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Abstract: In this paper, the nonlinear effects of the built environment on bus–metro-transfer rid-
ership are explored, based on Shanghai metro data, with an extreme gradient-boosting decision-
trees (XGBoost) model. It was found that the bus-network density had the largest influence on trans-
fer ridership, contributing 27.56% predictive power for transfer ridership, followed by closeness 
centrality and bus-stop density, and their contribution rates are 21.6% and 17.27%, respectively. Lo-
cal explanations for the model reveal the following conclusions: most built-environment variables 
have nonlinear and threshold effects on bus–metro ridership. The suggested values for the domi-
nant contributors to bus–metro-transfer ridership are obtained. For example, bus-network density, 
bus-stop density, and closeness centrality were 12.8 km/sq. km, 11 counts/sq. km, and 0.18 km/sq. 
km, respectively, for maximizing bus–metro-transfer ridership. The interaction impacts of the bus–
metro connection characteristics and the closeness centrality of metro stations on transfer ridership 
were, also, examined. The result showed that the setting of bus–metro-transfer facilities depended 
on the location of metro stations. It was necessary to improve the bus–metro-connection system, in 
metro stations with high closeness centrality. 

Keywords: built environment; transfer ridership; extreme gradient-boosting decision tree; nonlin-
ear effect; bus–metro connection characteristics 
 

1. Introduction 
Compared with the bus-travel mode mode, due to the more punctual and efficient 

characteristics, the metro-travel mode has, gradually, become the main commuting mode 
for passengers, such as in Singapore [1], Beijing [2], and Hong Kong [3]. In 2021, Singapore 
railways (including MRT lines and LRT lines) accounted for 42.8% of passenger volume 
(source: lta.gov.sg). Beijing rail transit accounted for 55% of passenger volume in 2021, in 
terms of a report on 24 May 2022 by the Beijing Daily. Hong Kong railways (including 
MTR Lines, the Airport Express Line, the Light Rail, and HK Tramways) accounted for 
only 40.1% of passenger volume in 2020, slightly lower than 2019, due to COVID-2019, 
according to the Statistical Department of Hong Kong Special Administrative Region. 
However, in suburban areas with underdeveloped transportation infrastructure, the 
metro system is unlikely to reach such a far place. Unlikely, since realizing door-to-door 
flexible service is one of the main disadvantages of the metro system. Thus, the feeder bus 
plays an important role in the collection and distribution of metro ridership. Under these 
circumstances, developing bus–metro-transfer hubs is the key measure to increasing 
transfer ridership and mitigating the traffic congestion prevalent in big cities today. 

The development of buses and the metro was interdependent [4]. The rapid devel-
opment of feeder buses gave full play to the potential positive impact of the metro system 
and expanded the radiation area of the metro system. Similarly, the development of the 
metro integrates the public transport network system resources along the metro lines to 
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form a high-quality bus–metro-transfer system. Many previous studies are focused on the 
bus–metro-transfer hubs [5,6]. 

Previous empirical studies indicated that the built environment had a significant im-
pact on bus–metro-transfer ridership [7]. The interaction between the built environment 
and bus–metro-transfer behavior did not always lead to maximum the attraction of metro. 
To foster metro ridership around stations, it was important to identify the relationship 
between the built environment and bus–metro-transfer ridership. Empirical studies on 
this topic, however, were limited [7]. 

Many studies using traditional regression models have been devoted to investigating 
linear associations between the built environment and transit ridership [8,9]. However, 
most of them were likely to ignore the pervasive nonlinear and moderating effects among 
built-environment variables. 

The influence of the station-area built environment on metro-passenger generation 
may be influenced by the location and accessibility of stations [10]. For stations with dif-
ferent network attributes, understanding nonlinearity and moderating utility can help de-
signers formulate targeted built-environment strategies. However, only a limited number 
of studies constructed the impact of network attributes on bus–metro ridership for metro 
stations [11]. Many other important factors should, also, be incorporated, when conduct-
ing the association analysis between bus–metro-transfer ridership and the built environ-
ment. In this paper, composed of multiple indicators, we establish a comprehensive index 
system to analyze the bus–metro-transfer behavior, including bus–metro connection char-
acteristics, land-use attributes for trip attraction and production, network attributes of 
metro stations, and demographic factors. 

By comparing with the traditional linear-regression model, random forest, and Light 
Gradient-Boosting Machine (LightGBM), the extreme gradient-boosting decision-trees 
(XGBoost) model is chosen to, quantitatively, reveal the nonlinear impact of the built en-
vironment on bus–metro ridership. XGBoost is a state-of-the-art machine-learning 
method, which can, conveniently, reveal the nonlinear or threshold effects of influential 
factors on bus–metro ridership. Moreover, the study applied a partial dependence plot to 
explain the marginal effect of built environment variables on the prediction results of the 
machine-learning model. 

The contributions of this study, mainly, include: (1) quantifying the nonlinear effect 
of the built environment on bus–metro-transfer ridership in the most effective ranges and 
thresholds; (2) comparing the relative importance of different built-environment varia-
bles; and (3) analyzing the moderating impact of metro-station location on the relationship 
between the built environment and bus–metro-transfer ridership. 

The remainder of this paper is organized as follows. Section 2, briefly, presents some 
of the literature on the association between the built environment and bus–metro-transfer 
behavior. Section 3 introduces the data sources and variables of this study. Section 4 de-
scribes the XGBoost model and features. Section 5 analyzes the results, to understand how 
the bus–metro connection characteristics, network attributes of metro stations, demo-
graphic factors, and land-use attributes affect the bus–metro-transfer ridership. Section 6 
illustrates the research results, limitations, and future research directions. 

2. Literature Review 
Many previous studies on the functionality of public transport systems were, mainly, 

based on the passengers’ subjective feelings and the services provided by transport facil-
ities. For instance, a study [11] found that the station-area built environment had a signif-
icant influence on transport interchanges in the UK and Finland. Another paper [12] stud-
ied the travel-mode selection of the Nanjing metro station, by using the hybrid logit 
model. Their research results showed that the bus–metro-transfer was one of the im-
portant travel modes. Research [13] established a large-scale complex hypernetwork, to 
find out the interconnection mechanism among the bus network, metro network, and bus–
metro network. On the other hand, passengers’ transfer intention largely depended on 
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their transfer feeling [14]. The study [15] applied structural equation modeling, to explore 
the impact of perceived values, free bus transfer, and penalties on passengers’ bus–metro-
transfer intention. They found that the three factors all affect transfer intention between 
bus and metro. 

In recent years, metro-smart-card data was commonly used for the research of pas-
senger-travel behavior [16]. Metro-smart-card data have been collected to mine the data 
chain, such as origin–destination (OD) estimation [16], transit performance evaluation 
[17,18], and travel behavior analysis [19,20]. Based on the survey data from the metro 
smart card, many appropriate mathematical models have been established, to investigate 
the transfer behavior between bus and metro. For example, a study [21] developed a fast 
data-fusion method, based on combined data from bus smart cards and the GPS system, 
to explore station- and time-specific elapsed-time thresholds, according to the smart card 
data of Shenzhen, China. Another paper [22] provided a method to measure the transfer 
quality of bus–metro from two dimensions of time and space, using smart-card data and 
geographic-information-system (GIS) tools. Rsearch [23] explored the transfer time of dif-
ferent intermodal connections and assessed the transfer service of intermodal connections, 
based on smart-card data. However, the correlation between the urban built environment 
and transfer ridership was not fully explored. The reasons may be that in their studies, 
the built environment was not explicitly described by special variables, such as the bus–
metro connection characteristics, land-use attributes, and network attributes of metro sta-
tions. 

The correlation between the built environment and transfer ridership can be investi-
gated by linear and nonlinear models. The linear model may cause wrong analysis results, 
if built-environment variables have a threshold or nonlinear effect on ridership [24]. To 
solve this problem, some researchers used log-linear or the Poisson family, to eliminate 
the error caused by linear analysis [10,25,26]. Compared with nonlinear models, linear 
models addressed the theoretical significance of variables but ignored the practical signif-
icance and nonlinear influence of variables [27]. The nonlinear influence of variables was 
an urgent problem to be solved, in the field of urban-built-environment and travel behav-
ior [28,29]. 

In previous studies, many built-environment variables were used for influence anal-
ysis on transfer behavior, such as the bus–metro connection characteristics [13], network 
attributes of metro stations [30], land-use attributes [31,32], and demographic factors [9]. 
For a better literature review of the previous related studies, we made a comparison table, 
shown in Table 1. Bus–metro connection characteristics have a long-term impact on trans-
fer ridership. According to the relevant surveys, the transfer-connection characteristics 
among transportation modes had a significant impact on travelers’ choices, such as the 
distance, time, and connection characteristics of traffic transfer [22,30,33]. A paper [34] 
concluded that when rail transit did not connect with the bus, the travel preference of rail 
transit would be greatly reduced. The study [35] stated that the less transfer walking time 
and waiting time there is, the higher the probability of people choosing combination 
travel. According to a survey in Bangkok, Thailand, the transfer distance between metro 
stations and bus stations had a great impact on the travel satisfaction of the transfer be-
havior [36]. 

There was a close association between land-use attributes and bus–metro-transfer 
behaviors [37,38]. Research [39] compared the impact of land-use attributes for different 
networks and for individual travel modes. The results showed that integrated land use 
will actively encourage public transport travel. The study [40] explored the multimodal 
transport method in transportation planning. They found that reasonable planning of land 
use can bring huge benefits, especially a comprehensive land-use mode, composed of of-
fice, commerce, entertainment, and other work. There was a causal relationship between 
traffic and land use. The land-use attribute for trip production (residential density) plays 
an important role in promoting the growth of transfer ridership. 
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Table 1. Literature review of some previous studies, in terms of the four built-environment variables and methodology. 

Citation 
A B C D 

E Methodology 
Linear 
Model 

Nonlinear 
Model A1 A2 A3 B1 B2 C1 C2 C3 C4 C5 C6 D1 D2 D3 

[9]                Ordinary least squares   
[30]                Social network analysis - - 
[31]                Geographically and temporally weighted regression   
[32]                Geographically weighted regression   
[36]                Ordinal regression models   
[38]                Hybrid model   
[39]                Multivariate linear model   
[41]                Fitting analysis   
[42]                Multiple regression models   
[43]                Gravity-based regression model   

This paper                XGBoost -  
Notes: A represents the bus–metro connection characteristics; A1 represents the bus-network density; A2 represents the bus-stop density; A3 represents the aver-
age transfer distance. B represents the network attributes of metro stations; B1 represents the closeness centrality; B2 represents the distance to the central station. 
C represents the land-use attributes. C1 represents the commercial ratio; C2 represents the employment density; C3 represents the industrial ratio; C4 represents 
the residential ratio; C5 represents the land-use diversity; C6 represents the street density. D represents the demographic factors. D1 represents the age; D2 repre-
sents the population density; D3 represents the average house size. E represents the use of the smart card data. 
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Previous studies showed that residential density was an important driving factor for 
passenger flow [44,45]. The paper [46] concluded that the ridership increased with the 
increase in residential density around the station area. The subsequent research showed 
that the land-use attribute for the trip attraction (employment density, land-use diversity, 
etc.) may be a more important factor for passenger flow [47,48]. The study [32] conducted 
an empirical study in Shenzhen, China. Their results suggested that employment density, 
mixed land use, and road density had significant impacts on the ridership of buses and 
the metro. However, the land-use attribute was not the only factor affecting the transfer 
ridership. The transfer ridership was, also, affected by some other factors, such as transfer 
tickets. When the price of transfer tickets was discounted, the transfer ridership will keep 
increasing [49]. Reasonably coordinating the relationship between land-use attributes and 
pricing policies could improve the proportion of intermodal travel [50–52]. 

The network attribute and location of transfer hubs have a certain impact on the rid-
ership prediction. Closeness centrality was an important measure of station connectivity 
[53]. It was one of the important factors to predict the bus–metro-transfer ridership [54]. 
Research [30] found that closeness centrality was positively related to bus–metro-transfer 
ridership. On the other hand, previous research results on the impact of distance to CBD 
on metro ridership were inconsistent. A paper [55] found that the distance to CBD had no 
significant impact on the passenger flow. By contrast, some studies found that the rid-
ership of metro stations in CBD was much higher than other stations, in Nanjing [9]. 

The demographic factors, also, affect transport-mode choices to serve distinct trip 
purposes [56]. Some previous studies examined the effects of demographic characteristics 
on passenger flow [25,57]. Demographic characteristics, such as age, per capita GDP, and 
car ownership were found to affect residents’ travel choices [26,48]. 

The influence of the built environment on transit ridership is not fully explored, alt-
hough many studies are focused on this topic. For example, most previous studies, 
mainly, applied linear-regression models to examine the relationship between the built 
environment and transit ridership [8,9]. However, in the actual prediction process, if built-
environment variables have nonlinear and threshold effects on transit ridership, the ap-
plication of linear models will distort the research results [58]. 

Some previous studies confirmed that the built environment has a nonlinear impact 
on travel behavior [28,46,59]. Progress of machine-learning and interpretation methods 
can better help us understand the nonlinear and regulatory effect of the built environment 
on human travel behavior [24,27]. The advantage of the nonlinear model, highlighted by 
[60,61], showed that the methods can break through the limits of samples, to produce a 
more reliable and stable prediction. Besides, the methods can capture complicated corre-
lations between independent variables and dependent variables because there are no lim-
its on the pattern/shape of the relationship [62]. The nonlinear effects verified that the 
marginal influence of the built-environment variables on travel behavior depended on the 
value of the built-environment variables. The threshold effect was one of the nonlinear 
effects. When the marginal influence of built environment variables on travel behavior 
exceeded a certain threshold, the value of the dependent variable increased, decreased, or 
remain unchanged [63]. In recent years, scholars are more and more interested in the ap-
plication of tree-based machine-learning methods (e.g., random forest, LightGBM, and 
XGBoost), to identify the nonlinear and moderating impact of the built environment on 
travel behaviors [7,45,46,64–67]. 

Compared with the linear model and other commonly used nonlinear models (e.g., 
random forest and LightGBM), XGBoost had a higher degree of fitting the data [68]. 
XGBoost was a scalable end-to-end tree-boosting system, which can provide the most ac-
curate research results for many problems, and it solved real-world-scale problems with 
the least resources [69]. The XGBoost model had the advantage that the prediction results 
were more in line with the actual situation, and the results were easily explainable [41,70]. 
XGBoost, also, can further reveal the relative importance and practical significance of rel-
evant independent variables.In this paper, based on the Shanghai metro-smart-card data, 
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the XGBoost model was used to explore the influence of urban built-environment varia-
bles on transfer ridership. The following four aspects are examined: (1) Do the built-envi-
ronment variables have nonlinear effects on bus–metro-transfer ridership? (2) Examining 
the relative importance of built-environment variables in predicting bus–metro-transfer 
ridership. (3) Identifying the threshold effects of built-environment variables to maximize 
bus–metro-transfer ridership. (4) Exploring the moderating impact of station location on 
the relationship between the built environment and bus–metro-transfer ridership. 

3. Data and Variables 
3.1. Study Area 

With the rapid development of global megacities, sustainable development has, 
gradually, become a basic requirement of urban planning and governance [71]. The rele-
vant research and discussions on urban optimization have attracted the attention of a 
great number of researchers [72–75]. Facing various traffic-congestion problems caused 
by urban expansion [76,77], the Shanghai government has taken actions to improve the 
coordinated transportation efficiency of bus–metro-transfer hubs, which is one of the key 
steps to accelerating the maturity of the public transport network covering the whole city. 
Based on some studies related to Shanghai metros, this paper selects the 88 metro stations 
located next to the metro lines, in Shanghai [78,79]. The metro-station areas selected in this 
study include both composite functional areas and single-residential functional areas. 

The samples selected in this paper are only limited to the accessible walking range, 
of a one-kilometer radius, around the metro station. According to the master plan of 
Shanghai, a 15 min walking community has been established for residents, which can ob-
tain the required public services through 15 min of walking. Therefore, the study takes 
the range of 15 min walking distance (1 km radius) from the metro station as the data-
measurement range. 

3.2. Data Sources 
The data of this study came from the IC card data of bus–metro transfer, at 88 metro 

stations along 12 metro lines in Shanghai. According to the bus–metro-transfer data of the 
metro IC card of Shanghai Shentong Metro Group Co., Ltd. (Shanghai, China), on 1 Sep-
tember 2016, there were 685,351 preferential records of bus–metro transfer, at all stations 
of the Shanghai metro network. By filtering the station information, missing data and ab-
normal data were deleted. Finally, we obtained 275,919 valid pieces of data, from 88 metro 
stations in the study area. 

Figure 1 depicts the transfer ridership of bus–metro at 88 metro stations. Among 
them, the metro station with the largest transfer ridership is People’s Square, with 18,021 
people, while Wuwei Road has the least transfer ridership, with only 366 people. There 
are 20 stations with more than 5000 people and 29 stations with less than 2000 people. The 
average daily transfer ridership is 3818 passengers per station. 
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Figure 1. Daily transfer ridership. 

Many studies showed that the relationship between the public transport system and 
rail transit system determined the population coverage of existing public services [80,81] 
and investment in transportation infrastructure [82,83]. Bus-network density has a greater 
impact on transfer ridership than other attributes of bus–metro connection characteristics. 

Figure 2 depicts the bus-network density within the 1 km radius of 88 metro stations. 
As shown in Figure 2, the average bus-network density is 7.46 km per square kilometer. 
Jing’an Temple station has the largest bus-network density, which is 14.97 km per square 
kilometer, indicating that the metro station has the fastest information transmission in the 
whole transportation network. The bus-network density around Hongqiao Airport Ter-
minal 1 is the smallest, only 1.45 km per square kilometer, so the bus-network density 
needs to be further improved. During peak hours, in addition to connecting buses, pas-
sengers can, also, choose other potential services, to ensure the efficiency of existing trans-
fer transportation services [84,85]. 

 
Figure 2. Bus-network density. 

3.3. Variables Description 
As shown in Table 2, we determine the dependent variables and independent varia-

bles and select the daily transfer ridership of the bus–metro as the dependent variable. 
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The four built-environment variables are considered, namely bus–metro connection char-
acteristics, land-use attributes for trip attraction, land-use attributes for trip production, 
and network attributes of metro stations as well as demographic factors. 

Table 2. Variable description. 

Variable Name Description Data Sources Mean S.D. VIF 
Dependent variable  

Transfer rid-
ership 

Transfer ridership from 
bus to metro, of a metro 

station (thousand) 

Metro smartcard data 
of Shanghai on 1 Sep-

tember 2016 
3.82 3.17  

Independent variables  
Bus–metro connection characteristics  

Bus-network 
density 

The length of bus-network 
centerline per square kilo-

meter (km/km2) 

OpenStreetMap 
(OSM) data of 2020 

Shanghai 
7.46 3.29 3.46 

Network repeti-
tion ratio of bus–

metro 

The repetition ratio R = L/S, 
where L is the parallel line 
of bus and metro, and S is 

the total bus line per 
square kilometer (km/km2) 

OpenStreetMap 
(OSM) data, of 2020 

Shanghai 
0.13 0.05 1.32 

Bus-stop density 
Number of bus stops per 

square kilometer 
(counts/km2) 

Point-of-interest (POI) 
data, of 2020 Shanghai 

6.58 3.13 3.96 

Average transfer 
distance 

Average transfer distance, 
from bus stop to near 

metro (km) 

Distance crawled from 
the Baidu Map 

(map.baidu.com) 
0.2 0.05 1.40 

Network attributes of metro stations  

Distance to the 
central station 

Network distance to 
Jing’an Temple station 

(km) 

Distance crawled from 
the Baidu Map 

(map.baidu.com) 
4.81 2.55 6.50 

Closeness cen-
trality 

The closeness contrary, 
C= 1

∑ 𝑑𝑑(𝑢𝑢,𝑣𝑣)𝑛𝑛−1
𝑣𝑣−1

, where n is 

the number of all nodes in 
network, 𝑑𝑑(𝑢𝑢, 𝑣𝑣) is the 

shortest distance between 
node 𝑣𝑣 and node 𝑢𝑢. 

Distance crawled from 
the Baidu Map 

(map.baidu.com) 
0.15 0.02 4.40 

Land-use attributes for trip attraction  
Employment 

density 
Number of jobs per square 
kilometer (thousand/km2) 

Point-of-interest (POI) 
data, of 2020 Shanghai 

33.34 16.68 2.17 

Industrial ratio 
The ratio I = areas, for in-
dustrial use/all land areas 

Land-use data, of 2020 
Shanghai 

0.05 0.11 2.69 

Commercial ratio 
The ratio C = areas, for 

commercial use/all land ar-
eas 

Land-use data, of 2020 
Shanghai 

0.16 0.11 2.01 

Land-use attributes for trip production  

Residential ratio 
The ratio R = areas, for resi-

dential use/all land areas 
Land-use data, of 2020 

Shanghai 
0.38 0.14 2.78 

Other land-use attributes  

Land-use diver-
sity 

Entropy index of land use 
(0–1): −∑ (𝑠𝑠𝑖𝑖) 𝑙𝑙𝑙𝑙(𝑠𝑠𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑙𝑙𝑙𝑙(𝑚𝑚) , 

Where m is the type of 
land use, 𝑠𝑠𝑖𝑖 is the ratio of 
type-I land use to the total 

land area. 

Land-use data, of 
Shanghai 2020 

0.61 0.1 2.43 
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Street density 
Length of the road/area 

size (km/km2) 

OpenStreetMap 
(OSM) data, of 2020 

Shanghai 
7.67 3.00 2.57 

Demographic factors  

Car ownership 
Ratio of workers with pri-
vate cars, in average hous-

ing scale 

Shanghai Statistical 
Yearbook 2020 

0.63 0.08 1.45 

Population den-
sity (ages be-

tween 20 and 44) 

Population between 20 and 
44 years old per square kil-

ometer (thousand per-
son/km2) 

Shanghai Statistical 
Yearbook 2020 

0.41 0.04 1.47 

Local population 
density 

Local population per 
square kilometer (thousand 

person/km2) 

Shanghai Statistical 
Yearbook 2020 

32.5 24.98 4.56 

Average age 
Average age of the residen-

tial in the area 
Shanghai Statistical 

Yearbook 2020 
42.01 0.92 1.40 

PGDP 
Per capita gross domestic 

product (104 RMB per cap-
ita) 

Shanghai Statistical 
Yearbook 2020 

4.41 1.96 3.14 

Housing price 
Average house prices near 
metro station (103 RMB per 

square meter) 2021.6 
Baidu 2020 91.14 17.7 3.00 

Average house 
size 

Average house scale per 
kilometer 

Shanghai Statistical 
Yearbook 2020 

2.53 0.09 1.38 

The network repetition ratio of bus–metro reflects the direct contradiction between 
the metro and general bus. The repetition ratio was calculated by the ratio of the parallel 
line of bus and metro to the total bus line, within the research scope [86]. It reflects the 
passenger-flow-competition relationship and the connection relationship between the bus 
and metro. The average network repetition ratio of bus–metro in this paper is 0.13, which 
shows that there is no inevitable competitive relationship between bus and metro in 
Shanghai. 

4. Methodology 
We select the XGBoost model to predict the transfer ridership at bus–metro-transfer 

stations and rank the relative importance of the independent variables. The nonlinear re-
lationship between the bus–metro-transfer ridership and important independent varia-
bles as well as the threshold adjustment utility is explained by generating a partial de-
pendence plot. 

XGBoost was an extensible tree-enhancement system and a kind of boosting algo-
rithm [69]. The core idea of boosting the algorithm was to add many base models together, 
to form a strong classifier. XGBoost combined many CART trees. When data cannot be 
well fit by one tree, multiple CART trees were used to approach it, instead [87]. The ad-
vantage of the XGBoost model is adding a regularization term and second-order Taylor 
expansion, to avoid over-fitting in the high-precision calculation. 

The model prediction output of XGBoost is shown in Equation (1): 

𝑦𝑦� = �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

 (1) 

where 𝑦𝑦� is the sum of the prediction results of k samples, 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) is the prediction result 
of the k-th sample. 

The loss function is shown in Equation (2): 
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ℒ = �𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) + �Ω(𝑘𝑘)
𝑘𝑘

𝑁𝑁

𝑖𝑖=1

 (2) 

where 𝑙𝑙 is a common loss function used to measure the difference between the actual 
value of each sample 𝑦𝑦𝑖𝑖, and the predicted value of each sample 𝑦𝑦�, Ω(𝑘𝑘) is a regulariza-
tion term, which describes the complexity of the tree. The complexity of decision tree k 
can be defined as Equation (3): 

Ω(𝑘𝑘) = 𝛾𝛾 ∙ 𝑇𝑇 +
1
2
𝜆𝜆�𝜔𝜔𝑗𝑗2

𝑇𝑇

𝑗𝑗=1

 (3) 

where T is the number of leaf nodes in the decision tree, 𝜔𝜔𝑗𝑗 is the score of each leaf, and 
𝛾𝛾  and 𝜆𝜆  are penalty parameters. ℒ(𝑡𝑡)  is the t-th round objective function, obtained 
through continuous iterative optimization, which can be described as Equation (4): 

ℒ(𝑡𝑡) = �𝑙𝑙 �𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) + 𝑞𝑞𝑡𝑡(𝑥𝑥𝑖𝑖)� +

𝑛𝑛

𝑖𝑖=1

𝛾𝛾 ∙ 𝑇𝑇 +
1
2
𝜆𝜆�𝜔𝜔𝑗𝑗2

𝑇𝑇

𝑗𝑗=1

 (4) 

where 𝑞𝑞𝑡𝑡 is the addition example of the 𝑡𝑡-th iteration, carry out the second-order Taylor 
expansion at 𝑦𝑦�𝑖𝑖

(𝑡𝑡−1) to, continuously, approximate the value of the objective function, as 
shown in Equation (5): 

ℒ(𝑡𝑡) = ��𝑙𝑙 �𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) + 𝑔𝑔𝑖𝑖𝑞𝑞𝑡𝑡(𝑥𝑥𝑖𝑖) +

1
2
ℎ𝑖𝑖𝑞𝑞𝑡𝑡2(𝑥𝑥𝑖𝑖)�� +

𝑛𝑛

𝑖𝑖=1

𝛾𝛾 ∙ 𝑇𝑇 +
1
2
𝜆𝜆�𝜔𝜔𝑗𝑗2

𝑇𝑇

𝑗𝑗=1

 (5) 

where 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝑦𝑦�(𝑡𝑡−1)𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)�,ℎ𝑖𝑖 = 𝜕𝜕

𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)

2 𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)�. Since we only need to consider the 

variables in optimization, the constant term is removed, and all samples will, eventually, 
fall on a leaf node, no matter which way they go. Therefore, the combined formula can be 
written as shown in Equation (6): 

ℒ̂ (𝑡𝑡) = ����𝑔𝑔𝑖𝑖
𝑖𝑖𝑖𝑖𝐼𝐼𝑗𝑗

�𝜔𝜔𝑗𝑗 +
1
2
��ℎ𝑖𝑖
𝑖𝑖𝑖𝑖𝐼𝐼𝑗𝑗

+ 𝜆𝜆�𝜔𝜔𝑗𝑗2� +
𝑇𝑇

𝑗𝑗=1

𝛾𝛾 ∙ 𝑇𝑇 (6) 

where 𝐼𝐼𝑗𝑗 = {𝑖𝑖|𝑞𝑞(𝑥𝑥𝑖𝑖) = 𝑗𝑗}, represents the sample set falling on the j-th leaf node. 
The selection of features and the correlation between features and prediction targets 

largely determines the prediction accuracy of this study. Due to the complexity of influ-
encing factors, such as bus–metro connection characteristics, land-use attributes, network 
attributes of metro stations, and demographic factors, with the existing single-machine-
learning model, it is difficult to solve the problem of multicollinearity processing of multi-
source data. The high correlation between features can, also, reduce the robustness of the 
model, resulting in over-fitting in training. It is necessary to reprocess the multi-source 
transfer data to obtain the features with strong correlation with the prediction target. 

After solving the multicollinearity problem of multi-source data, the new dataset is 
substituted into the XGBoost model, for further prediction and analysis. The overall 
model framework of this paper is shown in Figure 3. 
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Figure 3. Overall model framework. 

5. Results and Discussion 
5.1. Model Comparison 

Firstly, we eliminate the multicollinearity effect of data. We use the variance inflation 
factor (VIF) to judge whether there is multicollinearity between independent variables. 
The larger the VIF, the more serious the multicollinearity problem is. If the VIF exceeds 
10, the multicollinearity of the data needs to be processed. As shown in Table 2, the aver-
age VIF value in this paper is 2.74, of which the maximum VIF value is 6.5, less than 10, 
so there is no need to worry about the multicollinearity between independent variables. 
The specific VIF test value is in Table 2. 

To avoid over-fitting and reduce generalization error, we use a five-fold cross-vali-
dation procedure to train the model, in order to get the best parameter setting and result. 
In this paper, the parameters are listed as follows: the tree complexity is 10, the shrinkage 
parameter is 0.01, and the number of iterations and maximum trees is 10,000. After run-
ning the XGBoost model, we obtained the final results, with the minimum RMSE and R2 
of approximately 0.821. 

To examine the advantage of XGBoost over traditional linear and nonlinear models, 
we conducted a comparison analysis between the traditional-linear model, random forest, 
LightGBM, and XGBoost, based on mean absolute error (MAE) and mean square error 
(MSE). The result shown in Table 3 indicates that the R2 of XGBoost model is 0.821, the 
mean absolute error (MAE) is 0.098, and the mean square error (MSE) is 0.017. The MAE 
and MSE of XGBoost are much smaller than other linear or nonlinear models, suggesting 
that XGBoost has a better fitting degree. The XGBoost model has the maximum R2 value. 
Thus, this paper applies XGBoost to reveal the non-linear impact of built-environment 
variables on bus–metro-transfer ridership. The model can identify the rank of relative im-
portance for the influential factors and improve the interpretability of the decision-mak-
ing framework. 

Table 3. Comparison of the traditional linear and nonlinear model. 

Metrics Traditional Linear Model Random Forest Light GBM XGBoost 
R2 0.701 0.594 0.603 0.821 

MAE 0.247 0.125 0.105 0.098 
MSE 0.065 0.027 0.023 0.017 

5.2. Relative Importance of the Independent Variables 
Table 4 illustrates the relative importance of independent variables and the rank of 

relative importance in the prediction process. The importance of all independent variables 
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was measured by relative importance, and the sum of their total importance was 100% 
[88]. The main findings and relative contribution of all the independent variables on global 
scale are presented in a bulleted list. 

Table 4. The relative importance of independent variables in predicting transfer ridership. 

Variables Relative Importance (%) Rank 
Bus–Metro Connection Characteristics (53.77%) 
Bus-network density 27.56 1 
Bus-stop density 17.27 3 
Network repetition ratio of bus–metro 8.49 4 
Average transfer distance 0.45 15 
Network attributes of metro stations (22.1%) 
Closeness centrality 21.6 2 
Distance to the central station 0.5 14 
Land-use attributes for trip attraction (5.39%) 
Commercial ratio 3.28 7 
Employment density 1.97 9 
Industrial ratio 0.14 16 
Land-use attributes for trip production (0.11%) 
Residential ratio 0.11 17 
Other land-use attributes (0.77%) 
Land-use diversity 0.72 12 
Street density 0.05 18 
Demographic factors (17.86%) 
Average age 6.18 5 
Population density (age between 20 and 44) 5.73 6 
Average house size 2.26 8 
Car ownership 1.68 10 
Local population density 1.37 11 
PGDP 0.63 13 
Housing price 0.01 19 

• As shown in Table 4, the bus–metro connection characteristics account for 53.77%, 
and the bus-network density is the most significant factor affecting transfer ridership, 
accounting for 27.56%, which is consistent with the results of [89]. The relative con-
tribution rates of bus-stop density, network repetition ratio of bus–metro, and aver-
age transfer distance are 17.27%, 8.49%, and 0.45%, respectively. Similar to [30], this 
result emphasizes the importance of forming interfaces between different transpor-
tation systems. 

• The location of metro stations in a transit network plays an important role in predict-
ing transfer ridership, accounting for 22.1%. Closeness centrality is an important in-
dex to measure the transfer efficiency of bus–metro, ranking second among all vari-
ables, and the relative contribution rate is 21.6%. The distance to the central station 
has a small correlation with transfer ridership, respectively. 

• The land-use attributes for trip attraction play a great guiding role in increasing the 
attraction of rail transit [90]. In this paper, the land-use attributes for trip attraction 
account for 5.39%, especially the commercial ratio, which contributes 3.28%. By con-
trast, the land-use attributes for trip production only account for 11%, which influ-
ence the ridership slightly. The result shows that the developed business circle in a 
region will drive the development of the surrounding bus–metro combined travel. 

• In terms of demographic factors, population density (ages between 20–44) is an im-
portant factor, with a contribution rate of 5.37%, which can be attributed to younger 
employees that prefer to travel by public transport. The regional PGDP reflects the 
private car ownership in the region, to a certain extent. The number of private cars 
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has a negative impact on passengers’ bus-travel mode, so the number of private cars 
should be reduced [49,91,92]. 

5.3. Nonlinear Effect between Built Environment and Bus–Metro-Transfer Ridership 
This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation, as well as the experimental 
conclusions that can be drawn. 

Figure 4 describes the nonlinear influence of the four independent variables of the 
bus–metro connection characteristics on transfer ridership. Figure 4a shows the positive 
association between bus-network density and bus–metro-transfer ridership. When the 
bus-network density around metro stations is 4 km to 11 km per square kilometer, the 
transfer ridership shows a slow upward trend. When the bus-network density is 11 km to 
13 km per square kilometer, the transfer ridership increases rapidly. However, the transfer 
ridership decreases slightly between 11 km and 12.5 km. When it rises to about 7000, the 
transfer ridership tends to be stable, after a period of time. The result implies that increas-
ing the bus-network density helps increase the transfer ridership. It, however, has little 
effect on attracting transfer ridership, when the bus-network density increases to a thresh-
old of 12.8 km per square kilometer. 

 
(a) (b) 

 
(c) (d) 

Figure 4. The effects of bus–metro connection characteristics on transfer ridership. (a) Bus-network 
density (km/ sq. km); (b) average transfer distance (km); (c) network repetition ratio of bus–metro; 
(d) bus-stop density (counts/sq. km). 

Figure 4b shows the significant nonlinear relationship between the average transfer 
distance and bus–metro-transfer ridership. Transfer ridership presents a higher value, 
when the average transfer distance is between 0.15 km and 0.18 km. This implies that the 
transfer distance within the range has a high attraction for travelers, to travel with the 
bus–metro combination. When the average transfer distance exceeds 0.18 km, the transfer 
distance has a negative impact on the transfer ridership, indicating that too large a transfer 
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distance will reduce the transfer intention of passengers. Similarly, a study [35] explored 
that the less transfer walking time and waiting time there is, the higher the probability of 
people choosing combined travel. Research [92] obtained the conclusion that it was better 
to build new metro stations within 0.55 km, around existing bus stations, and within 0.25 
km, of new bus stations, around the existing metro stations. 

Figure 4c illustrates the positive influence of the network repetition ratio of bus–
metro on the bus–metro-transfer ridership. When it is less than 0.07, the repetition ratio 
has almost no effect on transfer ridership. When the repetition ratio increases from 0.07 to 
0.2, the transfer ridership increases continuously, but it decreases slightly between 0.11 
and 0.115. When the repetition ratio exceeds 0.2, the transfer ridership tends to be stable. 
The result shows that the lower network-repetition ratio of bus–metro is not conducive to 
form a closely connected bus–metro-transfer hub. Within the closely connected range of 
the bus network and the metro network, the bus can transport people, in areas that cannot 
be radiated by railways, to metro stations. 

Figure 4d displays the significant nonlinear association between bus-stop density 
and bus–metro-transfer ridership. When the bus-stop density is 2 counts to 7.5 counts per 
square kilometer, the bus-stop density has a positive influence on the transfer ridership. 
For each additional station within this interval, an average of 116 transfer passengers will 
be added. When the bus-stop density exceeds 5 per square kilometer, the transfer rid-
ership keeps decreasing with the increase in bus-stop density. It has almost no effect on 
the bus–metro-transfer ridership, when the bus-stop density increases to 11 per square 
kilometer, and the transfer ridership will tend to be stable. 

Figure 5 depicts the marginal impact of network attributes, based on metro stations 
on transfer ridership. Figure 5a suggests that closeness centrality has a positive influence 
on the bus–metro-transfer ridership. When closeness centrality is less than 0.15, there is 
almost no change in transfer ridership. By contrast, when closeness centrality increases 
from 0.15 to 0.18, transfer ridership increases, by about 5000 passengers. Once it is above 
0.18, the corresponding transfer ridership slightly decreases. This result is reasonable. The 
stations of closeness centrality of more than 0.18 are central stations. These central stations 
are the travel destination of most passengers. In other words, only within a certain interval 
of closeness centrality does it have a significant impact on bus–metro-transfer ridership. 
In comparison with traditional studies on bus–metro-transfer ridership, this result is not 
fully explored. 

 
(a) (b) 

Figure 5. The effects of network attributes of metro stations on transfer ridership. (a) Closeness cen-
trality; (b) distance to the central station (km). 

Figure 5b demonstrates that the distance to the central station has a positive impact 
on transfer ridership. The farther away from the central station, the more bus–metro-
transfer ridership there is. Due to the punctual characteristic and large capacity of the 
Shanghai Metro, many passengers work in the city center and live in the suburbs. During 
morning peak hours, passengers commute by the combined mode of bus and metro. 
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Figure 6 illustrates the nonlinear influence, of the four independent land-use attrib-
ute variables for trip attraction, on the transfer ridership. Figure 6a shows the threshold 
effect of employment density on transfer ridership. When the employment density is less 
than the threshold, it has a positive impact on transfer ridership, which is consistent with 
many previous studies [9,57]. When the employment density is above the threshold, in-
creasing the number of jobs has almost no impact on transfer ridership. The result shows 
that a reasonable distribution of jobs around metro stations will improve the attractive-
ness of bus–metro transfer, but over-densification may lead to traffic chaos and overload, 
thus reducing people’s willingness to travel by public transport [29]. 

 
(a) (b) 

 
(c) 

Figure 6. The effects of land-use attribute variables for trip attraction on transfer ridership. (a) Em-
ployment density (thousand/sq. km); (b) industrial ratio; (c) commercial ratio. 

Figure 6b,c illustrate the nonlinear effects of the industrial ratio and the commercial 
ratio on the bus–metro-transfer ridership. As shown in Figure 6b, the industrial ratio has 
a positive impact on transfer ridership. When it grows from 0.05 to 0.09, transfer ridership 
increases by about 205 passengers, in an almost linear way. By contrast, when the indus-
trial ratio is above 0.2, the change of industrial ratio has no effect on transfer ridership. 
However, the over-densification of industry will lead to traffic congestion, which will 
bring inconvenience for people to travel by public transport. 

Figure 6c depicts the positive impact of commercial ratio on the bus–metro-transfer 
ridership. When the ratio is less than 0.1, it has a trivial effect on transfer ridership. When 
the commercial ratio increases from 0.1 to 0.22, transfer ridership keeps increasing. Trans-
fer ridership remains stable, when the commercial ratio reaches the threshold. For urban 
planners, these trends can be considered to maximize bus–metro-transfer ridership. 

Figure 7a,b show the nonlinear effects of street density and land-use diversity on 
bus–metro-transfer ridership. Figure 7a shows that the increase in street density has a 
positive impact on transfer ridership ,when the street density is between 6 km and 11 km 
per square kilometer. Specifically, when the street density is between 6 km and 8 km per 
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square kilometer, the climbing rate reaches the maximum. Similarly, other studies ob-
tained the positive influence of the road density and public transport services on bus and 
metro [7,9,32]. 

 
(a) (b) 

Figure 7. The effects of other land-use attributes on transfer ridership. (a) Street density (km/sq. km); 
(b) land-use diversity. 

Figure 7b shows that there is a significant nonlinear effect of land-use diversity on 
bus–metro-transfer ridership. When land-use diversity is above 0.7, transfer ridership in-
creases rapidly to the peak. The trend becomes stable, when the threshold is reached. 

5.4. Interaction Effects of Bus–Metro Connection Characteristics and Closeness Centrality on 
Transfer Ridership 

This study, further, investigates the interaction impact of bus–metro connection char-
acteristics and closeness centrality on bus–metro-transfer ridership. Figure 8 demonstrates 
that the interaction influence of bus-network density and closeness centrality on transfer 
ridership is multivariate and nonlinear. As shown in Figure 8, when bus-network density 
ranges from 12 km to 14 km per square kilometer, and closeness centrality is more than 
0.1, transfer ridership keeps sharply increasing. The transfer-ridership growth peaks at 
closeness centrality of 0.2 and bus-network density of 14 km per square kilometer. 

 
Figure 8. The interaction influence of bus-network density and closeness centrality on transfer rid-
ership. 
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Figure 9 depicts the interaction effects of bus-stop density and closeness centrality on 
transfer ridership. The result indicates that when the density of bus stops is 6 to 8 per 
square kilometer, and closeness centrality is between 0.18 and 0.2, we can get the maxi-
mum transfer ridership. This finding can help planners to reasonably arrange the number 
of bus stops, according to the location attribute of metro stations. 

 
Figure 9. The interaction influence of bus-stop density and closeness centrality on transfer rid-
ership. 

Figure 10 illustrates the combined effects of the network repetition ratio of bus–metro 
and closeness centrality on transfer ridership. We found that when the repetition ratio 
ranges from 0.2 to 0.3, closeness centrality is more than 0.16, and transfer ridership re-
mains a high value, respectively. The finding can provide significant suggestions for the 
commercial planners of transportation network companies. 

 
Figure 10. The interaction influence of network repetition ratio of bus–metro and closeness central-
ity on transfer ridership. 
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Figure 11 describes the influence of average transfer distance and closeness centrality 
on transfer ridership. The result shows that when the average transfer distance grows 
from 0.2 km to 0.25 km, and closeness centrality is more than 0.17, transfer ridership keeps 
stable growth. Transfer ridership reaches the peaks at the station, with a closeness central-
ity of 0.19. 

 
Figure 11. The influence of average transfer distance and closeness centrality on transfer ridership. 

The above results indicate that the setting of a bus–metro connection should be con-
sidered, together with the network attribute of the metro stations. This result implies that 
the bus–metro connection characteristics around stations depend on the stations’ posi-
tions. 

6. Conclusions 
This paper applied the XGBoost model to study the nonlinear impact of the Shanghai 

built environment on bus–metro-transfer ridership. The results put forward reasonable 
suggestions for urban architectural planning and TOD development. 

Firstly, we carried out the correlation analysis of the independent variables and elim-
inated the adverse impact of the multicollinearity of the data on the model. Then, the new 
dataset was substituted into the XGBoost model, to obtain the relative importance rank of 
independent variables, for predicting transfer ridership. Finally, we analyzed the nonlin-
ear effects of independent variables on transfer ridership. 

The results indicate that the bus–metro connection characteristics (relative im-
portance is 53.77%) have the largest impact on bus–metro-transfer ridership. The four key 
variables are bus-network density (relative importance is 27.56%), bus-stop density (rela-
tive importance is 17.27%), network repetition ratio of bus–metro (relative importance is 
8.49%), and average transfer distance (relative importance is 0.45%). 

These findings are useful for the bus–metro-transfer-facilities design of the metro-
station areas. A station with higher closeness centrality can attract more transfer ridership. 
This means that the bus–metro-transfer facilities should be improved at the central sta-
tions. The land-use attributes for trip attraction have an important impact on bus–metro-
transfer ridership. Among them, the commercial ratio has the most significant influence, 
with a relative importance of 3.28%, followed by the employment density, with a relative 
importance of 1.97, and the industrial ratio, with a relative importance of 0.14%. These 
findings are useful for TOD planners to establish land-use guidelines [7,44]. 

The research results of this paper can better help urban planners and transportation 
departments understand how the change of urban built environment affects the bus–
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metro-transfer ridership. The increase in the bus-network density, in areas without the 
provision of metro service, can provide travel convenience for residents. The employment 
density and commercial ratio have positive impact on the transfer ridership. To increase 
the mobility of the travel population and improve transfer ridership, the concentrated 
business circle around metro stations should be appropriately arranged. 

Compared with the traditional models, the XGBoost model provides a more accurate 
and stable data-processing method. It can conduct integration analysis with various fac-
tors, in the presence of big data. 

There are, however, some limitations in this study. For example, this paper only uses 
the one-day IC-card data of Shanghai’s 88 metros. In fact, it can further accurately conduct 
the impact of the built environment on bus–metro-transfer ridership, through the contin-
uous time data of multiple cities. Most of the independent variables selected in this paper 
are exogenous factors, due to limited resources. The passengers’ travel attitude and travel 
preference are very important factors in the prediction process of transfer ridership. In the 
future, these endogenous factors can be taken into account. 
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