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Abstract: Due to energy efficiency, spiking neural networks (SNNs) have gradually been considered as
an alternative to convolutional neural networks (CNNs) in various machine learning tasks. In image
recognition tasks, leveraging the superior capability of CNNs, the CNN–SNN conversion is considered
one of the most successful approaches to training SNNs. However, previous works assume a rather
long inference time period called inference latency to be allowed, while having a trade-off between
inference latency and accuracy. One of the main reasons for this phenomenon stems from the difficulty in
determining proper a firing threshold for spiking neurons. The threshold determination procedure is
called a threshold balancing technique in the CNN–SNN conversion approach. This paper proposes a
CNN–SNN conversion method with a new threshold balancing technique that obtains converted SNN
models with good accuracy even with low latency. The proposed method organizes the SNN models
with soft-reset IF spiking neurons. The threshold balancing technique estimates the thresholds for spiking
neurons based on the maximum input current in a layerwise and channelwise manner. The experiment
results have shown that our converted SNN models attain even higher accuracy than the corresponding
trained CNN model for the MNIST dataset with low latency. In addition, for the Fashion-MNIST and
CIFAR-10 datasets, our converted SNNs have shown less conversion loss than other methods in low
latencies. The proposed method can be beneficial in deploying efficient SNN models for recognition tasks
on resource-limited systems because the inference latency is strongly associated with energy consumption.

Keywords: CNN–SNN conversion; spiking neural network; intelligent mobile applications; threshold
balancing technique; image recognition task; machine learning; artificial intelligence

1. Introduction

In recent years, convolution neural networks (CNNs) [1] have been considered as
among the excellent choices for various tasks such as image classification, object detec-
tion, semantic segmentation, and so on [2–5]. There have been inevitable trade-offs be-
tween model accuracy and computational cost in deep learning models. Currently, energy
consumption draws attention in the deep learning community with the concerns about
climate change and carbon emissions. In an effort to reduce the power consumption of
neural network models, spiking neural networks (SNNs) [6–8] have attracted significant
research interest. In artificial neural networks (ANNs), the artificial neuron model has been
inspired by the behavior of biological neurons, but their behavior is not exactly the same as
that of biological ones. A biological neuron receives spike signals through its dendrites via
its synapses, accumulates the received signals into its membrane potential, emits spikes
through its axon only when its membrane potential reaches the inherently specified thresh-
old, and resets the membrane potential to the resting potential if a spike is emitted [6].
Spiking neurons refer to the neuron model that receives spikes, maintains membrane po-
tential, and emits spikes as in biological neurons. SNNs are neural networks of which the
neurons are spiking neurons. In SNNs, all signals transmitted between neurons are spikes,
and hence, their hardware implementation just needs to send spikes, when needed, without
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keeping some constant voltage continuously over some period. This helps reduce oper-
ational power compared to the conventional neural networks. The hardware devices for
executing SNNs are denoted as neuromorphic devices [9–11]. Once such a neuromorphic
device prevails, SNNs are expected to be deployed in various resource-limited devices such
as IoT devices, embedded systems, and portable devices. With such expectation, SNNs are
even referred to as the third-generation neural networks.

In ANNs, there is only one kind of neuron, of which the behavior is just the weighted
sum of their input values with an activation function. There are several activation functions
such as sigmoid, hyper-tangent, ReLU, GeLU, Swish, and so on. On the contrary, in SNNs,
there are different kinds of spiking neurons such as the Hodgkin–Huxley model, the leaky
integrate-and-fire (LIF) model, the integrate-and-fire (IF) model, the soft-reset IF model, the
spike response model (SRM), Izhikevich’s model, the FitzHugh–Nagumo (FHN) model, and
so on [6,7]. Due to the diversity of spiking neurons and their behavioral dynamics, SNNs are
more difficult to train than ANNs. There have been various training algorithms developed for
SNNs [6,8].

The primary differences between CNNs (or ANNs in general) and SNNs lie in the data
representation and the number of required forward computation passes for inference. In ANNs,
the input and output signals of neurons are real-valued, and only a single feed-forward pass is
required for inference. On the contrary, input and output signals in SNNs are sparse spikes
over a certain time period, and their inference requires multiple feed-forward passes over the
time period, also known as inference latency. Figure 1 shows the behaviors of an ANN and an
SNN, where the ANN processes real values and the SNN processes spikes.
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Figure 1. Behavioral differences between ANN and SNN models. (a) a general architecture of 2-layer
network; (b) a 2-layer ANN architecture; and (c) a 2-layer SNN architecture.

In image recognition tasks, compared to the resounding successes achieved by CNNs
over the past decade, SNN training algorithms have shown limited performance, yet remain
an active research field. The SNN training algorithms can be categorized into three major
approaches: bio-inspired learning approach [12–18], spike-based backpropagation approx-
imation approach [19–23], and ANN–SNN conversion approach [24–28]. The biologically
based plausible learning approach attempts to train SNNs by adjusting weights based on local
learning rules for synaptic strength in an unsupervised manner [12–14] or in a semi-supervised
manner [15–18]. It exhibits a trade-off between biological plausibility and performance.

The spike-based backpropagation approximation approach [19–23] directly trains SNNs
by approximating the error backpropagation algorithm, widely used for training traditional
artificial neural networks (ANN), so as to be applicable for spikes. Compared to the bio-
logically plausible learning approach, the SNN learning algorithms of this approach have
generally shown better accuracy and require a higher computational budget, but are less
biologically plausible.

The ANN–SNN conversion approach [24–28] has proven to be promising to train deep
SNNs. It first trains an ANN with some constraints for the given training dataset, and
then, it converts the trained ANN model into an SNN model, which consists of spiking
neurons with appropriate firing thresholds. CNN models have been widely used as ANNs
for the image recognition tasks. The CNN–SNN conversion algorithms [24–28] require a
rather long inference latency, while having a trade-off between inference latency and accuracy.
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From these observations, we propose a new CNN–SNN conversion algorithm, which reduces
the conversion loss from the trained CNN to an SNN with low inference latency.

The proposed CNN–SNN conversion algorithm uses a threshold balancing tech-
nique, which pays attention to inference latency. The experimental results on the MNIST
dataset [29] have shown that the proposed method could produce an SNN model, of which
the accuracy of 99.33% is even higher than the accuracy of 99.31% of its corresponding CNN
model, with a low inference latency of 64 time steps. In addition, the experimental results
on the Fashion-MNIST [30] and CIFAR-10 datasets [31] have shown that the converted
SNNs experience less conversion loss than other CNN–SNN conversion methods with
low latency. Specifically, with a latency of 64 time steps, the proposed threshold balancing
method has reduced conversion losses of approximately 10% and 8%, respectively, com-
pared to the methods in [25,26]. For the latency of 128 time steps, experiments have shown
that those reduced losses were 45% and 30%, respectively.

The rest of this paper is organized as follows: The foundations of the CNN–SNN
conversion methodology and related works are provided in the next section. Section 3
presents a new CNN–SNN conversion method with the proposed threshold balancing tech-
nique. The experimental results and further discussion are described in Sections 4 and 5,
respectively. The last section draws the conclusions.

2. Foundations of CNN–SNN Conversion and Related Works

This section first presents the foundations of the CNN–SNN conversion approach for
the image recognition tasks. Then, it gives a short discussion about previous works, as well
as their limitations, which motivated our work.

Algorithm 1 shows the basic CNN–SNN conversion procedure, which is illustrated
in Figure 2. First, a CNN having some designated constraints is trained by the gradient
descent method with the given training dataset. Next, an SNN is designed, which has
the same architecture as the trained CNN, and the weights of the SNN are assigned the
corresponding weights of the trained CNN. After that, the firing thresholds of the spiking
neurons in the SNN are determined by a threshold balancing technique. Lastly, for inference
with the SNN, the input data are encoded into spike trains, which are a sequence of spikes
with timing information.
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Figure 2. The CNN–SNN conversion scheme.
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Algorithm 1: Basic CNN–SNN conversion procedure.
Step1. CNN training:

Train a CNN with designated constraints
Step2. Weight transferring:

Transfer weights from the trained CNN to an SNN with the same architecture
Step3. Threshold balancing:

Assign firing thresholds to spiking neurons of the SNN
Step4. SNN inference preparation:

Encode the input data into spike trains that are amenable to the SNN

Diehl et al.’s method [24] takes the CNN–SNN conversion approach. It first trains a
CNN model having the rectified linear unit (ReLU) activation function [32]. It organizes
an SNN model of the same architecture for the trained CNN, of which the neurons are
integrate-and-fire (IF) [33] neurons (please refer to Appendix A for the details of the IF
neuron model). It uses the activation-based threshold balancing technique to determine
the firing thresholds of spiking neurons. The threshold balancing technique finds the
maximum activation values at each layer of the trained CNN model when the whole
training set is fed into the CNN model, and then, it uses the maximum activation values as
the firing threshold in the corresponding layers of the SNN model. The threshold balancing
technique is also known as the data-based normalization technique. It has been observed
that the CNN–SNN conversion requires the converted SNN to have a long inference latency,
such as more than 500 time steps, so as to achieve a loss that is comparable to that of the
corresponding CNN model for such benchmarks as the MNIST dataset. This implies that
the decrease in the inference latency causes a significant increase in conversion loss. To
overcome this problem, Burkitt’s method [28] first determines the firing thresholds of
spiking neurons with the activation-based threshold balancing technique and then scales
them by a ratio, which is empirically selected. The conversion loss of the CNN–SNN
conversion method is attributed to the following factors [24]:

• The first factor stems from the difference in the input integration (∑ wx) between the
CNN model and the SNN model. In the CNN, the input values x are floating-point
values, while in the SNN model, the input values x[t] are represented by binary values
{0,1} at each time step.

• The second factor comes from the difference in activation behavior between the neurons
with the ReLU activation of the CNN model and the IF neurons of the SNN model.

• The last factor lies in the threshold balancing technique. A too-high firing threshold
at each layer of the SNN yields a low firing rate for most neurons with low latency.
This leads to neurons with a low firing rate, which cannot adequately contribute to
the information transmission in the SNN model.

To reduce the conversion loss caused by the difference in the input integration process
between the CNN and SNN, a threshold balancing technique such as the spike-based
normalization technique (also known as spike-norm) [25,26] sets the firing threshold at
each layer with the maximum weighted input summation from the Poisson input. However,
the spike-norm technique still requires the converted SNN model to use a sizeable amount
of time steps for a conversion loss comparable to the corresponding CNN model. This
phenomenon occurs because the assigned thresholds are still so high that most neurons
result in having a low firing rate with low latency. In addition, the spike-norm technique
has some limitations caused by the Poisson characteristics in the input encoding as follows:

• The threshold at each layer may change in different trials due to the probabilistic
nature of the input Poisson spike trains. The change of the firing threshold could affect
the performance of the converted SNN model. That is, the accuracies of the converted
SNN mode are different in different trials.

• The spike conversion of a very small input value can be a challenge to generate a spike
train with low latency, which may cause information transmission loss in an SNN model.
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On the other hand, to reduce the conversion loss caused by the difference in activation
behavior between the CNN model and the SNN model, Han et al.’s method [26] uses
soft-reset IF neurons instead of IF neurons for the SNN model.

Although existing CNN–SNN conversion methods have made certain achievements
in minimizing the conversion loss from a trained CNN to an SNN, they still require rather
high inference latency. The inference latency is strongly affected by the adopted threshold
balancing technique. We propose a CNN–SNN conversion method that uses a new threshold
balancing technique, which can reduce the inference latency while maintaining performance.

3. The Proposed CNN–SNN Conversion Method

This section presents the proposed CNN–SNN conversion method, which enhances
the inference latency and performance of the SNN models. It first describes the training
strategy for a CNN model whose weights are later transferred to an SNN model. Next,
it proposes a new threshold balancing technique for CNN–SNN conversion. Then, it
addresses the inference in the SNN models.

3.1. CNN Training for SNN Conversion

The proposed method takes a CNN–SNN conversion approach to train an SNN model.
Hence, we first organize a CNN model architecture that corresponds to an SNN model
of interest. For classification tasks, CNN models usually consist of multiple convolutional
layers and a few fully connected layers. The performance of the trained CNN models strongly
affects that of the converted corresponding SNNs. It is hence important to make the CNN
models achieve high performance early on.

The neurons of CNN models for CNN–SNN conversion are traditional artificial neu-
rons with ReLU activation. ReLU is chosen as the activation function because the firing
rate of soft-reset IF neurons without a refractory period can be approximated by the ReLU
nonlinearity [24–26]. The bias terms of neurons in CNN models are set to 0 for smooth
conversion from a CNN model to an SNN model. CNN models may make use of pooling
operations to reduce the output feature maps of convolutional layers. Max-pooling and
average pooling [1] have been widely used in CNNs. Since the neuron activations in an
SNN are binary values at each time step, the max-pooling operation would cause significant
information loss in the subsequent layers. Consequently, average pooling is used, if needed,
for CNN–SNN conversion.

The CNN models are trained with conventional optimizers such as Adam, where
such regularization techniques as dropout [34] can be used to mitigate overfitting on the
convolutional layers. The dropout for convolutional layers is the spatial dropout, which
randomly drops some channels of the output feature map by setting the elements of the
selected channels to zero.

3.2. Construction of Converted SNN

The CNN–SNN conversion method constructs a corresponding SNN model from a trained
CNN model. The constructed SNN model must have the same architecture as the trained CNN
model. Spiking neural networks use spike neurons such as the integrate-and-fire (IF) neuron,
leaky integrate-and-fire (LIF), and their variants. The constructed SNN models use the soft-reset
IF neurons, which are a variant of the IF neuron model, the operation of which is defined
as follows:

Vi(t) = Vi(t− 1) + Ii(t)

If Vi(t) ≥ Vth, generate a spike and set Vi(t) = Vi(t)−Vth
(1)

where Vi(t) is the membrane potential of the i-th neuron at time step t, Ii(t) is the total
current that is injected into the i-th neuron at time step t, and Vth is the threshold of the
neuron. The IF neuron model and the soft-reset IF neuron model are described in detail in
Appendices A and B, respectively.

The total input current Ii(t) of the i-th neuron in an SNN is computed as follows:
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Ii(t) =

{
∑j wijXj, if i-th neuron is in the first layer.

∑j wijSj(t), otherwise.
(2)

where Xj is the j-th input constant current equal to the corresponding input signal and
Sj(t) is the input spike of the j-th presynaptic neuron at time step t. That is, Sj(t) = 1 if the
j-th neuron has fired at time step t, and Sj(t) = 0 otherwise.

The convolution operation in an SNN is carried out as shown in Figure 3. It first
applies the conventional convolution of the CNN to its input, then performs the potential
integration to add the convolution result and the existing potential and, next, compares
each integrated value with the threshold to determine whether to generate a spike at the
corresponding location at the time step. Only when an integrated value is greater than or
equal to the threshold, a spike is generated.

Convolution operation in SNN at every time step

potential output map

weighted 

input current

potential of thresholding

output map

kernel initial potential

input map

input map

kernel

weighted 

input current

Figure 3. Convolution in an SNN.

Once a CNN model is trained, its weight values for convolution kernels and fully con-
nected layers are used to set the corresponding weights of the SNN model. The remaining
ones to be set are the threshold of each spike neuron, which allows it to fire a spike only when
its membrane potential is greater than or equal to its threshold. The SNNs receive spike trains,
which consist of spikes spread over a time window. The input spike trains should be fed until
the SNNs produce enough spikes for the desired outputs. The duration for an input spike
train presentation to an SNN is called the inference latency. When a CNN model is converted
into an SNN model, the SNN model suffers from rather high latency. On the other hand, the
converted SNN model usually experiences a loss in accuracy. That is, the performance of the
SNN is usually not as good as that of its corresponding CNN model. Therefore, it is important
to find the proper threshold values for SNN models to maintain comparable performance with
as low latency as possible.

Our concern in CNN–SNN conversion is to determine such firing thresholds for
spiking neurons that minimize the conversion loss from a trained CNN to an SNN model
with low latency for spiking neurons. We propose a new threshold balancing technique
to determine such firing thresholds as shown in Algorithm 2. It is desirable for most
neurons of an SNN to have a high, yet proper firing rate for most latencies, which leads to
less conversion loss. The proposed technique determines a threshold for each channel at
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every layer. The threshold values are estimated based on the maximum of the accumulated
activations over time steps at each channel.

Algorithm 2: The proposed threshold balancing method.
Input: (Tin f er): desired inference latency
Output: V l

th,k: firing threshold for neurons for the k-th channel at the l-th layer
Notations: (nlayer): number of layers; (l): layer index; (nl

channel): number of channels
at the (l)-th layer; (k): channel index in a layer; (Zl

k): maximum input current over
time steps at the (k)-th channel in the (l)-th layer; wj: the connection weight from
the j-th connection from the preceding layer; Sj[t]: the input spike at the j-th
presynaptic neuron from the preceding layer
begin

# Initialize the firing threshold list (Vth = [V1
th, V2

th, ..., V l
th, V

nlayer
th ])

# where each (V l
th = [0.0] ∗ nl

channel)
for (l)← (1) to (nlayer) do

Initialize (Zl
k = 0), ∀ (k=1, ... nl

channel)
if (l=1) then

# Determine the maximum input current across time steps from the whole
training set

for (k)← (1) to (nl
channel) do

(Zl
k = max(Zl

k, max (∑j wjXj)))
end
# Set firing threshold for neurons at every (kth) channel in the (lth) layer
for (k)← (1) to (nl

channel) do
( V l

th,k = Zl
k)

end
else if (l = nlayer) then

(V l
th = +∞)

else
# Determine the maximum input current across time steps from the whole
training set

for time step (t)← (1) to (Tin f er) do
for (k)← (1) to (nl

channel) do
(Zl

k = max(Zl
k, max (∑j wjSj[t])))

end
end
# Set firing threshold for neurons at every channel at the (lth) layer
for (k)← (1) to (nl

channel) do
( V l

th,k = Zl
k)

end
end

end
end

Given desired inference latency Tin f er for the SNN, the technique records the maximum
accumulated activation, also known as input current, Zl

k, at each k-th output channel across
time steps at each l-th layer by passing the entire training dataset through the SNN.
Note that Zl

k is computed by Equation (2). Then, the technique sets the threshold of the
neurons at each k-th channel equal to Zl

k. After the assignment of the firing threshold
for a layer, it freezes the thresholds of the layer and repeats the threshold determination
procedure for the next layer. As mentioned earlier, the thresholds are determined for each
channel of layers sequentially in a layerwise manner.
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3.3. Inference of the Converted SNN

The converted SNNs are supposed to receive as the input either the spike train or
the constant current, which can be the intensity values of the input images. There are
some output decoding techniques for SNNs such as the selection of the maximum spike
frequency node and the selection of the maximum membrane potential node. The proposed
threshold balancing technique sets the threshold of the final layer to the infinity value ∞.
Hence, the node with the maximum membrane potential is selected as the target output
node. The SNN inference in the proposed method is shown in Algorithm 3.

Algorithm 3: Inference of the converted SNN.
Input: Tin f er: desire inference latency
Output: acc: Accuracy in %
Notations: nsamples: number of test samples; ncorrect: number of correct predicted
samples; noutput: number of output neurons
begin

Initialize : nsample = 0 ; ncorrect = 0 foreach test-sample do
nsample+ = 1
for time step t← 1 to Tin f er do

# Feed to SNN to generate the output potentials in the last layer
Vnlayer [t] = snn(test− sample)

end
labelpredicted = max{Vnlayer

i [Tin f er], i = 0, 1, . . . , noutput − 1}
if labelpredicted = labelground−true then

ncorrect+ = 1
end

end
# Calculate the accuracy of the converted SNN
acc = ncorrect

nsamples
∗ 100 ; // acc: accuracy of the SNN model

end

4. Experiment Results and Discussion

To evaluate the proposed CNN–SNN conversion method, several experiments were
conducted for different architectures for the image classification benchmark datasets MNIST,
Fashion-MNIST, and CIFAR-10.

4.1. Experiments on the MNIST and Fashion-MNIST Dataset

The MNIST handwritten digits dataset [29] is a benchmark dataset for SNNs’ evalua-
tion that has been widely used. It consists of a training dataset of 60,000 samples and a test
dataset of 10,000 samples, each of which is a grey-scale image of size 28 × 28 with a label
from 0–9. Figure 4 shows some samples from the MNIST and Fashion-MNIST datasets.
The Fashion-MNIST dataset [30] has been shown to be more challenging than the MNIST
dataset in the recognition task. The dataset has the following 10 labels: T-shirt, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot.

4.1.1. The Used CNN Architecture and Its Training Method

To evaluate the proposed CNN–SNN conversion method on these datasets, we
used the CNN architecture shown in Figure 5, which is similar to that used in [24].
Specifically, the network is organized into a 28 × 28-12c5-2ap-64c5-2ap-10o architecture,
where the input is given in a 28 × 28 grey-scale image, the first convolutional layer consists
of 12 kernels of size 5 × 5 followed by 2 × 2 average pooling, the second convolutional
layer consists of 64 kernels of size 5 × 5 followed by 2 × 2 average pooling, and the last
layer is a fully connected layer with 10 nodes.
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Figure 5. Our CNN-SNN conversion scheme.

For the MNIST dataset, the CNN was trained with the Adam optimizer for 100 epochs,
with a fixed learning rate of 0.001 and a batch size of 50. In addition, to overcome the over-
fitting problem, spatial dropout was applied to the convolutional layers with a probability
of 0.5. For the data augmentation, the cut-out method [35] was used, which replaces a few
randomly selected rectangular regions with randomly selected values to make the trained
CNN models robust to occlusions on the input images. The trained CNN model achieved
an accuracy of 99.79% and 99.31% for the training and testing datasets, respectively.

For the Fashion-MNIST dataset, we trained the CNN model with the Adam optimizer
for 250 epochs with a batch size of 50, where the learning rate first was initialized at 0.001,
then were scaled it by multiplying 0.1 at epoch 180, and a spatial dropout of a probability
of 0.50 was applied for the convolutional layers. The trained CNN model achieved an
accuracy of 92.70% on the testing set. Table 1 provides the configuration parameters of the
CNN model trainings for both datasets.
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Table 1. Training configurations for both datasets.

Dataset Training Configurations Values

MNIST

Optimizer Adam
Learning rate 0.001

Number of channels in Conv layers 12, 64
Number of epochs 100

Dropout 50%

Fashion-MNIST

Optimizer Adam
Learning rate [10−3, 10−4]

Number of channels in Conv layers 128, 256
Number of epochs 250

Dropout 50%

4.1.2. Conversion to SNN and Performance Evaluation

From the trained CNN models, we transferred the weights to the corresponding SNNs
with the soft-reset IF neurons. The proposed threshold balancing technique was used to
set the firing thresholds of the IF neurons for each channel of the convolutional layers and
fully connected layers, sequentially, layer by layer. Figures A4 and A5 in the Appendix F
shows the threshold values assigned to the channels for some layers at some time steps on
the MNIST and Fashion-MNIST datasets, respectively. For the input layer, the inputs to the
spike neurons are constant currents, which do not change over time. Hence, the assigned
thresholds to the channels for the first layer do not change over the latency time duration,
as shown in Figures A4a and A5a.

Figure 6 shows the performances of the proposed method and the other three SNN–
CNN conversion methods such as Segupta et al.’s method [25], Han et al.’s method [26],
and Kim et al.’s method [27]. The converted model by the proposed method (green
line in the figure) achieved a reasonable accuracy of 86.18% with a very low inference
latency of four time steps. Furthermore, with a latency of only 64 time steps, the SNN
model showed an accuracy of 99.33%, which is even higher than that of the corresponding
CNN with an accuracy of 99.31%. To compare the effectiveness of the proposed method
with other existing methods [25–27], we re-implemented those methods for the same
network architecture. Some of them were proposed for different tasks such as object
detection [27]. We made some modifications as described in Appendix C. Table 2 shows the
classification accuracies for different latencies with respect to the four conversion methods
on the MNIST dataset. In the table, “/” indicates the situations where the performance
could not be measured due to low latency.

Table 2. Classification accuracies vs. latencies for the compared methods on the MNIST dataset.
hhhhhhhhhhhhhhLatency (Tin f er)

Methods
[25] [26] [27] Our Method

64 97.98% 97.87% 97.20% 99.33%
32 96.89% 96.89% 96.27% 99.30%
16 79.05% 90.00% 93.06% 99.25%
8 17.89% 19.68% 77.64% 98.98%
4 / / 31.31% 86.18%

As seen in Figure 6, the converted SNNs by the proposed method attained higher
accuracies than other methods in the examined inference latencies. The major difference
among the compared methods lies in the threshold balancing technique used in the SNN–
CNN conversion. The experiment results imply that the proposed threshold balancing
technique is more effective than others in transferring knowledge trained in CNN models to
SNN models, even with low latency. Figure 7 shows the average firing rates at every channel
of the first convolutional layer for some input sample with a latency of 64 time steps. As
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shown in Figure 7, our method made the converted SNN model preserve higher average
firing rates in most channels compared with the other methods.

Inference latency (# time steps)

A
cc

u
ra

cy
 (

%
)

Figure 6. Performance comparison of the proposed method and other CNN–SNN conversion
methods on the MNIST dataset [25–27].

Input sample

Number of channels

A
v

e
ra

g
e 

fi
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n
g

 r
at

e
 (

R
)

Figure 7. Average firing rates for the first convolutional layer of the SNN for the MNIST
dataset [25,26].

The average firing rate Rl
k at the k-th channel in the l-th layer is calculated as follows:
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Rl
k =

∑
nl

k
i=1

Si
Tin f er

nl
k

(3)

where nl
k is the number of neuron at the k-th channel, i is the neuron index at the k-th

channel, and Si is the number of spikes of the i-th neuron for a latency of Tin f er.
Figure 8 shows the performance (accuracy versus latency) for the compared methods.

The proposed method (green line) shows better performance than the other methods [25,26],
even with low latency. The SNN models converted by the proposed method achieved a
competitive accuracy of 92.11% in 512 time steps with a conversion loss of less than 0.1%.
While reducing the latency up to 16 time steps, they maintained their accuracy without
drastic loss.

Inference latency (# time steps)

A
c
cu

ra
cy

 (
 %

)

Figure 8. Performance comparison of the proposed method and other CNN–SNN conversion
methods on the Fashion-MNIST dataset [25–27].

Table 3 shows the classification accuracy for different latencies of the compared meth-
ods on the Fashion-MNIST dataset. The proposed method shows better performance than
other methods even for low latencies.

Table 3. Classification accuracies vs. latencies for the compared methods on the Fashion-MNIST dataset.
hhhhhhhhhhhhhhLatency Tin f er

Methods
[25] [26] [27] Our Method

512 74.65% 74.73% 66.15% 92.11 %
256 73.65% 73.38% 51.01% 91.76 %
128 68.89% 68.14% 36.69% 91.36 %
64 60.15% 58.11% 19.45% 90.77 %
32 45.07% 43.66% 13.1% 89.29 %
16 17.73% 17.82% 10.0% 85.76 %
8 10.14% 10.15% 10.0% 73.84 %
4 / / 10.0% 31.21 %

4.1.3. Ablation Study with the Scaled Thresholds

To examine the effect of the threshold on the accuracy of the converted SNNs with low
latency, we scaled the thresholds, suggested by the proposed threshold balancing technique,
with the factor α (0 < α ≤ 1), in order to increase the firing rates of the spiking neurons.
Figure 9a,b show the accuracies of the converted SNN models by the proposed method for
different scaling factor values α on both datasets, respectively.
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As observed in Figure 9a, with α = 0.6, our converted SNN model achieved a quite
similar accuracy to the corresponding CNN with a latency of 64 time steps, while it ensured a
competitive accuracy of 98.94% with a short latency of 4 time steps. Note that, with a latency of
4 time steps, our converted SNN even attained higher accuracy than other methods in 64 time
steps. In Figure 9a, with α = 0.4, with a very short latency of 4 time steps, our converted SNN
model even achieved higher accuracy compared with the other methods [25,26] with 512 time
steps. Moreover, our converted SNN ensured a competitive accuracy of 92.08% with 512 time
steps with a conversion loss of less than 0.1%. Appendix D shows the classification accuracy of
our converted SNNs with different scaled thresholds on both datasets.

A
cc
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cy
 (

 %
)

Inference latency (# time steps) Inference latency (# time steps)
A

cc
u

ra
cy

 (
%

)

(a) (b)

Figure 9. Inference performance with different scaled thresholds on both datasets. (a) MNIST dataset;
(b) Fashion-MNIST.

4.2. Experiments on the CIFAR-10 Dataset

The CIFAR-10 dataset consists of 60,000 color images of size 32× 32 in 10 classes, each
of which has 6000 images (5000 images for training and 1000 images for testing). Figure 10
shows some samples of the dataset.

Cifar10 

Samples

Figure 10. Some samples of the CIFAR-10 dataset.

4.2.1. CNN Architectures and Training Method

To evaluate the proposed method for the CIFAR-10 dataset, we used a larger CNN
model, VGG-16, in the experiments. The VGG-16 model consists of 13 convolutional layers
and 3 fully connected layers, as shown in Figure A3 in Appendix E. Table 4 presents the
configuration parameters of the VGG-16 model used for the dataset. The VGG-16 model
trained under the imposed constraints for the CNN–SNN conversion showed an accuracy
of 93.28% for the dataset.

Table 4. Training configurations for the VGG-16 model architecture.

Training Configurations Values

Optimizer Adam
Learning rate 0.01

Number of epochs 300
Dropout 50%

Cut_out technique [35] 1 hole of size 16× 16
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4.2.2. Conversion to SNN and Performance Evaluation

An SNN model was organized with the same architecture as the VGG-16 model. The weight
values for the convolution kernels and fully connected layers of the trained VGG-10 model were
transferred to the corresponding weights of the SNN. The threshold values of the spike neurons
in the SNN were determined by the proposed threshold balancing technique. Figure 11 shows
the accuracies of the compared methods for a range of different latencies.

Inference latency (# time steps)

A
c
cu
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cy

 (
 %

)

Figure 11. Performance comparison of the proposed method and other CNN–SNN conversion
methods on the CIFAR-10 dataset [25,26].

As observed in Figure 11, the SNN models converted by the proposed method
achieved higher accuracy than those of other methods [25,26] in the range of latencies
from 64 time steps to 512 time steps. Furthermore, our converted SNN model showed a
reasonable accuracy of roughly 90% (89.97%) with a latency of 256 time steps, which is
higher than those of other methods. With a latency of 512 time steps, all the compared
methods achieved an accuracy higher than 90%. With a latency of 2048 time steps, our
method built a model with an accuracy of 92.47%, while the SNN trained in Han et al.’s
work [26] achieved an accuracy of 93.63%. This difference in the accuracies might stem
from two factors. First, their trained CNN model achieved higher accuracy than our mod-
els. The accuracy of the trained CNN models strongly affects that of the converted SNN
model. Second, their input was encoded using the Poisson distribution. There is a chance
that their method obtained better performance due to probabilistic characteristics of the
Poisson encoding. Despite that, as shown in Figure 11, the proposed method produced
SNN models with stable and higher accuracies for short latency situations.

5. Further Discussion

Over the past several years, SNNs have attracted significant research interest due to
their energy efficiency. Specifically, recent concerns about training SNNs lie in not only
improving the accuracy, but also minimizing their power consumption. As mentioned in
Section 1, the SNN training algorithms can be categorized into the bio-inspired learning
approach [12–18], the spike-based backpropagation approximation approach [19–23], and
the ANN–SNN conversion approach [24–27]. The biologically based plausible learning
approach generally uses local learning rules for shallow networks, which have some
restrictions on their scalability and expressive power. The spike-based backpropagation
approximation approach uses some variants of the error backpropagation algorithm, which
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approximates the derivatives of spike signals with surrogate functions. Compared to the
biologically plausible learning approach, the approximation approach has generally shown
better accuracy, requires a higher computational cost, and is difficult to apply to training
deeper SNNs. The ANN–SNN conversion approach including the CNN–SNN conversion
approach indirectly trains SNNs by using the weights of the trained SNNs having the same
architecture. The conversion method does not care much about the number of layers as in
the bio-inspired learning approach and the spike-based backpropagation approximation
approach because the weights of the model are trained in its corresponding ANN or CNN
model. Hence, the ANN–SNN conversion approach has the features of the scalability of
the model architecture, yet usually requires a rather long inference latency while, having
a trade-off between inference latency and accuracy. In the conversion approach, the
determination of the threshold values for the spike neurons is one of the key factors
that strongly affects the performance of the converted SNNs. The proposed threshold
balancing method determines the threshold values for each channel at the convolutional
layers. Sengupta et al.’s method [25] takes a similar approach to the proposed method,
but it does not take into account the channels in determining the threshold values. The
proposed threshold method has shown good performance for low latency compared to the
existing methods [24–28].

From the experiments for a specific SNN architecture on the MNIST and Fashion-
MNIST datasets, we observed that the proposed conversion method could produce SNN
models with better performance with low latency. The experiments with the deep SNN
models on the CIFAR-10 dataset showed that the conversion method could generate
comparable deep SNNs to other conversion techniques.

Table 5 shows the performance of the SNN models on the MNIST dataset surveyed in
the literature. It shows the accuracies along with the allowed inference latency for the SNN
models, which might have different architecture from each other. It also describes the used
neural encoding method, the training approach, and the learning type, such as supervised,
unsupervised, and semi-supervised learning.

As observed in Table 5, the bio-inspired learning approach usually produces SNNs
with lower accuracy than the rest of the training approaches [12,16]. Although Lee et al.’s
method [21] obtained an SNN model with better accuracy than our work, it requires a
much higher training cost and higher inference latency than our work. One reason for
this slightly inferior performance compared to their model lies in that the accuracy of our
trained CNN model (99.31%) is lower than that (99.59%) of their trained SNN model. At
a latency of 64 time steps, our method produced an SNN model with better performance
than all other methods. Even at a latency of only four time steps, our method produced an
SNN model with comparable performance.

Table 5. Performance of the recent SNN models for the MNIST dataset.

Model Neural Encoding Training Approach Learning Type Accuracy (%) Latency (Time Steps)

[21] Rate-based Gradient-based Supervised 99.59 100
our work Rate-based Conversion Supervised 99.33 64

[36] Rate-based Biological + gradient Semi-supervised 99.28 200
[24] Rate-based Conversion Supervised 99.19 >500

our work Rate-based Conversion Supervised 99.14 4
[37] Rate-based Gradient-based Supervised 98.89 30
[15] Temporal-based Biologically based Semi-supervised 98.4 30
[38] Rate-based Biological + gradient Supervised 97.20 9
[12] Rate-based Biologically based Unsupervised 95 350
[16] Rate-based Biologically based Semi-supervised 91.1 300

To evaluate the effects of the threshold balancing techniques and the spike neu-
rons, we conducted the experiments on the MNIST dataset for the following 10 com-
binations: the proposed balancing technique + soft-IF pair, the spike-norm + soft-IF pair,
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the spike-norm + IF pair, the Act-Norm channelwise + IF pair, the act-norm + IF pair, the
robust-norm + soft-IF pair, the act-norm + soft-IF pair, the robust-norm + IF pair, the pro-
posed balancing technique + IF pair, and the act-norm channelwise + soft-IF pair. Here,
IF indicates the integrate-and-fire neuron shown in Figure A1, soft-IF indicates the soft-
reset IF neuron shown in Figure A2, spike-norm indicates the spike-based normalization
technique [25] of using the maximum of the weighted sums of spikes over the latency, act-
norm channelwise indicates the threshold balancing technique [27] of using the maximum
activations in the ANN models, and robust-norm [28] indicates the threshold balancing
technique [28] of using a scaled maximum activation in the ANN models. Figure 12 shows
the performance of each threshold balancing technique and neuron model pair for the same
SNN architecture on the MNIST dataset. Please refer to Appendix G for more detail.

As seen in Figure 12, most experiments have shown better performance for the combi-
nation with the soft-reset IF neuron model than the combinations with the IF neuron model.
This seems to be attributed to the soft-reset IF neuron model better approximating the ReLU
activation in the CNN than the IF neuron. The combination of the proposed threshold
balancing technique and the soft-reset IF model showed the best performance over the
examined latencies.

Inference latency (# time steps)
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cy
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%
)

Figure 12. Performance of “SNN activation-threshold balancing technique” combinations for the
MNIST dataset.

6. Conclusions

This paper proposed a CNN–SNN conversion method with a new threshold
balancing technique. The proposed threshold balancing technique attempts to flexibly
assign the firing threshold for spiking neurons in a layerwise and channelwise manner
for SNN models with convolutional layers. For the CNN–SNN conversion method that
uses soft-reset IF neurons and the proposed threshold balancing technique, the experiment
results showed that the method could produce converted SNN models with competitive
accuracy even with low latency. From the experiments for the VGG-model-based SNN
conversion on the CIFAR-10 dataset, it was observed that the conversion method could
be applied to deep SNN models with comparable accuracy with relatively low latency.
With the ablation study changing the spiking neuron type and the threshold balancing
technique, the experiments showed that the soft-reset IF neuron type and the proposed
threshold balancing technique combination give the best performance among all the ex-
amined combinations. The ANN–SNN conversion approach is a good choice for building
deep SNN models. The proposed method is expected to be an excellent choice for building
an SNN model from a trained CNN model. Most SNN training works are mainly focused
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on classification tasks. Further work remains to find some efficient method for regression
SNN models with the ANN–SNN conversion approach. The source code for the developed
method is made publicly available at https://github.com/nguhcv/cnn_snn_conversion.
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Appendix A. IF Neuron Model

The behavior of the IF neuron is affected by the output Si(t) of the input neurons at
each time step t and their weights wi. Algorithm A1 presents how a spike neuron maintains
its membrane potential and emits spikes. Figure A2 illustrates the behavior of a spike
neuron. When the membrane potential V(t) at time step t is greater than or equal to the
prespecified threshold Vth, an IF neuron emits a spike and sets its membrane potential
to the resting potential Vrest. Figure A1a illustrates a change in the membrane potential
of an IF neuron when it receives the weighted input sum of 1.5Vth, 1.2Vth, and 0.3Vth in
three successive time steps, where the resting potential is assumed to be 0 for simplicity.
Figure A1b shows the spikes generated at each time step.

(a)

(b)

Figure A1. The IF neuron model. (a) a IF neuron driven by a set of input neurons via weights;
(b) spiking behavior of IF neuron.

https://github.com/nguhcv/cnn_snn_conversion
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Algorithm A1: Behavior of the IF neuron model.

begin
foreach time step t do

# generate the input current from incoming spikes
I(t) = ∑i wiSi(t) ; // Si(t): input spike of ith synapse at time
step t

#input integration
V(t) = V(t− 1) + I(t)
if V(t) ≥ Vth then

Emit a spike: S(t) = 1
Reset the potential to the resting potential: V(t) = Vth

end
end

end

Appendix B. Soft-Reset IF Neuron Model

The soft-rest IF neuron behaves like the IF neuron model, except its thresholding
operation. As described in Algorithm A2, the soft-reset IF neuron does not set its membrane
potential to the resting potential at spike emission, but instead decreases its membrane
potential by an amount equal to the firing threshold Vth. Figure A2 illustrates the behavior
of the soft-reset IF neuron. The figure shows the changes of the membrane potential and
the spike emissions when a soft-reset IF neuron sequentially receives the weighted input
sum of 1.5Vth, 1.2Vth, and 0.3Vth.

Algorithm A2: Behavior of a soft-reset IF neuron model.

begin
foreach time step t do

# generate the input current from incoming spikes
I(t) = ∑i wiSi(t) ; // Si(t): input spike of ith synapse at time
step t

#input integration
V(t) = V(t− 1) + I(t)
if V(t)geVth then

Emit a spike: S(t) = 1
Perform a soft reset: V(t) = V(t)−Vth

end
end

end
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(a)

(b)

Figure A2. Soft-reset IF neuron model. (a) a IF neuron driven by a set of input neurons via weights;
(b) spiking behavior of IF neuron

Appendix C. Some Modifications Made for Implementing the Conversion Method in
Kim et al.’s Method

Table A1. Some modifications made for implementing the conversion method in Kim et al.’s method [27].

Aspect Original Modified

Pre-train CNN unit Leaky-ReLU ReLU
SNN unit Sign IF IF

Appendix D. Accuracy versus Latency Tin f er with Differently Scaled Thresholds on
the MNIST and Fashion-MNIST Datasets (α Is the Scaling Factor)

Table A2. Classification accuracy versus latency with differently scaled thresholds on the MNIST dataset.
XXXXXXXXXTin f er

α Values
α = 0.8 α = 0.6 α = 0.4 α = 0.2

64 99.29% 99.31% 99.28% 99.12%
32 99.23% 99.29% 96.28% 99.09%
16 99.19% 99.26% 99.26% 99.07%
8 99.16% 99.2% 99.15% 98.98%
4 98.11% 98.94% 99.14% 99.04%

Table A3. Classification accuracy versus latency with differently scaled thresholds on the
Fashion-MNIST dataset.
XXXXXXXXXTin f er

α Values
α = 0.8 α = 0.6 α = 0.4 α = 0.2

512 91.88% 92.0% 92.08% 91.73%
256 91.75% 91.72% 91.52% 91.43%
128 91.26% 91.16% 91.22% 90.48%
64 90.4% 90.19% 90.13% 88.8%
32 89.25% 88.84% 88.21% 85.84%
16 86.44% 86.68% 85.75% 80.82%
8 81.5% 83.07% 81.58% 73.77%
4 62.26% 76.11% 75.78% 66.87%
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Appendix E. VGG-16 Model Architecture Used for the CIFAR-10 Dataset
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Figure A3. VGG-16 network architecture.

Appendix F. The Assigned Thresholds of Spiking Neurons in the Converted SNN on
the MNIST and Fashion-MNIST Datasets
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Figure A4. Cont.
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Figure A4. Assigned thresholds of the soft-reset IF neurons in the SNN on the MNIST dataset.
(a) assigned threshold of the soft-reset IF neurons in the first layer; (b) assigned threshold of the
soft-reset IF neurons in the second layer with the latency of 4 time steps; (c) assigned threshold of the
soft-reset IF neurons in the second layer with the latency of 64 time steps.
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Figure A5. Cont.
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Figure A5. Assigned threshold values of the soft-reset IF neurons in the SNN on the Fashion-MNIST
dataset. (a) assigned threshold of the soft-reset IF neurons in the first layer; (b) assigned threshold of
the soft-reset IF neurons in the second layer with the latency of 4 time steps; (c) assigned threshold of
the soft-reset IF neurons in the second layer with the latency of 512 time steps.

Appendix G. Comparison of “SNN Activation-Threshold Balancing Technique”
Combinations on the MNIST Dataset

Table A4. Ablation study for spiking neuron model and threshold balancing technique on the
MNIST dataset.

Spiking Neuron
Model

Balancing
Technique Tin f er = 4 Tin f er = 8 Tin f er = 16 Tin f er = 32 Tin f er = 64

IF act-norm - - - 17.43% 71.04%
IF robust-norm - - - 22.53% 76.56%
IF spike-norm - 17.89% 79.05% 96.89% 97.98%
IF act-norm_CW 31.31% 77.64% 93.06% 96.27% 97.20%
IF Our technique 77.73% 97.89% 98.99% 99.24% 99.25%

SoftIF act-norm - - - 35.38% 85.1%
SoftIF Robust-Norm - - - 43.14% 88.21%
SoftIF spike-norm - 19.68% 90.00% 96.89% 97.88%
SoftIF act-norm_CW 32.1% 79.86% 94.11% 97.46% 97.5%
SoftIF Our technique 86.18% 98.98% 99.25% 99.30% 99.33%
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