parameters as the optimization parameters, and the error
between the calculated results and the field measurement information as the optimization objective
function. The grasshopper optimization algorithm (GOA), which offers excellent global optimiza-
tion performance, and the Gaussian process regression (GPR) machine learning, offering powerful
fitting ability, are combined to address the time-consuming numerical calculations. Furthermore,
the proposed method is combined with the 3D numerical calculation software FLAC3P to form the
GOA-GPR-FLAC3P method, which can be used in the displacement back-analysis of geomechanical
parameters in underground engineering. The results of a case study show that the proposed method
can greatly improve computational efficiency while ensuring high precision compared with the
GOA. When applied to the Tai’an Pumped Storage Power Station, this method can obtain more
accurate results compared with the GOA under the same evaluation times and is more suitable for
the back-analysis of rock parameters in underground engineering.

Keywords: underground engineering; back-analysis; grasshopper optimization; Gaussian process

1. Introduction

Due to the particularity and complexity of geological conditions in engineering, var-
ious rock parameters in underground engineering projects present great uncertainties,
which increase difficulties and variables during construction. Although some parameters
can be obtained by laboratory tests or in situ tests, due to the size effect, there can be
large errors in the parameters, which cannot meet the needs of practical engineering. At
present, the rock parameter back-analysis method has become an important means of
solving this problem, gradually forming a system of theories and methods that can be used
in engineering practice [1,2]. Underground engineering back-analysis is a method that uses
displacement, stress, strain and other measured information generated by surrounding rock
during underground engineering construction to establish a model and carry out numerical
simulations to deduce rock parameters and initial load conditions [3-6]. Displacement
information is easier to monitor and obtain than stress data and other measured infor-
mation, and the displacement back-analysis method is the most widely used method for
back-analysis in underground engineering [7,8]. In the displacement back-analysis process,
to obtain more practical geomechanical parameters and align the calculated results with
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field measurement information, the rock parameters are converted to optimization parame-
ters, and the error between the calculated results and the field measurement information
is taken as the optimization objective function; this approach is called the optimization
back-analysis method.

After decades of research, the optimization of back-analysis methods has been continu-
ously updated and has iteratively injected vitality into the development of the back-analysis
field. Traditional optimization methods, such as the simplex method [9], conjugate gra-
dient method [10] and semianalytical method [11], have provided impetus in the initial
development of the displacement optimization back-analysis method. However, tradi-
tional optimization methods can encounter problems, such as slow convergence speed
or weak adaptability, which cannot meet the needs of underground engineering back-
analysis [12,13]. Therefore, with the continuous development of the internet and computer
technology, some bionic intelligent algorithms, such as the genetic algorithm (GA) [14-16],
particle swarm optimization (PSO) [17-19], and ant colony optimization (ACO) [20], have
been gradually introduced into geotechnical engineering and applied in the back-analysis
of rock parameters. Since bionic intelligence optimization algorithms are stochastic opti-
mization algorithms, a large number of fitness function evaluations are often required to
obtain the global optimal solution for complex optimization problems. However, because
the relationship between the parameters and the objective function is difficult to establish
through simple formulas, it is generally necessary to use time-consuming numerical calcu-
lations to establish the implicit functional relationship, which leads to low computational
efficiency and is difficult to apply to engineering practice [21].

In the optimization back-analysis, this problem can be effectively solved by replacing
part of the time-consuming numerical calculation with the surrogate model. Genetic algo-
rithm (GA) and artificial neural network (ANN) strategies have been combined to calculate
the geomechanical parameters and in situ stresses [22]. When using the back-analysis
method to calculate the seepage field parameters of an earth-rock dam, researchers used a
support vector machine (SVM) to establish the nonlinear relationship between the seepage
parameters and the water head. Then, an objective error function was used as the fitness
value of the PSO algorithm, and the seepage parameters were identified by the PSO algo-
rithm [23]. In another study, scholars integrated an orthogonal design method, GA, SVM
and numerical simulation software to successfully invert the geomechanical parameters of
an underground powerhouse of a large hydropower station [24]. However, for complex
nonlinear function problems, ANNs are prone to overfitting and have a slow convergence
speed, while SVMs face difficulties in choosing kernel functions and parameters.

In this paper, a novel intelligent algorithm based on the grasshopper optimization
algorithm (GOA) and Gaussian process regression (GPR) machine learning is proposed,
combining the low computational cost of the GPR surrogate model with the powerful
optimization ability of the GOA. On this basis, a back-analysis method called GOA-GPR-
FLAC?P is presented through the geotechnical numerical calculation software FLAC3P.
Furthermore, the method is applied to a circular tunnel case, and the Tai’an Pumped
Storage Power Station, to verify its superiority and practicability in the back-analysis of
underground engineering.

2. Related Work
2.1. GOA

The GOA is an emerging bionic intelligence optimization algorithm that has the char-
acteristics of excellent global optimization capability [25]. The algorithm regards a single
individual as a search operator and simulates the wide-ranging fast movements of imagoes
and local slow movements of larvae into global and local optimization, respectively. In the
optimization process, with an increase in the number of iterations, the global optimization
stage gradually transforms into the local optimization stage [26]. In the global optimiza-
tion stage, the operator performs a rapid search in the model space over a wide range
to obtain the general information of the model space and lock down a local area. In the



Appl. Sci. 2022,12, 5761

30f19

local optimization stage, the operator searches this local area and optimizes the accuracy
of the solution through continuous iteration. According to the distance between the two
operators, spatial regions can be divided into attractive regions, comfortable regions and
repulsive regions (Figure 1).

Attraction region
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Repulsion region

—— /
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Figure 1. Schematic of the interaction between individual grasshoppers.

= Attractive force

— Repulsive force

When the distance between the two operators is relatively close (less than 2.079 units),
they repulse each other, and the operator is in the repulsion region or the repulsion distance.
When the distance between the two operators is exactly 2.079 units, there is neither an
attractive nor repulsive force, which is called the comfort region or the comfortable distance.
In the same way, when the distance between two operators is more than 2.079 units,
they attract each other, which is called the attraction region or the distance of attraction.
According to this principle, grasshopper operators will constantly adjust their positions
with other operators to achieve optimized results.

It is important to note that there is no clear boundary between global and local
optimization. With increasing iteration times, the search area gradually decreases, and
the search gradually changes from global optimization to local optimization. The current
grasshopper operator x; is defined by the grasshopper operator x; as follows:

d;; PRV
pldy) = |me ¥ — e | T )
g
where dj; is the spatial distance between the current i-th grasshopper operator and the
j-th grasshopper operator; m and n are parameters to evaluate the effect of other agents
on the agent, m represents the intensity of attraction, and n represents the spatial scale of
attraction.
The next position of the grasshopper operator x; is defined as follows:

N xl.( — xk
% ule — flie ¢ Y "t k
x; =c1 (2 02— p(dlj) d;{j + T, (2)

j=1

where x:-‘ is the position to which the i-th grasshopper operator moves next in the k-th
dimension; N represents the total number of grasshopper operators; ul; and fI; represent
the upper and lower limits of the agent in the k-th dimension, respectively; di-‘]- denotes
the spatial distance between the i-th grasshopper and the j-th grasshopper in the k-th
dimension; xé‘ and x;-‘ represent the current position of the i-th and j-th grasshoppers in

the k-th dimension, respectively; Té,‘ represents the component of the best solution found
thus far in the k-th dimension; and c; and c; are known as adaptive shrinkage parameters,
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which maintain the relative balance between global and local optimization. If ¢; and c; are
represented by c, their linear change can be calculated as:
Cmax — Cmij
c= Cmax _ t max min (3)
tmax
where ¢ represents the current iteration number; fyax represents the maximum number
of iterations; cmax is the maximum value of the adaptive shrinkage parameter; ¢y, is the
minimum value of the adaptive shrinkage parameter.

2.2. GPR

Due to the numerous excellent properties of Gaussian distribution, GPR offers good
adaptability when dealing with small sample sizes, high dimensions, nonlinearity and
other problems [27]. In recent years, GPR has become a trending topic in the field of
machine learning [28-30].

There are two different ways to derive GPR, which can be explained by weight space
and function space. Since the derivation of weight space is deeply dependent on Bayesian
theory, this paper specifically explains it from the perspective of weight space for a better
understanding.

Let us start with the simplest linear regression model with noise. The formula is
shown as follows:

fx) =xTw,y = f(x) +e €

where x = (x1,xp, .. .,xp)T is the input of dimension p, w = (wy,w, .. .,wp)T is the
weight vector of dimension p, and y represents the true value. Here, we assume that
the noise € obeys a Gaussian distribution, with 0 as the mean and ¢2 as the variance.
Since we have previous knowledge about the weight vector, it is assumed that it obeys a
Gaussian distribution with a mean value of 0 and variance of ) », namely, e ~ N (0, 0',%) ,
w ~N(0,L,).

Through a series of observed training data D = (X,y) = {(x;,y;) |x;€R", y; € R, I=1,... n}
and the assumption of independent noise distribution, we can calculate the likelihood function
as follows:

1
2

ol ) = — 1 exol - (v — XTw) (v — XT
plylw) = Il w) = s exp( =z (v = XTw) (v - X))

i= ®)

~ N(XTw, 02I,)

With the likelihood function and the prior distribution of weights, the posterior

distribution of weights can be obtained using a Bayesian formula. First, according to
Bayes’ formula:

plao|) = U] P S puX ) )

In the formula, « represents the ignored constant scaling coefficient. In mathematics,
the product of two Gaussian density functions is still a Gaussian density function, and the
constant scaling coefficient in front of the Gaussian density function does not affect the
judgement of the mean and variance of the Gaussian distribution; thus, it can be ignored.
Since the denominator after the second equal sign of the above equation is an integral,
which results in a constant, the final expression can be obtained by ignoring it.

Substituting the previous calculation of p(y|X,w) and w ~ N(0,} ) into the above
equation obtains:

@)
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where p, = 0,2 (a; 2xxT + x, 1) Xy, Xy = ((f,{ 2xxT 4 Z;l) . According to the form
of the Gaussian density function, we can easily determine that it is a multidimensional
Gaussian distribution with a mean value and covariance matrix, namely:

p(w|D) ~ N(pw, Zw) (8)

With the posterior distribution of this weight, we can predict a group of test points
z. Here, we need to use the concept of total probability. p(f.|z,D) is the integral of all
possible parameters and their corresponding posterior distribution, that is, the predicted
distribution of the predicted value f..

p12D) = [ p(flz w)p(w|D)d o
~ N(zTpo, 272y 2)

If we consider the influence of noise, the predicted distribution of the real value y, of
the final prediction is as follows:

p(y,|z,D) ~N (zTﬂw,zTsz + (7;31) (10)

3. GOA-GPR Optimization Algorithm
3.1. Basic Concept

The main strategy of this method is as follows. First, the GOA is used in several
rounds of stochastic optimization within the model space. Then, taking the current optimal
grasshopper operator as the centre, the 3 x N historical operators closest to the current
optimal operator (N is the population number of the GOA algorithm) are obtained to
construct the optimization experience dataset. GPR is used to fit the dataset, and the
functional relationship between the decision variables and objective function values is
constructed to obtain the corresponding surrogate model. Then, the Newton method
is used to optimize the surrogate model and obtain the optimal operator of the local
region prediction. Because the surrogate model is used to replace the real performance
function, the real performance function is not used for fitness evaluation, and the efficient
Newton method is used to replace the GOA for local optimization, so the fitness evaluation
times of the objective function are significantly reduced and the overall efficiency of the
algorithm is improved. Finally, the predictive optimal operator found by the Newton
method is substituted into the real objective function to obtain the corresponding fitness
value, and the value is compared with the fitness value of the current optimal operator. If it
is better than the current optimal operator, the current optimal operator is replaced, and
the next round of optimization is conducted. The iterative process does not stop until the
convergence criterion is satisfied.

3.2. Methodology
a. GPR model for local area fitting

First, the GOA generates random initialization operators in the model space and per-
forms a real objective function fitness evaluation. After several rounds of global optimiza-
tion, enough information (location information and fitness information of the grasshopper
operator from the optimization process) is obtained in the model space, and then the
obtained information is used to construct the empirical dataset. The general strategy of
construction is as follows: Select an optimal operator as the current optimal operator from
all the acquired operators and select the operators close to the current optimal operator
to construct the empirical dataset. Finally, GPR is used to fit the samples in the dataset to
establish the functional relationship between the decision variables and objective function
values to obtain the corresponding surrogate model.
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b. Efficient optimization for the surrogate model

Instead of the GOA, the Newton method is used to optimize the local surrogate
model. The Newton method uses gradient information to optimize the objective function.
Therefore, its computational efficiency is much higher than that of the GOA to improve the
overall optimization efficiency of the method.

c. Dynamically updating the empirical dataset for optimization

In regression analysis, training samples directly affect the establishment of the sur-
rogate model and ultimately affect prediction accuracy. Therefore, reasonable training
samples are very important. In the process of constructing the optimization experience
dataset, we need to constantly dynamically adjust the optimization experience dataset and
optimize the training samples in the experience dataset to give full play to the surrogate
model. The main implementation steps for dynamically updating the empirical optimiza-
tion dataset are as follows: In the previous rounds of global optimization, a historical
dataset containing all operator information is constructed, which records all historical
positions and corresponding fitness values of operators in the optimization process. Before
local area optimization, the empirical dataset is established based on the historical infor-
mation dataset. As shown in Figure 2, operators in local areas are used in this paper to
construct the empirical optimization dataset. Taking the current optimal operator as the
centre, the operator nearest to the centre is selected to construct the empirical optimization
dataset. In the optimization process, by keeping the total number of operators in the dataset
unchanged and dynamically adjusting the location of the centre point, the optimization
dataset is constantly optimized to improve the accuracy and final prediction performance
of the surrogate model.

X5 -

‘ Learning sample operator

2|

Figure 2. Schematic of the empirical dataset for the surrogate model.

3.3. Procedures

The proposed method can be implemented through the following steps.

Step 1: Initialize the GOA and GPR parameters. In the model space, N spatial positions
are randomly selected as the initial positions of the grasshopper operator. The fitness
of each operator is evaluated, and global optimization is performed by the GOA
program. After several rounds of global optimization, the current optimal operator is
found, and several rounds of all optimization operators in the location information
process and corresponding fitness values are saved to the historical dataset. During
these rounds of global optimization, determine whether the optimization results meet
the convergence criteria. If so, stop the iteration and proceed to Step 7. Otherwise, go
to Step 2.
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Step 2: Taking the current optimal operator as the centre point, the operator nearest
to the centre point is selected from the historical dataset to construct the empirical
dataset of optimization.

Step 3: GPR is used to fit the samples in the optimization empirical dataset to establish
the functional relationship between the decision variables and objective function
values to obtain the corresponding surrogate model.

Step 4: Solve the first and second derivative information of the GPR surrogate model
(approximate fitness function). An initial point is randomly selected in the model space
of the surrogate model. The corresponding first and second derivatives are obtained,
and the iterative formula of Newton’s method is used for iterative optimization. When
the gradient value is lower than the preset threshold value, it is considered to reach
the extreme point, and the optimal prediction operator is obtained.

Step 5: The optimal prediction operator is substituted into the real objective function to
obtain the corresponding fitness value, and the information of the operator is recorded
in the historical dataset.

Step 6: If the fitness value of the optimal predictive operator is better than that of the
current optimal operator, the information of the optimal predictive operator is used
to replace the information of the current optimal operator. At the same time, judge
whether the current optimal operator meets the convergence criterion. If so, stop the
iteration and go to Step 7. Otherwise, go to Step 2.

Step 7: Output the information of the current optimal operator.

The flowchart of the method is shown in Figure 3.

[ Parameter initialization J

Yes

%

No

—'[ Constructing optimization experience dataset ]

[ GPR surrogate model learning ]

[ Newton method optimization J
i

[ Prediction of optimal operator ]

Obtaining the optimal operator comparing
with the current optimal operator

;

No

Yes

Figure 3. Flowchart of the GOA-GPR optimization algorithm.

4. Results and Discussion

To verify the feasibility of this method, two sets of mathematical test functions with

optimal solutions are given, including a multipeak test function and a composite test
function.

4.1. Case 1

A multipeak test function is given as follows:

f(x) = —20exp (OZ@) —exp (ii_ilcos(ani)> +20+e (11)
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where the range is [—32, 32]; the optimal solution f i, is 0. The three-dimensional space
surface diagram of the function is shown in Figure 4.

The parameter settings of the GOA are as follows: the dimension D is 30; N is 150;
Cmax 1S 1.0, and ¢y is 1.0 x 1075, The parameter settings of the GPR algorithm are as
follows: Inl = [—1, —1]%%, Inoy=—1,0, =1 X 10°. The test calculation results between
the GOA and GOA-GPR algorithm are shown in Table 1. The convergence curve of the
test function is shown in Figure 5. As seen in the table and figure, the average number of
function evaluations of the GOA is 10 times that of the GOA-GPR algorithm.

Table 1. Comparison of calculation results for Case 1.

Method GOA GOA-GPR
The optimal value/10~° 9.18 9.73
The worst value/10~° 9.51 9.94
Average number of function evaluations 369,600 37,612

10% — GOA 4
= GOA-GPR

o
{
[
T

Convergence Numbers
—
<
i

l 0 -5 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500

Iteration steps

Figure 5. Convergence curve of the test function in Case 1.

4.2. Case 2

A composite test function is given as follows:

fl/f21f3/' . '/flO = 21121 xl‘z
[61,62,63,...,610] =[1,1,1,...,1] (12)
(A1, A2, As, ..., Aro] = [5/100,5/100,5/100, .. .,5/100]

where the value range is [—100, 100]; the optimal solution f i, is 0. The three-dimensional
space surface diagram of the function is shown in Figure 6.

The parameter settings of the GOA are as follows: D is 5; N is 50; ¢max is 1.0; ciin is
1.0 x 107°. The parameter settings of the GPR algorithm are as follows: Inl = [-1, —1]'°,
lrwf =—1,0, =1 x 107°. The test calculation results between the GOA and GOA-GPR
algorithm are shown in Table 2. The convergence curve of the test function is shown in
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Figure 7. For the complex composite test functions, the average function evaluation times
of the GOA-GPR algorithm are 12 times those of the GOA. Compared with the GOA, the
GOA-GPR algorithm proposed in this paper can significantly reduce the evaluation times
of the objective function, and the convergence speed is fast, which provides a theoretical
possibility for the application of the GOA-GPR algorithm to complex rock mechanics
optimization problems.

Table 2. Comparison of calculation results for Case 2.

Method GOA GOA-GPR
The optimal value/10~* 9.18 9.73
The worst value/10~* 9.51 9.94
Average number of function evaluations 369,600 37,612

400
300
200
100

100

0 -50
-100 -100

Figure 6. Three-dimensional space surface diagram of Case 2.
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Figure 7. Convergence curve of the test function in Case 2.

5. Back-Analysis of Rock Parameters with GOA-GPR-FLAC3P
5.1. Proposed Method

The optimization back-analysis of displacement finds the best combination of parame-
ters by iterative optimization and makes the calculated displacement value approach the
measured displacement value step-by-step while correcting the parameters to be deter-
mined. The objective function of the optimization back-analysis of displacement can be set

in the following form:
n

2
FX) = [ L [d:(X) — dj] (13)
i=1
where X is a set of parameters to be inverted; d;(X) is the calculated displacement value of
the first monitoring point on the rock and soil mass; d; is the measured displacement value
of the i-th monitoring point; # is the number of total displacement monitoring points. The
essence of an objective function is the mean square error (MSE) that reflects displacement.
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The ultimate goal of the optimization back-analysis of displacement is to find a set of rock
mechanical parameters X so that the value of the objective function can be minimized, and
the parameter X corresponding to the minimum value can be considered the “equivalent
mechanical parameter” of the on-site rock.

FLAC®P, which was first developed by Itasca Consulting Group, Inc. in Minneapo-
lis, Minnesota, the United States, is a numerical analysis software based on the three-
dimensional explicit finite difference method. FLAC3P is widely used in mechanical
calculations in the field of geotechnical engineering due to its wide application range, sim-
ple embedded language and powerful pre- and post-processing functions. An optimization
back-analysis method that combines the GOA-GPR cooperative optimization algorithm
with the FLAC®P numerical method is proposed in this section and as GOA-GPR-FLAC®P.
This method integrates the FLAC3P program into the GOA-GPR cooperative optimization
algorithm and provides a new method for the back-analysis of geomechanical parameters.

The specific implementation steps of the algorithm in this section are as follows:

Step 1: Initialize the parameters of the GPR model and determine the value range of
the geomechanical parameters.

Step 2: Within the parameter value range, the GOA is used to randomly generate N
initialization operators with parameters, and the FLAC®P software is used to calculate
the corresponding objective function value of the initial operator to obtain the fitness
value of the initial operator. Then, determine whether the grasshopper operator in the
historical value set satisfies the convergence criterion. If so, output the corresponding
operator information; otherwise, go to Step 3.

Step 3: During the GOA global optimization process, all the operator information is
recorded in the historical database.

Step 4: In the historical dataset, the current optimal operator is selected, and 3 x N
optimal operators are selected from the entire historical dataset to construct a global
optimization experience dataset.

Step 5: GPR is used to model the global optimization experience set and solve the
first and second derivative information of the GPR approximate fitness function at
the same time. An initial point is randomly selected within the parameter value range
of the surrogate model, and the iterative formula of Newton’s method is used for
iterative optimization. When the gradient value is lower than the preset threshold
value, that is, the extreme point is reached, then the optimal prediction operator
is obtained.

Step 6: Substitute the predicted optimal operator into the FLAC®" program to evaluate
the real fitness function and compare it with the fitness value of the current optimal
operator. If the fitness value of the predicted optimal operator is better than the
current optimal operator, use the predicted optimal operator information to replace
the current optimal operator information; otherwise, do not replace it.

Step 7: Determine whether the current optimal operator satisfies the convergence crite-
rion. If so, stop the optimization and output the current optimal operator information;
otherwise, go to Step 2.

C3D

According to the steps described above, the flowchart of the method is shown in
Figure 8.

5.2. Case Study

Taking a quarter circular tunnel as an example, a back-analysis of rock mechanical
parameters is carried out. The tunnel radius is 3.5 m; the thickness of the tunnel surrounding
rock in the x-direction and z-direction is 16.5 m; the buried depth of the tunnel is 50 m; the
bulk density of the surrounding rock is 2000 kg/m?; the initial in situ stress field in the rock
is mainly composed of a gravity stress field, and the initial in situ stress is o = 10 MPa. In
this case, the classic Mohr—Colomb elastoplastic constitutive model is adopted. The ideal
elastic—plastic constitutive model based on the Mohr—Colomb failure criterion is one of
the most widely used constitutive models in the field of rock engineering [31]. The model



Appl. Sci. 2022,12, 5761

11 of 19

has few input parameters and can well describe the mechanics of surrounding rock after
underground engineering excavation, and can be used to distinguish whether rock mass
is fractured according to whether the grid element of numerical calculation has entered
the plastic state. The elastic modulus, cohesion and internal friction angle need to be

inversely analysed.

[ Initialize the parameters ]

Use FLACPto
evaluate
operator litness

{ Use GOA for global optimization ]

Satisfies the convergence
criterion?

a[ Build a local optimization training dataset ]

Dynamically [ Irain a GPR surrogate model ]
update the l
local

[ Use Newton’s method for optimization ]

optimization
training 1

sample set [ Predict the optimal operator ] Use FLAC3 2 to

l evaluate

. i . operator fitness
The optimal operator is obtained by
comparing with the current optimal operator

Satisfies the convergence
criterion?

Yes

Figure 8. Flowchart of the GOA-GPR-FLAC3P method.

In the FLAC®P software, the generated Lagrangian finite volume mesh covers the
entire physical region that needs to be analysed. The smallest meshes may contain only
one element, but most are defined by meshes of hundreds, thousands or even millions of
elements [32]. Users generally control the grid to adapt to various shapes of 3D problem
domains by matching and connecting the built-in grid generator. Figure 9 shows the
division of the tunnel mesh. The tunnel model used a hexahedron with 8-nodes and
6-quadrilateral faces as the finite difference element body, which is called a zone in FLAC®P.
Through the mesh prototype library that comes with the software, the embedded cylindrical
radial-gradient rectangular mesh required for this case was directly generated. The adopted
grid was composed of 1000 zones with 1386 grid points. The size and density settings of
the grid elements were based on the adopted methods [33,34], considering the surrounding
rock properties, strain and integration technique (implicit or explicit). The closer it is to the
excavation surface, the smaller the mesh scale is. Multiple computational models with a
grid density from small to large were compared. When the mesh density was increased, the
change in the calculation results was small, and the correspondingly finer mesh was used.

In the process of the FLAC3P calculation and simulation, the boundary conditions can
be divided into two categories: stress boundary conditions and displacement boundary
conditions [35]. The boundary referred to here can be the real boundary that actually exists
in the real situation, or it can be the artificial boundary assumed by the user in order to make
the model closed. Displacement boundary conditions cannot be set directly in FLAC®P. In
order to apply a known displacement value to the boundary, it is necessary to define the
velocity value at the boundary when the calculation reaches the specified number of steps.
In this case, since the tunnel model only simulates a small part of the surrounding rock,
the displacement boundary of the model needs to be constrained to prevent the model
from large deformation at the artificial boundary. The specific displacement boundary
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conditions defined by adopting the penalty method [36,37] were as follows: the bottom
surface of the model was constrained along the z-direction; the left and right surfaces
were constrained along the x-direction, and the front and rear surfaces were constrained
along the y-direction. Gradient stress was applied to the entire model from the top of
the model along the direction of gravity to simulate the in situ stress of surrounding rock
as the stress boundary condition. In order to carry on the proper analysis of the tunnel
excavation process, it was necessary to divide the shallow tunnel excavation process into
four subsequent sub-steps as follows:

Step 1: The classical elastic solution method was adopted to ensure the stability of the
in situ stress solution. In this method, the constitutive model was set as the elastic
model, and the volume modulus and shear modulus were set to large values so that
the model could be balanced without plastic failure, and unrealistic displacement or
even failure could be prevented.

Step 2: After confirming the initial in situ stress, the existing displacement and velocity
were cleared to zero to avoid interfering with the subsequent analyses. In FLAC®P,
accurate calculations are often based on correct initial in situ stress analysis results.
Therefore, in the first two steps, the initial in situ stress of the entire model was solved.
Step 3: The chosen Mohr-Colomb elastoplastic constitutive model described above
was assigned to the whole tunnel model and the properties have been changed from
elastic to plastic.

Step 4: The ‘null’ model that comes with FLAC®P was assigned to the part of the grid
that needs to be excavated to simulate the actual excavation process.

20m

3.

Figure 9. Computational grid of FLA

To verify the feasibility of the algorithm, we assume that the real mechanical param-
eters of the rock are E = 2.2 GPa, ¢ = 1.1 MPa, ¢ = 30°. Five monitoring points (1, 2, 3, 4
and 5) are selected at 0°, 22.5°, 45°, 67.5° and 90°, respectively, along the circular direction
of the tunnel (see Figure 10). The displacement of the monitoring point (including hori-
zontal displacement and vertical displacement) is calculated by FLAC®P and regarded as
the “measured displacement”. The horizontal and vertical displacements calculated by
FLAC?P at each monitoring point are shown in Table 3.

Table 3. The measured displacements of points.

Displacement Value of Each Monitoring Point (mm)
1 2 3 4 5

Horizontal direction (d}) —27.0159 —23.3271 —19.6929 —14.6111 0
Vertical direction (d) 0 —14.5982 —19.6261 —23.2481 —26.8916

Direction
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Figure 10. Layout of monitoring points.
For this example, the objective function is:
3 2 2
FX) = | | @i — 1,7 + (diz — 7)) (14)
i=1

where d;, and d;, are the calculated displacement components of the horizontal and
vertical directions of the i-th monitoring point, respectively; d7, and d;, are the actual
displacement components of the horizontal and vertical directions of the i-th monitoring
point, respectively; X is a group of decision variables; and the decision variables in this
example are elastic modulus E, cohesion ¢ and internal friction angle ¢.

To verify the feasibility of the proposed method, we used the GOA-FLAC®P and the
GOA-GPR-FLAC®P algorithms to invert the rock mechanics parameters (decision variables)
of the tunnel. The GOA parameter is set to D =3, N = 50, cmax = 1, and cmin = 1. The initial
hyperparameters of the GPR models are set as Inl = [-1,—1,—1], lncrf =—1,0,=1x10"°.

The search interval of the above two algorithms, namely, the search range of decision
variable X in the objective function f(X), is set as 2.0 GPa < E <24 GPa, 1.0 MPa < ¢ < 14 MPa,
28° < ¢ < 32°. Both algorithms take objective function f(X) < 5 x 1072 as the convergence
criterion. To ensure the credibility of the comparison of the two algorithms and reduce the
influence of chance, each algorithm performs 10 independent operations, and the average
fitness evaluation times of these 10 independent operations are taken as the final result of
each algorithm.

The calculation results of these two algorithms are shown in Table 4. It can be seen
in the table that the relative error of the rock mechanics parameters inverted by the GOA-
GPR-FLAC®P algorithm proposed in this paper is smaller than that of the GOA-FLAC3P
algorithms under the condition that the convergence criteria are met. The GOA-GPR-
FLAC3P algorithm significantly reduces the evaluation times and calculation time of objec-
tive function fitness compared to the GOA-FLAC?P algorithm. This result indicates that the
concept of using the GPR model to replace the real objective function can greatly reduce the
number of numerical calculations (the real objective function evaluation) without affecting
the calculation accuracy to accelerate the operation of the algorithm. In summary, the
algorithm proposed in this paper has the advantages of being less time-consuming and
having higher precision than the GOA. This fully demonstrates the superiority of this
method in the back-analysis of underground engineering.
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Table 4. The results calculated by the two methods.

Methods GOA-FLAC®P GOA-GPR-FLACP
Parameter E/GPa c¢/MPa @/° E/GPa c¢/MPa @/°
Real solution 2.2 1.1 30 2.2 1.1 30
Back-analysis result 2.279 1.160 29.8 2.195 1.125 30.3
Relative error/% 3.59 5.46 0.67 0.23 2.27 1.00
Fitness 0.0426 0.0362
Fitness function evaluation times 9254 1077
Computing time/s 1.73 x 10° 2.26 x 10°

6. Engineering Application

The Tai’an Pumped Storage Power Station in China is mainly composed of large caverns,
including the main powerhouse, four omnibus bar caves, the main transformer chamber and a
tailrace surge chamber. The surrounding rocks are mainly II and III granite, and there are four
hydrogenerator sets arranged. The size of the main powerhouse is 180 m x 259 m x 53.675 m;
the size of the main transformer chamber is 164 m x 17.5m X 18.175 m; and the length of the
omnibus bar cave is 35 m. Figure 11 shows the staged excavation. There are two displacement
monitoring sections in the underground powerhouse. The layout of the corresponding mon-
itoring points is shown in Figure 12. The FLAC®P calculation grid of the excavation body is
shown in Figure 13, which includes 687,133 elements and 191,323 nodes, and the grid has been
colored to distinguish the tunnel area and excavation sequence. The corresponding monitoring
point layout is shown in Figure 14.

The measured displacements of monitoring points M7, M19 and M24 are selected to
construct the objective function, as shown in Equation (14). The selected three measurement
points are based on the three points of maximum deformation that have been recorded.
The geomechanical parameters to be back-analysed are as follows: elastic modulus E;
of the surrounding rock upstream of the main powerhouse; elastic modulus E, of the
surrounding rock downstream of the #1 unit of the main powerhouse; elastic modulus E3
of the surrounding rock downstream of the main powerhouse units #2—4; elastic modulus
E4 of the surrounding rock of the variable chamber; the cohesion ¢; of the surrounding
rock upstream of the main powerhouse; the cohesion c; of the surrounding rock down-
stream of the main powerhouse and the internal friction angle ¢. The parameter search
intervals are set to 60 GPa < E; < 80 GPa, 10 GPa < E, < 30 GPa, 20 GPa < E3 < 40 GPa,
100 GPa < E4 <300 GPa, 5 MPa < ¢; <7MPa, 5 MPa < ¢, <7MPa, and 40° < ¢ < 60°.

Tailrace surge chamber

{ 7123.00

7 119.98 @ = 118.00
Omnibus bar cave Z114.0C
v7110.00 —_— 111.00
Main transformer -
chamber L ..__ 104.87
Stage 3 Stage 3

Tailwater tunnel

7 86.60

Figure 11. Schematic diagram of excavation by stages of the powerhouse (unit: m).
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Figure 12. The layout map of the displacement monitoring points section. (a) The monitoring points

at the 0 + 15 m section to the left of the powerhouse. (b) The monitoring points at the 0 + 54 m section

to the left of the powerhouse.
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Figure 13. The computing grid of excavated rock.
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Figure 14. The location map of selected monitoring points in the FLA
point at the 0 + 15 m section to the left of the powerhouse. (b) The monitoring point at the 0 + 54 m
section to the left of the powerhouse.

C3P model. (a) The monitoring

The GOA parameter is setto D =7, N = 30, cmax = 1, and cpin =1 X 107°. The initial
hyperparameters of the GPR model are set as Inl = [-1,-1,—-1,-1,—-1,-1,-1], lnaf =—1,
on =1 x 107°. Take the number of FLAC®P calls greater than or equal to 1000 as the
convergence criterion.

The GOA-FLAC3P method and the method in this paper are used to invert the ge-
omechanical parameters. The results are shown in Tables 5 and 6. For the M7 and M19
monitoring points, the relative errors between the calculated and measured displacement
values obtained by the GOA-GPR-FLAC®P method are only 1.44% and 2.65%, while the
relative errors of the GOA-FLAC®P method are 7.81% and 15.72%. For monitoring point
M24, the relative errors of the two methods are 0.06% and 0.73%, respectively, with lit-
tle difference. Therefore, under the same condition that FLAC3P is called 1000 times,
the optimization accuracy of the proposed method is significantly higher than that of
GOA-FLAC3P, indicating the superiority of the proposed method.

Table 5. Back-analysis results of geomechanical parameters by two methods.

Geomechanical Parameters
E1/GPa E,/GPa E3;/GPa E4GPa c¢i/MPa c/MPa @l°

GOA-FLAC3P 65.21 21.67 28.94 215.10 6.74 6.85 56.20
GOA-GPR-FLAC®P 65.28 21.61 28.91 215.13 6.70 6.79 56.16

Method
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Table 6. Comparison of displacements obtained from calculation and measurement.
o GOA-FLAC3 GOA-GPR-FLAC3D
Monitoring Measured
Point Displacement/mm Calculated Related Calculated Related
Displacement/mm Error/% Displacement/mm Error/%
M7 5.833 5.377 7.81 5.749 1.44
M19 4.044 4.680 15.72 4.151 2.65
M24 1.633 1.645 0.73 1.632 0.06

7. Conclusions

To address the contradiction between obtaining the global optimal solution and
the high calculation cost in the displacement back-analysis of underground engineering
projects, a novel algorithm is proposed for the optimized back-analysis of geomechanical
parameters. The main conclusions are as follows:

(1) In this paper, a new intelligent optimization back-analysis algorithm was proposed,
which provides a new tool for the rational determination of geomechanical parameters
in underground engineering. The algorithm combines the low computational cost and
strong fitting ability of the GPR surrogate model with the strong global optimization
ability of the GOA. The test results of various benchmark functions showed that the
algorithm can effectively guarantee the accuracy of the solution. The evaluation times
of the GOA fitness function are greatly decreased, which improves the efficiency of
the algorithm.

(2) Because a large number of numerical calculations are required when applying the
GOA to the back-analysis of geomechanical parameter optimization, resulting in low
computational efficiency, a collaborative optimization back-analysis method called
GOA-GPR-FLAC3P was proposed. The results of a case study and an engineering
example showed that the proposed method has better performance in efficiency and
accuracy, and is feasible for the high-dimensional, highly nonlinear back-analysis of
geomechanical parameters in underground engineering.

In order to facilitate engineering applications, this paper only studies the measured
displacement back-analysis method based on the classical Mohr—Coulomb constitutive
model. In fact, the displacement back-analysis method is only one of the back-analysis
methods, and parameters such as stress and strain can also be used as objects of the back-
analysis method. In addition, in underground engineering, the deformation of surrounding
rock is actually related to many factors, such as rock mass characteristics, support timing
and support methods. Therefore, the acquisition of mechanical parameters of underground
engineering rock mass for different back-analysis methods and different conditions should
be discussed in further research.
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