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Abstract: In order to enhance the anti-submarine capability of multi-unmanned aerial vehicles (multi-
UAVs) in the unknown sea environment and improve the search efficiency, in this paper, we propose
a rule-inspired-multi-ant colony (RI-MAC)-based UAV cooperative search algorithm. First, a special
sea area anti-submarine search model is established, including an association rule-driven target
probability map (TPM) model, a UAV kinematics model, and a sensor model. The novel model
has the characteristics of rule linkage, which effectively improves the accuracy of target detection
probability in unknown environments. Secondly, according to the established search model, a multi-
objective utility function based on association rules is derived. In order to solve the problem of
multi-objective optimization, an RI-MAC algorithm based on association rules is proposed, and
a pheromone update method using threat avoidance is designed to optimize the search path of
multi-UAVs. Finally, a simulation experiment is conducted to verify the effectiveness and superiority
of the proposed search algorithm.

Keywords: association-driven probability map; collaborative search; rule-inspired multi-ant colony algorithm

1. Introduction

In the past decade, UAVs have been widely used in surveillance, search, target tracking,
damage assessment, and other fields. Multi-UAV cooperative anti-submarine research has
received increasing attention from academics and the national defense industry [1–3]. Because
UAV cooperative anti-submarine technology has the characteristics of good concealment and
strong maneuvering search ability, it can realize reconnaissance coverage of the mission area to
discover the target and obtain information. Therefore, a considerable amount of research on
multi-UAV cooperative search submarine technology has been carried out [4–6].

Collaborative search is a probabilistic detection task, which requires updating of the
probability of dynamic targets according to the observations of multi-UAVs in order to
describe the position of the target in a probabilistic way and help UAVs to make increasingly
accurate decisions to find the target. To achieve the probability update of dynamic targets,
it is necessary to establish a search environment model. To date, significant research has
been conducted in this field; among the important topics is to establish an environmental
grid search map [4,7–10], which can be divided into a target probability map, digital
pheromone map, return rate map, etc. For example, in [7], a search map method based on a
target probability map was proposed, which can update the target existence probability
in real time based on a collaborative search framework and effectively improve search
efficiency. A UAV collaborative search method based on a digital pheromone model was
designed in [8]; the search environment was modeled by abstracting the concept of digital
pheromones, which was used to coordinate a swarm of UAVs into biological swarms,
which can adapt to dynamic changes in the environment. In [9], a digital pheromone map
was extended and combined with a genetic algorithm to solve the coordination problem
of multi-UAVs with respect to the area coverage problem. In [10], an integrated target
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probability map and an certainty map were proposed based on the concept of a “territorial
awareness information map”, which can efficiently coordinate the tracks of multi-UAVs
in the face of clustered targets. In [4], a method of dynamic asset allocation was designed
in an uncertain task environment, whereby each asset is allocated to a specific area, and,
with the movement of the target, the assets are periodically reallocated, which optimizes
the search space and improves the search efficiency. However, the establishment of the
above search grid probability does not consider the correlation between the targets. In
particular, in anti-submarine missions, the target submarine cooperates with other warships
or submarines in a certain tactical formation [11]; that is, the submarine maintains a certain
position in relation to the surrounding warships to form a protective formation. Therefore,
it is necessary to study the correlation between target submarines and ships, as well as the
formation characteristics of mutual cover, and to establish an association rule-driven target
probability map model. This remains an open and challenging problem and is the research
object of this paper.

On the other hand, extensive research has also been carried out on search algorithms
for multi-UAV dynamic targets. Intelligent algorithms have received increasing attention
as a means solving path-planning problems in complex dynamic environments. Intelligent
algorithms [12–15] include particle swarm algorithms, immune genetic algorithms, bee
swarm algorithms, neural network algorithms, etc. For example, in [12], the search problem
was transformed into an optimization problem of detecting the target probability by using
the Bayesian theorem, and a motion-coding particle swarm optimization algorithm was
proposed to generate the motion path of UAVs. Considering the constraints of flight
distance, initial heading, and terminal heading, an immune genetic algorithm was proposed
to improve the target search efficiency of UAVs in uncertain environments [13]. A new
bee colony algorithm was proposed in [14], which applied an improved search equation
to generate candidate solutions to improve the search ability of the bee colony algorithm.
In [15], an improved ant colony algorithm was proposed for multi-UAV cooperative search
planning, and a new state transition rule and pheromone update rule were designed to
ensure that the UAVs could return to the initial point under the constraint conditions as
required after completing a task. However, the proposed methods and technologies are
not suitable for the anti-submarine search problem that we are interested in. In particular,
anti-submarine search remains an open and challenging problem due to the frequent use
of quiet state in submarines, as well as the low detection rate and high false-alarm rate of
onboard sensors. Related works are summarized in Table 1.

Inspired by the above research, in this paper, we propose an association rule-driven
cooperative anti-submarine method for multi-UAVs, which fully considers the cooperative
characteristics between the target submarine and the warship and can still find the target
quickly and effectively when the target submarine and the warship have attack abilities.
The main contributions of this paper are as follows: First, the association rule database and
the association rule function applicable to submarine targets are constructed. On this basis,
an association rule-driven probability map model is established. Secondly, an improved
rule-heuristic multi-ant colony algorithm is proposed. The association rules are used as
heuristic information to design the state transition rules of an ant colony, and the attack
threat of a submarine is considered in pheromone updating. Simulation results show that
the proposed controller achieves improved search performance.

The rest of this paper is organized as follows: In Section 1, we establish the environment
model, the association rule-driven probabilistic graph model, the association rule-driven
probability map update rule, the UAV model, and the association rule-based multi-objective
efficiency function. In Section 2, we propose an improved rule-inspired multi-ant colony
algorithm. In Section 3, we present simulation results, demonstrating the effectiveness and
advantages of the proposed method. In Section 4, we present our conclusions.
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Table 1. Related research.

Reference Application Search
Map/Algorithm Deficiency

Polycarpou [7]
Basic problem of

search for stationary
targets

Target probability
map

Unexpanded moving
targets

Parunak [8] Stationary targets
with attack

Digital pheromone
map

Does not consider
evading attacks

Paradzik [9] Moving target in
search area

Extension of digital
pheromone map

Target motion
characteristics not

considered

Yue [10] Moving formation
targets in search area

Target probability
map and certainty

map

Aggressiveness of
targets not considered

Mishra [4]
Moving target search

problem with
multiple searchers

Dynamic asset
allocation

Not suitable for
searching for

submarine targets

Manh [12]
Retrieval of lost
moving target

problem

Motion-coding
particle swarm
optimization

algorithm

Relevance
characteristics of the

target are not
considered

Zhou [13]
Target search problem

in uncertain
environment

Immune genetic
algorithm

The movement
characteristics and
danger of the target
are not considered

Gao [14] Path optimization
problem of UAVs

New bee colony
algorithm

Does not take into
account the

aggressiveness and
relevance of the target

Zhen [15]

Cooperative
search-attack mission
planning problem for

multi-UAVs

Improved ant colony
algorithm

Correlation with
aggressive target

movement not
considered

2. Materials and Methods
2.1. Search Environment Modeling

In this section, we will establish an anti-submarine sea area model for multi-UAV
swarms, considering the existence of an unknown number of targets (including submarines,
ships, aircraft carriers, etc.) in the sea area, as shown in Figure 1. Nv UAVs with detection
sensors (visible light, magnetic detectors, etc.) are used to search for relevant targets within
the mission area. During the search process, UAVs share information in the sea area through
wireless communication. In the interest of ensuring safety, the goal is to complete the search
task in the shortest time possible and at the lowest cost. The area is divided into grids, and
the grid set describing the search area is defined as:

E =
{
(m, n)

∣∣m = 1, 2, · · · , Lx, n = 1, 2, · · · Ly
}

(1)

where E represents the grid set; (m, n) represents the grid coordinates; and Lx and Ly
represent the number grids along the x and y axes, respectively. With this task area, an
association rule-driven target probability map model, an association rule-driven probability
map update rule, and a UAV motion model will be established in sequence.
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Figure 1. Multi-UAV cooperative search target scene.

2.2. Building an Association Rule-Driven TPM Model

In the mission area, the targets may exist individually or in formations depending on
their tasks [11], and the target formation has different distribution rules under different
task scenarios. Accordingly, the association rule base is established as follows:

S = {S1, S2, . . . , Si, . . . , Sn} (2)

where S denotes the association rule base, and Si is the distribution rules of the targets in
one of the tasks.

Based on (2), the association rule function for multiple targets is defined as:

ck(S) =
[

ε1 fk(S1) ε2 fk(S2) . . . εi fk(Si) . . . εn fk(Sn)
]T (3)

where ck(S) is the association rule for multiple targets at time k, fk(Si) is the target dis-
tribution function under association rule Si at time k, and εi ∈ {0, 1}, (i = 1, 2, . . . , n)
represents the binary weight and satisfies ε1 + ε2 + · · ·+ εi + · · ·+ εn = 1. When εi = 1,
corresponding to ε1 = ε2 =, . . . ,= εi−1 = εi+1 = εn = 0, the current association rule
function selection is fk(Si).

After some targets are found, the position coordinates of other targets are updated
according to the association rule function, ck(S). Due to the uncertainty of the movement of
the target, the target position can only be obtained with a certain probability based on the
association rule function. Therefore, the task area grid is defined as three forms: (1) high-
probability area, hp; (2) low-probability area, lp; and (3) uncertain-probability area, mp.

The search process uses association rule Si to describe changes in high and low TPMs,
as shown in the following steps.

Step 1. In the initial stage, according to the prior information, distribute the high and
low TPMs, as shown in Figure 2a;
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Figure 2. Two kinds of association rule TPM updates. (a) initial stage, (b) find target A and the
TPM is updated according to rule Si, (c) find the second target B, (d) the TPM is updated according
to rule Si+1.

Step 2. If UAVs find targets, according to association rule Si, the TPM in the sea area is
updated in real time. For example, after finding target A, according to the characteristics of
submarine-guardship formation [11], the TPM in the surrounding grid of A increases; the
update process is shown in Figure 2b;

Step 3. If UAVs find the second target B, according to association rule Si, the probability
of some grids on the target connection line and the vertical line will be upgraded to the
high-probability region, hp; the corresponding adjustment TPM is shown in Figure 2d;

Step 4. UAVs continue to search according to the rule base until all targets in the area
are found, and the search task ends.

Then, define a matrix with multiple elements to represent the initial information of
the search environment as:

ψ = [pmn c0(S) fg]Lx×Ly
(4)

where pmn ∈ [0, 1] is the prior probability of grid (m, n); c0(S) represents the association
rule initialization function; and fg is the flag bit, which is used to identify whether there is
a target in the grid. The value of fg can be expressed as:

fg =

{
1 , target
0 , No target

(5)

Based on (3)–(5), the update matrix of the TPM driven by association rules is formed as:
[
Si Ps fg

]
· · ·

[
Si Ps fg

]
...

. . .
...[

Si Ps fg
]
· · ·

[
Si Ps fg

]
 (6)

where
[
Si Ps fg

]
represents the information contained in a grid, Si is the association

rules for the grid, and Ps ∈ {hp, lp, mp} denotes the probability characteristics of the grid
under association rule Si.

2.3. Association Rule-Driven Probabilistic Map Update Rules

Here, based on the Bayesian probability update rule [16] and considering the associ-
ation characteristics of the target, the update of an association rule-driven TPM is given
as follows:

1. Grid (m, n) without access:

pmn(k + 1) = τ1 pmn(k) (7)
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where Pmn(k) and pmn(k + 1) represent the probability of grid (m, n) at time k and
k + 1, respectively; and τ1 ∈ [0, 1] is the dynamic information factor.

2. Grid (m, n) has access, and fg = 1:

pmn(k + 1) =
pd pmn(k)

p f (1− pmn(k)) + pd pmn(k)
(8)

where pd ∈ [0, 1] and p f ∈ [0, 1] represent the detection probability and false-alarm
probability of the magnetic detector, respectively; if the target in the grid (m, n) is
detected, the TPM of other grids is updated based on Si as follows (here, take grid
(o, p)((o, p) 6= (m, n)) as an example):

• High-probability area, hp:

pop(k + 1) =
1

shp

shp

∑
i=1

τhp pmn(k) (9)

where pop(k + 1) represents the probability of the grid (o, p) at time k + 1; τhp is
the probability enhancement factor; and shp is the number of grids that conform
to the high- probability area, hp.

• Low-probability area, lp:

pop(k + 1) =
1

slp

slp

∑
i=1

τlp pmn(k) (10)

where τlp is the probability reduction factor; and slp is the number of grids that
meet the low-probability area, lp.

• Uncertain probability area, mp:

pop(k + 1) = τ2 pmn(k) (11)

where τ2 ∈ [0, 1] is the dynamic information factor.

3. Grid (m, n) has access, and fg = 0:

pmn(k + 1) =
(1− pd)pmn(k)

(1− p f )(1− pmn(k)) + (1− pd)pmn(k)
(12)

If the target in grid (m, n) is detected and based on association rule Si, the probability
of other grids is updated as (8)–(10).

2.4. UAV Modeling
2.4.1. Kinematic Model

Assuming that the UAV flies at a constant speed in the mission area, Ui i = {1, 2, 3, . . . , N}
represents the i-th UAV platform, and the motion model for Ui is expressed as:

.
xi = vi cos θi cos ϕi.
yi = vi cos θi sin ϕi.
zi = vi sin θi.
ϕi = ηi ϕmax.
θi = ηiθmax

(13)

where [xi, yi, zi]
T represents the coordinates in the mission area; vi, ϕi, and θi are the velocity,

yaw angle, and pitch angle of Ui, respectively; ηi ∈ [−1, 1] is the angular rate of Ui, ϕmax;
and θmax is the maximum yaw and pitch angle.
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The state equation of UAV can be expressed as:

si(k + 1) = si(k) + f (si(k), ui(k), ∆t) (14)

where si(k) =
[
s̃i(k) ϕi(k) θi(k)

]T is the state of Ui at time k, s̃i(k) = [xi yi zi]
T

is the coordinate of Ui at time k, ui(k) = [vi(k) ϕi(k) θi(k)]
T represents the control

input of Ui, ϕi(k) represents the heading angle at time k, θi(k) is the pitch angle at time k,

f (si(k), ui(k), ∆t) =


vi(k) cos(ϕi(k) + ηi(k)∆t)∆t
vi(k) sin(ϕi(k) + ηi(k)∆t)∆t
ϕi(k) + ηi(k)∆t
θi(k) + ηi(k)∆t

 is the state change at time ∆t, and

ηi(k) is the angular rate at time k.
The process of UAV motion planning satisfies the limited constraints, such as UAV

operation, connectivity maintainence, and collision avoidance. The constraint equations
are given as follows:

si(k + t + 1) = si(k + t) + f (si(k + t), ui(k + t), ∆t)
b ≤ ‖s̃i(k + 1)− s̃n(k + 1)‖ ≤ dc
vmin ≤ vi ≤ vmax
ϕmin ≤ ϕi ≤ ϕmax
θmin ≤ θi ≤ θmax

(15)

where d represents the maximum communication range between UAVs; b represents
the minimum safe distance for collision avoidance between UAVs; and ϕmin and θmin
correspond to the minimum angular velocities of the yaw and pitch angles, respectively.

2.4.2. Magnetic Detector Model

The field of view of the magnetic detector is an important factor for measuring the
instantaneous search area of the UAV [17]. The airborne sensor detection model is shown
in Figure 3. In the relative coordinate system, the detection width is established as follows:

du = 2·h· tan γu

sin αu
(16)

where h is the flight height of the UAV, αu is the installation angle of the magnetic detector,
and γu is the horizontal field of view of the magnetic detector.
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2.5. Association Rule-Based Multi-Objective Utility Function

The process of multi-UAV cooperative anti-submarine search is expected to complete
the search task with the least fuel and the minimum search time and cost. Therefore, the
utility functions consist of target discovery revenue, Jp; execution cost, Ec; collision cost, Cc;
and threat avoidance cost, Wc, under the following association rules.

Target discovery revenue, Jp, is defined as the possibility of the i-th UAV finding
targets based on association rules:

Jpi(k) = ∑
(m,n)∈Rn

i

[(pd − p f )pmn(k) + p f ]

+
shp

∑
s=1

[τhp(pd − p f )pmn(k) + p f ]

+
slp

∑
s=1

[τlp(pd − p f )pmn(k) + p f ]

(17)

Execution cost, Ec, is defined as time and fuel consumed by the i-th UAV to fly to the
next grid according to the path planned by rule Si:

Eci(k) =||si(k)− si(k + 1)||/vi(k) (18)

where si(k) is the state of the UAV at time k, and vi(k) is the speed of the UAV at time k.
Collision cost, Cc: In order to avoid the overlapping of UAV waypoints during the

search process, the collision cost set can be defined as:

Cci(k) = cLi,j
hp+lp(k), i 6= j (19)

where Li,j
hp+lp(k) is the path by which the i-th UAV searches for high- and low-probability

grids at time k, the j-th UAV chooses a path different from that of the i-th UAV, and c is the
collision coefficient.

Threat avoidance cost, Wc. The threat avoidance cost can be defined as:

Wci(k) = w‖Lsa f e(k)− L(k) + κRT‖ (20)

where w is the evasion threat cost coefficient; L(k) is the distance between the UAV and
the threat center at time k; Lsa f e(k) is the safe distance at time k; and Lsa f e(k) ≥ L(k)− κRT ,
where RT is the threat radius, and κ > 1 is the random coefficient of the radius.

Furthermore, the utility function of the i-th UAV cooperative search is defined as:

Ji(k) = ω1 Jpi(k)−ω2Eci(k)−ω3Cci(k)−ω4Wci(k) (21)

where Ji(k) is the utility function of the i-th UAV, and 0 ≤ ωi < 1, (i = 1, 2, 3, 4) represents
the weighting factors.

Remark 1. The abovementioned benefits and costs have different dimensions and need to be
normalized separately and then summed.

3. RI-MAC Algorithm Design

In this section, an RI-MAC algorithm for collaborative path optimization for multi-
UAVs is proposed, in which the ants are divided into Nv populations, and each ant sub-
group corresponds to one UAV. The ant colony, UA = {UAi, i = 1, 2, . . . . . . Nv}, is defined
as the number of ant populations corresponding to the drone swarm, and each ant sub-
colony is defined as UAi = {Antt, t = 1, 2, . . . . . . M}, where M is the number of ants in
each and sub-colony. Through the cooperation between the sub-groups, a search path that
satisfies the association rule base, S, is constructed for the UAV group, and each ant in
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each sub-group has an independent computing unit, which selects the route according
to the designed state transition rules and interacts with other ants to deal with its local
optimization problem. In the following sections, we will discuss pheromone initialization,
state transition, and pheromone update and analyze how RI-MAC performs cooperative
path optimization for multi-UAV cooperative search.

3.1. Pheromone Initialization

Because the initial search stage uses the initial information, ψ, as in (4), the following
pheromone initialization function is proposed according to the prior probability, pmn, as:

τi0 =
1
s

s

∑
i=1

τ0 pmn (22)

where s is the grid that initially conforms to the association rules, and τ0 is a constant.

Remark 2. It is worth noting that the algorithm proposed in this paper effectively combines the
association rules of the initial pheromone value and the initial target to initialize the environmental
prior information, which considerably improves the problem of completely random initial information
of the traditional meta-heuristic ant colony algorithm [15,18].

3.2. Rule-Inspired Path-Selection Strategy

In this subsection, the association rules are used as heuristic information to drive
each ant to select the next grid. In the t-th iteration, the state transition rules of the ants of
population l from grid (m, n) to grid (o, p) are designed as follows:

pl
mnop(t) =


τα

op(t)η
β
op(t)ϕ

−γ
op (t)λσ

mnop(t)

∑
op∈UK

τα
op(t)η

β
op(t)ϕ

−γ
op (t)λσ

mmop(t)
, op ∈ UK

0, otherwise

(23)

where UK represents the selectable grid driven by association rules, ϕop(t) represents the
value of the residual pheromone of other ant sub-groups at grid (o, p), and λmnop(t) implies
that there is a target at grid (m, n). Then, according to association rule Si and the target
probability value existing at grid (o, p), α represents the importance of the pheromone in
grid selection, β represents the relative importance of search revenue, γ represents the
inhibitory effect of other population pheromones; the larger γ is, the stronger the relative
inhibitory effect. Through this inhibition, UAVs of other groups can avoid repeated searches
of the already searched grids of this group. σ represents the enhancement factor for the
rule-driven search of grid (m, n), and ηop(t) represents heuristic information, which can be
defined as:

ηop(t) =
shp(t) + slp(t)

Lx × Ly
(24)

where shp(t) and slp(t) are the number of high- and low-probability grids that conform to
the association rules after the t-th iteration, respectively.

Remark 3. It should be noted that the rule-inspired path selection strategy (23) takes association
rules as heuristic information and to design the heuristic function (24). This selection strategy not
only depends on the pheromone concentration of the next grid to select the path but also selects the
path according to the association rules presented by the target and the grid that conforms to the
association rules.

3.3. Pheromone Update Rules considering Threat Avoidance

Because this research involves a situation of avoiding threats, two pheromone up-
date methods should be considered. One involves judging a situation in which the next
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grid is not threated according to (20), and the other is a situation in which the next grid
is threatened.

1. Pheromone update method 1 (the next grid is not threatened)

τop(t + 1) = (1− ρ(t))τop(t) + ∆τσ(o, p) (25)

where τop(t + 1) and τop(t) are the values of the pheromone in grid (o, p) before and after
the update, respectively; and ρ(t) represents the pheromone volatilization coefficient. The
traditional pheromone volatilization coefficient is a constant value. If the setting value is
too high, it is easy to fall into the local optimal solution, which affects the global search
ability of the algorithm. If the setting value is too low, the search randomness is enhanced,
and the convergence speed is slow. In order to improve the convergence accuracy of the
algorithm, ρ(t) was designed as:

ρ(t + 1) =
Tmax

(Tmax + shp(t) + slp(t))e1−ρ(t)
(26)

where Tmax is the maximum iteration number of the algorithm. It can be seen that with
the search, the grid that conforms to the association rules constantly changes, and the
pheromone volatilization coefficient also changes. In the initial stage, ρ(t) is large. An ant
colony algorithm can quickly search for a preferable path and improve the global search
ability. With progressive iterations, the grid conforming to the association rules gradually
increases, and ρ(t) gradually decreases. At this time, the search space can be expanded to
avoid falling into local convergence.

∆τσ(o, p) is the pheromone update value, designed as follows:

∆τσ(o, p) = ∑
l=1

∆τσ
l (o, p) (27)

where ∆τσ
l (o, p) is the pheromone left by ant l in the sub-group on grid (o, p), which is

defined as:

∆τσ
l (o, p) =


rQ

Lshp+slp δ1 Jl
, εi = 1

rQ
L0δ0 Jl

, εi = 0
(28)

where Lshp+slp represents the path of grids shp and slp traversed by the ants in path optimiza-
tion, L0 represents the path that ants walk before they find the target, Q is the pheromone
update constant, r is the constant, Jl is the utility function of ant l obtained according to
(21), and δ1, δ2 is the weight.

Remark 4. In order to improve the accuracy of the MAC [18] and avoid falling into the local
optimum, the volatility coefficient, ρ(t), is based on the rule information of the grid. The pheromone
update method of each grid is sub-divided into two cases: εi = 0 and εi = 1. When εi = 0, there
is no applicable rule information in the initial stage, and the pheromone is updated to the path
information traveled by the ants. When εi = 1, the pheromone value is re-updated according to the
grid that the ants traveled that conforms to the rules.

2. Pheromone update method 2 (the next grid is threatened);

Each time the pheromone is updated, the threat level of the next grid needs to be
judged. If the grid threat level is high, the pheromone concentration of the next grid needs
to be weakened:

τop(t + 1) = τop(t)− ∆τop(t) (29)

where ∆τop(t) is the decrement of the pheromone within the grid (o, p), defined as follows:

∆τop(t) = ∆τ0Lsa f e(t)τop(t) (30)
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where ∆τo is the pheromone decay coefficient, and Lsa f e(t) is the safe distance of the UAV
from the threat at the t-th iteration.

Remark 5. Update method 2 considers a situation of threats in the grid. According to the level of
threat, the pheromone concentration of the threat grid is relatively weakened. This update method
can help UAV avoid threats and re-plan the flight path.

4. Simulation Experiment and Analysis

In order to verify the effectiveness of the proposed algorithm, a simulation environ-
ment for multi-UAV collaborative search is established in the MATLAB environment. The
20 km× 20 km search mission area is divided into 40× 40 grids, and the initial coordinates,
speeds, and headings of the four UAVs are shown in Table 2, assuming that the detection
range of the UAVs’ magnetic detectors is a 1× 1 unit grid; the detection probability and the
false alarm probability are pd = 0.89 and p f = 0.05, respectively; and the following three
scenarios are considered:

• Scenario 1: multi-UAV search without association rules;
• Scenario 2: multi-UAV search using association rules;
• Scenario 3: comparison of the number of targets searched with or without associa-

tion rules.

Table 2. UAV information.

UAV Label Starting Coordinate (km) Starting Relative Angle (◦) Velocity (km/h)

1 (0, 0.5) 0 100
2 (0, 0.6) 0 100
3 (0, 0.7) 180 100
4 (0, 0.8) 180 100

4.1. Scenario 1: Multi-UAV Search without Association Rules

In modern operations, ships perform various combat missions and adopt various battle
formations. For example, a ship formation can consist of destroyers, frigates, and nuclear
submarines, which are usually used in enemy attack and air defense. In this experiment,
multi-UAVs are mainly for the search of underwater targets (nuclear submarines). The
prior information on the targets is shown in Figure 4. Targets on water (warships) are in a
high-probability area, so the search for underwater targets (nuclear submarines) is based
on the location of warships. The initial position and movement speed of the water target
are shown in Table 3, and the movement direction of all targets is unknown.
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Table 3. Initial target information.

Target Label Starting Coordinate (km) Velocity (km/h)

1 (6, 8) 3
2 (14, 13) 3

In scenario 1, four algorithms—RI-MAC, MAC [15], ABC [19], and PSO [12]—are used
to search. Figure 5 shows the trajectories of search targets solved by multi-UAVs using four
algorithms without considering association rules. After UAV searches for water targets
(marked in light blue in the figure). The probability is updated according to the Bayesian
probability update formula until all underwater targets (marked in dark blue in the figure)
are searched and the search task ends.
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Table 4 shows the target-discovery benefits of the four search algorithms with no
association rules. The Monte Carlo method was used for 500 experiments, with the average
number of targets found under different iteration steps. In the initial stage, the differences
in the number of targets searched by the four search algorithms are small. Comparing the
target-discovery gains of the four algorithms, the MAC algorithm has the highest target-
discovery gains at the 20th and 40th times, whereas the RI-MAC algorithm has slightly
lower target-discovery gains than the MAC algorithm. Because the RI-MAC algorithm
uses a grid that conforms to the association rules as the heuristic information, when the
association rules are not used, the heuristic information is invalid, and there are many
parameters to be initialized in the initial stage compared with the MAC algorithm, resulting
in a slow convergence speed. However, with an increase in the number of iterations, the
sea area information mastered by the UAVs continues to increase, and the advantages
of the RI-MAC algorithm in the pheromone update method improve the performance of
the algorithm. These results can be further verified by the convergence curves shown in
Figure 5. According to the results of target-discovery revenue, the PSO algorithm requires
the most iteration steps, with the worst revenue, and the target-discover revenue of ABC is
slightly lower than that of RI-MAC and MAC.
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Table 4. Target-discovery benefit of four search algorithms without association rules.

Step 20 40 60 80 100 120 140 160 180

RI-MAC 0.0369 0.2161 0.7922 1.3821 1.6164 2.3892 2.9799 3.3142 3.8741
MAC 0.0396 0.2170 0.7699 1.1899 1.4871 2.1189 2.6971 3.2457 3.7614
ABC 0.0368 0.2156 0.7964 0.9843 1.4532 1.9761 2.6713 3.2241 3.6659
PSO 0.0197 0.1335 0.6395 0.9476 1.3984 1.7113 2.3712 2.7366 3.3854

4.2. Scenario 2: Multi-UAVs Search Using Association Rules

The target information setting of scenario 2 is the same as that of scenario 1, and
association rules are also used to search under four search algorithms.

Figure 6 shows the trajectory diagram of multi-UAVs searching for targets based on
association rules. If a UAV first finds an underwater target, the applicable association rules,
Si, are applied according to the type of underwater target. Then, the grid where the target
is located is used as the center, the surrounding grid is refined, and the search radius is
gradually expanded. If a related underwater target is searched, then the current searched
target matches rule Si+1, and the UAV searches for the above-water target according to rule
Si+1, as well as the connection line of the underwater target and the mid-perpendicular
line, and searches for all the underwater targets to complete the search task. The UAV uses
two association rules to perform the search task. The RI-MAC algorithm used in this paper
has a smaller search trajectory and a better trajectory optimization effect than that of the
other three algorithms.
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Table 5 shows the target-discovery benefits of the four search algorithms under as-
sociation rules. The Monte Carlo method was used for 500 experiments, and the average
number of targets found under different iteration steps is presented. It can be seen from
Table 4 that in the 20th iteration, the gap between the four algorithms is small; as the
number of iterations increases, especially after some target information is mastered, in
the process of searching for other targets, with additional association rules, the RI-MAC
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algorithm has more obvious advantages, and relative to the other three algorithms, it finds
the target faster.

Table 5. Target-discovery benefit of four search algorithms with association rules.

Step 20 40 60 80 100 120 140 160 180

RI-MAC 0.1246 1.2171 1.3252 2.2891 2.9764 3.7862 3.8999 3.9012 3.9799
MAC 0.1245 0.6786 1.1649 1.4461 1.9875 2.9309 3.6971 3.8457 3.9566
ABC 0.1132 0.6385 0.9695 1.3456 1.7984 2.7036 3.6362 3.7121 3.8791
PSO 0.1214 0.4356 0.7964 0.9843 1.4532 2.2761 2.6713 3.3241 3.6659

The proposed algorithm locates one more target than MAC, about 1.2 more targets
than ABC, and about 1.5 more targets than PSO. With 140 iterations, the proposed algorithm
can basically complete the search task, whereas the other three algorithms require more
iterations. According to comparative analysis, the algorithm proposed in this paper finds
the target faster than the other tested algorithms, with greater benefits, and it is more
suitable for solving the nuclear submarine search problem.

In Figure 7, the search performance of the four algorithms is further compared. With
180 iterations and with an increasing number of iteration steps, the RI-MAC algorithm used
in this paper achieves improved search performance relative to the other three algorithms.
In addition, the proposed algorithm requires fewer iteration steps. The highest performance
achieved by the RI-MAC, MAC, ABC, and PSO algorithms is 38.6, 36.2, 29.6, and 35.7,
respectively. The average performance of the RI-MAC, MAC, ABC, and PSO algorithms is
26.6, 22.2, 22.5, and 19.2, respectively. It is clear that among the tested algorithms, RI-MAC
is most suitable for searching for targets with association rules.
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Figure 7. Target-discovery benefits under two scenarios with the same algorithm.

Table 6 shows the fitness values corresponding to the optimal solutions of the four
algorithms in under two scenarios. Each data set contains the mean and standard deviation
of the probability of finding the target. It can be seen from the table that the RI-MAC
algorithm used in this paper achieves the best results in scenario 1. The fitness values of
the heuristic algorithms, MAC and ABC, are similar, and the advantages are not obvious.
However, in scenario 2, the RI-MAC algorithm has a higher degree of distinction from the
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other three algorithms, with higher applicable values and smaller deviations, indicating
that the algorithm proposed in this paper achieves superior performance.

Table 6. Fitness values of four algorithms under two scenarios.

Scenario RI-MAC MAC ABC PSO

1 0.3618 ± 0.0016 0.3529 ± 0.0016 0.3526 ± 0.0129 0.2569 ± 0.0316
2 0.5412 ± 0.0034 0.4612 ± 0.0031 0.4319 ± 0.0346 0.3915 ± 0.0279

In Figure 8, the convergence of the four search algorithms is further compared. In
scenario 1, the fitness of the RI-MAC, MAC, and ABC algorithms is better than that of the
PSO algorithm. However, in scenario 2, the RI-MAC algorithm achieves a good convergence
performance, which is significantly higher than that of the other three algorithms.
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4.3. Scenario 3: Comparison of the Number of Targets Searched with or without Association Rules

Tables 3 and 4 show the target-discovery benefits of UAVs when using the RI-MAC
algorithm proposed in this paper. In order to compare the target-benefit gap between the
two search scenarios more intuitively, 20 targets are placed under the search task area. Two
search methods are used to search, with the number of iterations set to 200, using the Monte
Carlo method for 150 experiments. The target-discovery revenue statistics are shown in
Figure 9. It can be seen from the figure that with an increase in the number of iterations, the
number of search targets with and without association rules does not differ significantly.
However as the number of targets searched increases, the group using association rules
increases faster. Comparing 30 and 40 iterations, the number of targets searched by a set of
association rules increases sharply from 1.912 to 6.876 compared with the group without
association rules, which increased from 2.156 to 5.139 (an increase of 66.4%). Similarly,
between the 60th and 80th, iterations, an increase of 69.5% is observed, and between the
80th to 100th iterations, an increase of 73% is observed. The group with association rules is
able to complete the search task after 120 iterations, whereas the group without association
rules requires 170 or more iterations to complete the search task. This experiment confirms
that the use of association rules enables a rapid search for targets in the task area, saving
search time.
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5. Discussion

In this paper, a rule-driven multi-ant colony search algorithm for anti-submarine
applications is proposed, and a probabilistic map model of unknown sea area targets based
on prior information and association rules is established. The TPM is updated in real time
according to the association rules matched by different types of targets. The effectiveness
of the algorithm is verified by simulation analysis.

The next step is to use reinforcement learning technology to supplement the target
association rule base so that it is more in line with the actual application scenario in order
to obtain a more effective search method.
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