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Abstract: The current oil industry is moving towards digitalization, which is a good opportunity
that will bring value to all its stakeholders. The digitalization of oil and gas discovery, which are
production-based industries, is driven by enabling technologies which include machine learning (ML)
and big data analytics. However, the existing Metocean system generates data manually using sensors
such as the wave buoy, anemometer, and acoustic doppler current profiler (ADCP). Additionally,
these data which appear in ASCII format to the Metocean system are also manual and silos. This
slows down provisioning, while the monitoring element of the Metocean data path is partial. In
this paper, we demonstrate the capabilities of ML for the development of Metocean data integration
interoperability based on intelligent operations and automation. A comprehensive review of several
research studies, which explore the needs of ML in oil and gas industries by investigating the in-depth
integration of Metocean data interoperability for intelligent operations and automation using an
ML-based approach, is presented. A new model integrated with the existing Metocean data system
using ML algorithms to monitor and interoperate with maximum performance is proposed. The
study reveals that ML is one of the crucial and key enabling tools that the oil and gas industries are
now focused on for implementing digital transformation, which allows the industry to automate,
enhance production, and have less human capacity. Lastly, user recommendations for potential future
investigations are offered.

Keywords: data interoperability; Metocean; oil and gas; artificial intelligence; machine learning; automation

1. Introduction

According to the World Economic Forum, the estimated net benefits of the oil and gas
industry, which is due to digital transformation, will be USD 945 billion over one decade
(cumulative value 2016–2025). In addition, digital transformation is not realistic without
artificial intelligence (AI) and data science, especially in industries such as oil and gas,
finance, and the internet [1]. Conversely, due to the current oil and gas crash, digitalization
is a good opportunity that will add value to all stakeholders. These opportunities show
that there is a need to continue in the digitalization of the oil and gas sector to achieve the
expected or more of the stated value by the year 2025. Digitalization of production-based
industries is driven by enabling technologies which include machine learning (ML) and
big data analytics [2,3]. This drives the oil and gas sector to be among the technological
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advancements and convergence of industry 4.0 in Malaysia [4,5]. Thus, the application
of AI and machine learning is necessary for any digitalization and automation to succeed
in various sectors such as healthcare, finance, industry automation, transportation, and
cybersecurity [6,7].

Machine learning (ML) is one of the crucial and key enabling tools that oil and gas
industries are now focusing on to implement digital transformation. The application of
AI and ML allows an industry to automate and enhance production and human capac-
ity. For example, ML is used to understand and predict behaviour using an ice database
for experiment with enhanced prediction for oil production and recovery [8–17]. The
Metocean study, conversely, is used by oil and gas, particularly offshore industries, to
estimate the environmental conditions for better and successful operations, which include
prediction of gas–liquid pattern flow, groundwater anomaly detection, and pipe incident
detection [18–21]. However, the existing Metocean system generates data manually using
sensors such as wave buoy, anemometer and acoustic doppler current profiler (ADCP). Ad-
ditionally, improving the existing techniques for Metocean datasets has been provided [22].
The input of these data, which appear in ASCII format to the Metocean system is also
manual and silos. There is no fundamental method, model, or algorithm that allows the
system to reason and automate intelligently. This slows down provisioning, while the
monitoring element of Metocean data path is partial. Therefore, a study and model that can
integrate the Metocean data as well as provide better decision making and reduce manual
tasks is needed.

The main aim of this paper is to provide an in-depth review of the method for devel-
oping and integrating oil and gas data, using a particular case study on the Metocean data
system using a machine learning algorithm.

Integration of Metocean Forecast Data and Automation

Metocean data interoperability development with integration using automation mea-
sures parameters such as surge height and wave height. This can also be addressed by using
ML model techniques for efficient results. Qiao and Myers [23] proposed surrogate time-
independent modelling to evaluate Metocean conditions during hurricanes, which include
peak wave period, peak wave direction, and storm surge using a Metocean database. The
model was developed using a recurrent neural network (RNN), gated recurrent unit (GTU),
and multilayer perception (MLP). Orlandi et al. [24] proposed a prototype system that is
capable of integrating Metocean model forecast and performance of ship data for modelling.
In addition, the prototype allows for visualization of Metocean data after uploading from
the system for evaluating the condition on each route.

Several research studies have explored the needs of ML in the oil and gas industries.
In this study, we investigate in depth the integration of Metocean data interoperability for
intelligent operations and automation using an ML-based approach.

• A comparative analysis of the current uses of ML algorithms in the oil and gas indus-
tries is presented.

• The transformation and integration of existing Metocean architecture for the use of oil
and gas data operators through automation is meticulously reviewed.

• A new model to be integrated with the existing Metocean data system using a machine-
learning algorithm to monitor and interoperate with maximum performance is proposed.

2. Meta-Survey

This section presents several works related to the automation and digitalization using
machine learning in the area of control systems and decision making. Many workflows in
business organizations prove to be difficult and monotonous due to the increase in access
to organizational data. This makes the cost of production high, which forces industries,
business, and organizations to automate their functions to reduce the cost of production and
boost system efficiency [25–27]. An organization must choose to digitalize and automate
its tools; otherwise, it will be obsolete. Therefore, to realize the vision of digitalization
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in oil and gas or “digital oilfield”, technology-centric solutions such as big data, cloud
computing, the internet of things (IoT), and many more need to be considered in automation
and decision-making processes [26]. Adding to this, Maroufkhani et al. [28] present a
comprehensive systematic review of digital transformation in the resource and energy
industries domain. What manifests the digitalization, automation, automated analysis, and
data integration in oil and gas is machine learning and AI in general [29–31]. Therefore,
adding value to cost-saving, automated operations, improved monitoring, mitigation of
environmental hazards and improved decision making will be realized.

Pashali et al. [32] conducted a comprehensive survey of Metocean and ice for the
development of the Russian Arctic continental shelf. The survey determines Metocean data
for exploratory drilling processes with design data for offshore oil and gas facilities through
round operations in freezing seas. A similar study by Buzin et al. [33] gives a comprehensive
review for the period between 2012 and 2021 based on Metocean shelf development projects
and their approaches and results. The study also provided an overview of the Arctic
and Antarctic Research Institute (AARI) task scope chronology survey. Wang et al. [34]
conducted a comprehensive review of current field monitoring development for offshore
structure monitoring, which includes Metocean sensing and structural motions. The study
also provides state-of-the-art development in offshore structure monitoring.

Although, the application of ML techniques has been utilized in various domains
including manufacturing sectors. For example, Nasiri and Khosravani [35] investigated the
additive manufacturing (AM) parameters and prediction of mechanical behaviour of 3D
components using ML technique. Consequently, the authors focused on prediction of ML
applications for mechanical behaviour. However, current challenges have been provided
which include lacking huge datasets from 3D printing that can lead to low accuracy results.
More recently, Verma and Verma [36], surveyed ML applications in the healthcare sector,
where they play a vital role in several areas such as healthcare data analytics and medical
data protection. However, medical records and disease forecasts have been analysed
using ML applications. The authors also provided a research gap for efficient use of ML
algorithms in the healthcare sector with opportunities and challenges.

Moreover, a systematic review has been presented which shows the potential of ML
applications in oil and gas industries [37]. However, several authors have attempted
implementing ML classifiers in various domains for prediction and enhancement such as
acid-fracturing, CO2 sequestration, and rock brittleness [38–40].

Comparison details of other related studies in the same domain is presented in Table 1.
The studies provide an in-depth analysis of Metocean, oil and gas, and ML areas.

Table 1. Comparison of other related studies in the same domain: (3: Yes, 5: No).

Authors Year Review Study Oil and Gas Metocean Data ML

Verma and Verma [36] 2022 3 5 5 3

Buzin et al. [33] 2021 3 3 3 5

Pashali et al. [32] 2021 3 3 3 5

Nasiri and Khosravani [35] 2021 3 5 5 3

Tran et al. [26] 2020 5 3 5 5

Hajizadeh [41] 2019 5 3 5 3

Wang et al. [34] 2018 3 3 3

Kohli and Johnson [25] 2011 5 3 5 5

Aissani et al. [29] 2009 5 3 5 3

Hanga and Kovalchuk [42] 2019 3 3 5 3

Barbosa et al. [43] 2019 3 3 5 3

Our study 2022 3 3 3 3
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3. Review Methodology

In this section, the method of review employed is described. Kitchenham and Char-
ters [44] standard guidelines were applied. The literature review was performed using a
relevant database based on the search strategy developed to identify relevant studies. The
review flowchart for the data collection process is depicted in Figure 1.

Figure 1. Flowchart for the data collection process.

Figure 2 demonstrates an overview structure of the review study which is categorized
based on sections. The categorization approach provides a better understanding of the study.

Figure 2. Structure of the review study.
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4. Dimensions of Machine Learning Algorithms

In this section, the dimensions of ML are described. Machine learning (ML) is the
study of mathematical models and algorithms that allow software applications to learn and
improve automatically through experience. ML is a branch of artificial intelligence, where
it deals with prediction or decision. ML algorithms use training data or mathematical
model sample data without developing a new task. Additionally, machine learning focuses
on data-driven modelling, which offers great value to oil and gas companies by digging
out complex data [45], where structured or unstructured data may result in big data
issues in oil and gas. Non-linearity and uncertainties make the oil and gas raw data
actionable knowledge [45]. Moreover, ML algorithms have been used to develop a novel
surrogate model using the random forest (RF) technique for estimating the simulation of
the Simulating Waves Nearshore (SWAN) model [46].

The mathematical equation for ML is provided based on selected review studies.
For example, k-means clustering approach is used for efficient dimensional reduction by
minimizing the square error over all K clusters. With uk as the centroid of the cluster, ck is
the main point of the cluster, and |Sk| refers to the number of samples in the cluster ck [47].

J =
K

∑
k=1

M

∑
x(l)∈ck

||x(l) − µk||2, uk =
∑x(l)∈ck x(l)

|Sk|
(1)

In addition, the silhouette index varies from −1 to 1; the value close to one refers to
the appropriate data within its clusters. The silhouette (i) value can be determined using
Equation (2).

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2)

Another classifier (ANN) is among the most widely used ML algorithms due to its
enhanced robustness. It also contains one input layer, one or more hidden layers, and one
output layer. The signal process could be donated, as in Equation (3).

Y = G(∑m
i=1wiXi + b) (3)

To address the ML issue of negative samples from unlabelled datasets and classifiers,
the training data is fit too tightly, which could lead to false results. The authors in [48]
proposed MSE as the loss function L to overcome various penalty factors for positive and
negative samples.

L
(
y, y′, w, b

)
− 1/K· (∑k

i=1
(
yp (i)− y′p(i)

)2
+ λ1 ·∑k

i=1
(
yN(i)− y′N(i)

)2

+λw ·∑∣∣∣∣w∣∣∣∣2 + λb ·∑∣∣∣∣b∣∣∣∣2 (4)

ML can be generalized through training and the demonstration of models for data
classification. In addition, normalization and standardization play an important role in
ML modelling by rescaling values and data. Moreover, feature engineering improves ML
prediction or unseen data after transforming raw data into features. However, to archive
efficient integrity results, data quality assurance has to be considered. Figure 3 clearly
provides an illustration of ML categorization based on a hierarchy flowchart.

4.1. Supervised Learning

Supervised learning algorithms are trained based on input data that have been labelled
for output. They analyse the training data which can be used for new sample data [49]. The
learning process can be categorized as classification and regression accordingly. The ML
classification categorizes a given dataset into classes which include structured and unstruc-
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tured data, where those classes can provide predication and detection after modelling. In
Chen et al. [50], a new ML classification model based on a support vector machine (SVM)
was proposed to calculate gas saturation in Shale reservoirs of the Chang 7 formation by
comparing the result with laboratory-measured values. In addition, a hybrid ML model
has been proposed which includes linear regression (LR) to predict and rate the efficiency
of water flooding during oil production [51].

Figure 3. Illustration of ML categories.

4.2. Unsupervised Learning

Unsupervised learning algorithms learn from the availability of label class, where all
the input samples are unlabelled. The learning process includes clustering and dimension
reduction. For example, Liu et al. [52] proposed an ocean reconstruction front based on the
K-means algorithm to archive hierarchical clustering sound speed profile (SSP). The study
also provides a method to verify the feasibility method from the perspective of transmission
loss (TL) calculations. Adding to this, a dimension reduction model has been proposed for
uncertainty quantification and reservoir calibration with less computation time [47].

4.3. Semi-Supervised Learning

Semi-supervised learning algorithms involve few amounts of labelled classes with
more unlabelled classes during training. It also classifies the problem of classification using
both labelled and unlabelled data. Semi-supervised learning clustering can be identified as
constraint clustering where there is an issue with creating a clustering based on labelled and
unlabelled data [53]. Furthermore, semi-supervised learning has been proposed for long
facies identification in carbonate reservoirs based on multiclass positive and unlabelled PU-
learning ML [48]. Conclusively, a new approach has been proposed for oil prediction using
a new graph, Laplacian, which is based on a semi-supervised clustering technique [54].
More recent evidence, as reported Salem et al. [55], indicates that semi-supervised learning
plays a vital role in addressing diverse problems in oil and gas industry digitalization. The
authors also identified the potential of semi-supervised learning in predicting well integrity
failure after learning.

4.4. Reinforcement Learning

Reinforcement learning algorithms involve a learning process with no label class but
which consists of reward value. However, it can be somewhere between supervised and
unsupervised learning. Dong et al. [56] proposed a deep reinforcement learning (DRL)
for automatic curve matching to achieve well-testing interpretation through evaluation
reservation parameters based on a double deep Q-network (DDQN). Gas turbine main-
tenance using an optimal part flow management approach has been proposed based on
reinforcement learning to overcome a sequential problem [57]. A recent study has indicated
the capabilities of reinforcement learning in the oil and gas industries. Nasir et al. [58]
presented a deep reinforcement learning which provides optimization and development
plans for reservoir models with less computation cost.
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5. Proposed Framework

In this section, the proposed machine learning model will be developed using the
workflow described in Figure 4: proposed research methodology. The work will start with
the problem definition stage, which is studying the existing Metocean data system as well
as the business needs/objectives. Each attribute of the data will be identified, and the
Metocean data for the solution is prepared accordingly. The next stage will be gathering and
preparation of data. This includes analysing and preparing for structuring and distributing
of the data. The data will be organized and well prepared to be ready for the next level.
Data conversion and aggregation will be conducted in this phase. The first training data set
will be utilized in this phase. By using a Gaussian-means algorithm, the Metocean data will
be classified into different distinct areas, while other data will then be chosen randomly,
using Equation (5). Fundamentally, kernel density estimation (KDE) will be represented as
K, with the σ as bandwidth. Thus, x as the weighing of the observation from a particular
point can be expressed as:

p(x) =
1
N

n

∑
n=1

(∣∣∣∣∣∣∣∣ x− xn

σ

∣∣∣∣∣∣∣∣2
)

, k(t) ∝ e−t/2 (5)

Figure 4. Proposed research methodology.

In the architectural integration and model development stage, algorithm development
and evaluation will be conducted. This consists of exploring and selecting the algorithm
and reporting the interpretation of the results. Testing of the dataset occur, after which the
training dataset will be run again, plus subsequent tests. Python programming language
and Hitachi Infrastructure Analytics Advisor will be used for application development. To
fully deploy a scalable system, cloud infrastructure is suggested to be developed in this
work, as the data will be collected from sensors in real time and non-real time. Therefore,
Software as a Service (SaaS) will act as a leveraging platform, such that we will exploit and
launch a better Metocean data system with AI Solutions. The proof of concept includes the
Metocean parameters (input and output) and component integration, while the decision
tree is the data-driven technique. Thus, a new predictive model will then be developed.

Conversely, training the data model in this work will rely on an unsupervised ma-
chine learning algorithm. The expectation–maximization (EM) algorithm will provide the
fundamental concepts in graphical models and inference algorithms on graphs. It will
simplify the iteration of parameters by optimizing the lower bound function. Estimating
the ML parameters in this model can be one of the anticipated contributions of this research.
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Therefore, for a model with latent/hidden variables x for the data points and y as the
observed variables, the lower bound can be considered as follows:

L(θ) = log p(y|θ) = log
∫

p(x, y|θ)dx (6)

= log
∫

q(x)
p(x, y|θ)

q(x)
dx (7)

≥
∫

q(x) log
p(x, y|θ)

q(x)
dx

de f
= F(q, θ) (8)

where q(x) is an arbitrary density function, while the lower bound F is the function of both
the density q(x) and the model parameters. As most of the Metocean data are the time
series data generated from offshore sensors, these data are unstructured. This research will
model the time series data using the state-space model (SSM). Equation (9) describes the
observation factors and hidden state’s joint probability. The sequence of observed data y1,
y2, y3, . . . can be generated from a sequence of hidden state variables x1, x2, x3 . . . . and X1,
X2, . . . . and XT is represented by X1−T:

p(x1:T,y1:T |θ) =
T

∏
t=1

p(xt|xt−1,θ)p(yt,|xtθ) (9)

During the stage of experimentation, a test harness will be employed, where test model,
test data, and evaluation of the new ML algorithm will begin. The performance will also be
determined in this phase. The incorporation of the new model with the existing Metocean
system will be determined. The memory size and parametrization of the system will
also be evaluated after confirming the robustness of the K-mean algorithm. Furthermore,
clustering, neural networks, and anomaly detection are all common algorithms used in
unsupervised machine learning. However, this project focuses on clustering (using K-Mean
algorithm). This is mainly because of the quality nature of Metocean data.

Operationalization stage: this phase includes the data interpretation, reporting ser-
vices, and generating results such as quality control (QC), environmental statistical analysis,
spectral analysis, etc., by Metocean users. Confirmation of successful interoperability and
data integration of the model will be determined in this operationalization stage. Finally, a
new integrated Metocean data system will be deployed, tested, and monitored.

6. The Need to Digitalize, Automate, Integrate Oil and Gas Data

In this section, the need for oil and gas data digitalization is described. Digitalization
acts as an enabler that brings value to all oil and gas stakeholders, especially at the time of
downtime [59]. Digitalization can be referred to as a way of restructuring digital infrastruc-
ture and communications by organizations or industries [60]. Therefore, digitalization is
a good business opportunity for the oil and gas industry, especially during the crush of
oil prices. For this reason, it was estimated that the net benefits of the oil and gas industry
due to digital transformation will be USD 945 billion over the decade to 2025 (cumulative
value 2016–2025) [59]. The oil and gas sector has been one of the most significant and
competitive economic sectors around the globe [61,62]. To have successful operations and
exploration success, the industry needs to sustain its production. Nonetheless, one of the
positive implications of an organization’s performance is that the organization sustains its
competitive advantage [63,64]. It is posited that “success in the future of oil and gas will
require the continued adaptation of the complex business model to unforeseen challenges”.
On this account, the competitiveness and the demand for digitalization (especially in the
AI and big data domains) have made the implementation necessary [65].



Appl. Sci. 2022, 12, 5690 9 of 21

Digitalization of Oil and Gas Using Machine Learning

Reviews on digitalization were conducted using ML on recent developments in oil and
gas. One of the findings revealed that oil and gas should leverage the new technological
developments with focus, agility, and collaborative teams of big data [41]. Another study
was conducted on evaluating the status of the data-driven approach in the oil and gas
industry, where historical data is used [45]. It was found that the data-driven approach
provides huge advantages in the industry over the conventional approach under certain
conditions. Unfortunately, it was also discovered that the approach for many industry
professionals remains fuzzy. Thus, it is clear that there is a need for further study of ML
in the oil and gas domain. Figure 5 shows a real-time dashboard illustration for web
application necessaries, functionality, analytics library, and web-based programming.

1 
 

 
  

Figure 5. Data communication and flow between field device, cloud server, and customer [66].

Keerqinhu et al. [67] attempted to solve issues of reciprocating compressors in the
petroleum industry. The findings suggested a system for fault diagnosis for reciprocating
compressors using ML techniques based on a learned dictionary. The system evaluated
5-year operations collected from offshore oil corporations in the cloud environment. Signif-
icantly, their proposed system showed better results and indicated 80% accuracy, which
can effectively diagnose potential faults in compressors. Similarly, research was conducted
by applying a machine learning approach for big data, sizing of metal-loss defects, and
failure risk analysis in oil and gas pipelines [68–70]. They adopted Levenberg–Marquardt’s
back-propagation learning algorithm [71]. They found a promising result with an estimated
accuracy of 86% (±10% error tolerance) and 89% (±15% error tolerance). A recent work
conducted by Yang et al. attempts to provide an elastically scalable cloud-based system
to solve big data issues for the upstream oil and gas industry with high performance.
Yang et al. [66] used machine learning and processed complex datasets in real time or
near real time effectively. Figure 6 presents the thermal analysis based on distributed
temperature sensing (DTS) measurements on total production. The proposed integrated
system contains several services, including legacy oil and gas data. However, this work
has not been integrated with meteorological or oceanographic data. There is no review
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and approval process in the system, which reduces the quality of the proposed monitoring.
Hence, a system that will incorporate digitalization, monitoring, and data integration of
meteorological and oceanographic or Metocean data is necessary.

 

2 

 
  

Figure 6. Gas production profiling using DTS data [66].

7. Metocean Data System

This section presents an overview of the Metocean data system. Metocean conditions
are directly related to the offshore project, project operation, and maintenance [72].

Metocean Data System in Malaysia

Oil and gas companies use Metocean data as the main information source for deter-
mining the time and other weather factors. The users that benefit from these data comprise
the participants of oil and gas companies, the partners, the contributors, as well as the
research institutes, and are of extreme value [73–75]. The Metocean contributors are BP,
Chevron, PETRONAS, Statoil, Total and research institutes. In Malaysia, demographically,
the main Metocean contributor in Malaysia is PETRONAS, which is the Malaysian-owned
oil and gas company that is among the Metocean contributors. It has enormous resources
with diverse data for scientific research but they have not implemented AI or machine
learning technologies in its Metocean data system. The information supplied by Metocean
to users is primarily for oil spill response, satellite locations, environmental platforms and
other types of drifting buoys [76]. The Metocean database has high quality of oil and gas
datasets which are structured on uniform formats of ASCII, NetCDF and indexed upon the
ISO 19115 metadata standard [73]. Metocean has become an industry that handles large
amounts of data and metadata which yield immense benefits to oil and gas stakeholders.
The results of the Metocean data are in the form of text or graph formats. Undeniably, the
Metocean data are the resources for petroleum industries as well as human life activities,
which are therefore necessary to be monitored, automated, and interoperable for the benefit
of its users.

As PETRONAS remains the major oil and gas company in Malaysia, it officiously intends
to diversify the energy sector beyond 2020 with a high competitive advantage [77,78]. More
recently, as reported in the PETRONAS activity outlook 2019–2021, “PETRONAS is actively
seeking ways to deploy technology in terms of digital, data analytics, automation, etc.” [79].
Thus, PETRONAS must make the Metocean data system fully autonomous and digitalized to
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achieve its goal effectively. In addition, some ML initiatives have been seen in the oil and gas
sector. While the sector wants to transform into a fully digitally data-driven industry, it is not
enough to solve the continuous problem of integrating all oil and gas data over the globe using
AI or ML. This indicates the presence of limited integration and few empirical studies of ML,
digitalization, and data integration in the oil and gas sector. Hence, the need to fill this gap is
apparent. The Metocean data system flow information for assessment process based on risk
inspection technique is illustrated in Figure 7. 

3 

 

Figure 7. Metocean data assessment process for risk-based inspection technique [80].

A growing body of literature has investigated the Metocean data system in Malaysia.
Lai et al. [81] investigated the effectiveness of genetic programming (GA) and support vector
machine (SVM) learning models in predicting monthly sea-level variations by comparing
model accuracy performance. Adding to this, the model has been validated using datasets
from Tioman Island, Kerteh, and Tanjung sedili, Malaysia. Moreover, other methods have
been applied in Metocean data systems by providing semantic web technologies for the
oil and gas industries, which include an architecture for data integration. The application
database utilized includes RDF query (D2RQ) for setting performance. The study data were
obtained from Malaysia’s oil and gas industries [82]. More recent studies have investigated
Metocean data systems around the globe. Qiao et al. [83] implemented a numerical model
using Mike 21 to estimate Metocean conditions by evaluating hurricanes and hindcasts on
the United States Atlantic coast.

8. Machine Learning for Metocean Data Integration

In this section, the impact of ML in Metocean data integration is elucidated. ML
algorithms play a vital role in Metocean data integration by improving accuracy with com-
putational performance for forecasted wave conditions, wind parks, offshore modelling,
and many more. Chen et al. [46] proposed the ML technique for Metocean data integration
to derive spatial wave data. However, ML algorithms can be applied for Metocean data
model comparison to predict offshore platform integrity, model structure integrity, and
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geohazard data [84]. In Wyatt [85], the author investigated the Metocean data parameters
towards HF radar wind speed and measurement using various ML techniques. However,
SVM regression provides efficient results in wind speed estimations. The proposed method
has been validated using different radar systems at different locations [85]. In addition, ML
algorithms have been used in the prediction of Metocean data in Korea Strait, where feedfor-
ward neural network (FNN) and long-short term memory (LSTM) models have been used
for the prediction of wave height. The proposed model has been validated using Metocean
data from 2012–2020 from the Korea Institute of Ocean Science and Technology [86].

8.1. ML for Metocean Forecasters Data

Metocean forecasting data are models that provide in-depth reliable weather informa-
tion in an ocean. In addition, they provide analysis, planning, and securing of offshore
operations. ML-based techniques improve the performance of Metocean forecasting data.
For example, Martinez-Perurena et al. [87] designed a forecast of Metocean data for a
marine renewable energy system using hybrid ML techniques which include support
vector regression and random forest. Moreover, a forecasting model has been proposed for
Metocean prediction using linear regression and H2O auto-ML techniques for knowledge
enrichment [88,89].

8.2. ML for Metocean Spatial Wave Data

Metocean spatial wave data provide an accurate spatial analysis using computational
models to predict wave situations across the ocean. This prediction can be improved
using ML-based techniques. Chen et al. [46] proposed ML techniques to drive spatial
wave data using a novel surrogate SWAN numerical model based on random forest to
replicate the spatial nearshore wave data. In addition, the model demonstrated ML abilities
for correlating the spatial ocean waves through optimal spatial gridding and provided
high-resolution distribution in real time [46].

8.3. ML for Metocean Data Linked

The Metocean data link provides structured interlinks with other data to become useful
in semantic queries such as providing information to petroleum and research industries.
However, Metocean data or oceanographic datasets are scattered when published, and
processing around the globe due to their huge amount leads to linked data and semantic
web capabilities [90]. ML capabilities can be used to improve data-linked processing.
Colin et al. [91] proposed a semantic segmentation containing ten Metoceanic processing
large-quality image-level ground truths using deep-learning techniques.

8.4. ML for Metocean Conditions during Hurricanes

Metocean conditions in hurricanes have historically damaged the environment, which
can occur by multiple parameters such as significant surge height and wave height that can
vary in time and cross-correlation [23]. However, Metocean systems are remote complexes
which lead to hazards such as hurricanes that affect platforms [84]. For example, in 2014,
significant damage to the Taylor energy oil platform was caused by Hurricane Ivan after
being installed for 20 years [92]. ML techniques can be applied for hurricane predictions.
Asthana et al. [93] proposed an ML model for the prediction of Atlantic hurricane activity
based on a convolutional neural network (CNN) approach.

9. Discussion

In this section, we discuss the findings of this research study. The critical analysis and
evaluation for the integration of Metocean data intelligent operations using ML models
based on empirical studies have been revealed. The oil and gas industry’s business objec-
tive is to digitalize its production and development, which cannot be achieved without the
implementation of ML techniques and big data analytics. In addition, the transformation
and integration of existing Metocean architecture for oil and gas data operation can be
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enhanced with the advancement of ML techniques. The Metocean data development and
integration significantly improved after applying ML techniques such as better predic-
tion, providing efficient results, saving time, reducing system complexity, and reducing
operational overheads. Moreover, the ML methods vary in different categories with its
subsection known as DL in Metocean data analytics and integration.

As shown in Table 2, we indicated AI models that could fit in the Metocean data
system. AI models have been the environment for creating, training, and implementing
models based on available datasets for better decision making and predictions, for exam-
ple, classification, regression, and clustering, where authors compare several ML models
which include ANN, XGBoost, SVM, and statistical regression for ship power modelling
with measuring Metocean condition and hull maintenance [94,95]. Convolutional neural
network (CCN) models are part of deep neural networks which play vital roles in image
classification problems through their multiple convolution layers with kernels to detect
complex features. Adding to this, a novel CCN model has been applied for failure identi-
fication of mooring line and turret-moored FPSO systems [96]. Random forests (RF) are
ML models based on trees assembled for prediction with high effective performance to
solve regression and classification problems. For example, RF models have been developed
to predict spatial distribution and frequency groundings of a ship [97]. As the modern
technique provides an avenue for data-driven modelling using various methods, genetic
programming (GP) techniques have evolved programs that can develop and compute solu-
tions to human problems which cannot be solved directly. For example, the GP technique
has been used for partial differential equations (PDE), discovery of Metocean processing,
and acoustics function discovery [98]. The Bayesian framework for ML has been applied
through Gaussian processing (GP) for efficient integrity management (IM) of steel lazy
wave risers (SLWRs). However, GP is genetically supervised learning for probabilistic
classification problems and regression [99]. Lastly, the state-of-art ML presented is efficient
and effective in performance, which includes predictions, classifications, and decisions. All
models discussed can fit the Metocean data system for better forecasting, integration, and
intelligent operations.

As shown in Table 3, state-of-art studies have been listed with insight on Metocean
data integration in the oil and gas domain using ML techniques. Notably, ANN, SVM, RF,
and XGB are the most used models for Metocean data analytics and integration due to their
efficient performance. However, ML performance towards the prediction of Metocean data
interoperability for intelligent operations can be enhanced through hyperparameter tuning
and feature selection techniques for better performance.

Table 2. List of some selected AI models that could fit the Metocean data system.

Authors Year Model Application

Lang et al. [94] 2022
Artificial neural network (ANN) Classification, clustering

Support vector machine (SVM) Classification

Extreme gradient boosting (XGBoost) Classification, regression

Janas et al. [96] 2021 Convolutional neural network (CNN) Classification

Rawson et al. [97] 2021 Random forest (RF) Classification, regression

Hvatov and Maslyaev [98] 2020
Genetic programming (GP) Symbolic regression, classification

Sparse regression Classification

Hejazi et al. [99] 2020 Gaussian processes (GP) Classification, regression

Park et al. [86] 2021 long-short term memory (LSTM) Classification

Tadjer et al. [47] 2021 Gaussian processes (GP) Classification, regression
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Table 3. List of ML state-of-art studies with their pros and cons.

Authors Year Application Technique Pros Cons

Syed et al. [100] 2022 Oil and gas production GBRT
- Handles missing data
- Optimization flexibility

- High computational complexity
- Less interpretable

Dyer et al. [84] 2022 Metocean conditions GBRT, ANN
- Handles missing data
- Trustworthy predictions

- High computational complexity
- High processing time for

large NN

Mingyu et al. [101] 2021 Oil and gas
development DT, RF

- Optimization flexibility
- Improved accuracy

- High computational complexity
- High training time

García-Alba et al. [102] 2021 Metocean conditions DNN - Enhanced robustness - Accuracy detection
need enhancement

Maslyaev et al. [103] 2020 Metocean conditions Sparse regression
- Works well on

non-linear problems
- Compulsory to apply

feature scaling

Alsaihati et al. [104] 2020 Oil and gas drilling RF

- Improved accuracy
- Works well with

categorical and
continuous values

- High computational power
- High training time

Brown et al. [105] 2020 Oil and gas exploration NN, XGBoost
- Handles missing data
- Trustworthy predictions

- Trustworthy predictions
- High computational complexity

Fan et al. [106] 2020 Metocean conditions LSTM, SVM
- High dimensional space
- Good in time

series prediction

- Gradient exploding
- Interpretation of result

needs enhancement

Orrù et al. [107] 2020 Oil and gas
reliability/maintenance SVM, MLP

- Capable of fault tolerance
- Parallel processing capability - High computational complexity

Aldosari et al. [108] 2020 Oil and gas inspection ANN, GPR
- Trustworthy predictions
- Prediction is probabilistic

- High processing time for
large NN

- Efficiency lose in high
dimensional spaces

Wang et al. [109] 2020 Oil and gas LR

- Works well with classifying
unknown records

- Good in interpreting
model coefficient

- Constructed linear boundaries
- Limited to predict only

discrete functions

Alharam et al. [110] 2020 Oil and Gas Inspection RF

- Improved accuracy
- Works well with

categorical and
continuous values

- High computational power
- High training time

Deeva et al. [111] 2019 Metocean Sparse regression
- Works well on

non-linear problems
- Compulsory to apply

feature scaling

Granado et al. [112] 2019 Metocean BN - -

Abbas et al. [113] 2019 Oil and gas drilling SVM
- Efficient memory
- High dimensional space

- Interpretation of result
needs enhancement

Khan et al. [114] 2019 Oil and gas production ANN - Trustworthy predictions - High processing time for
large NN

Sousa et al. [115] 2019 Oil and gas
supply chain ANN - Trustworthy predictions - High processing time for

large NN
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Table 3. Cont.

Authors Year Application Technique Pros Cons

Paltrinieri et al. [116] 2019 Oil and gas
risk management DNN - Enhanced robustness - Accuracy detection

needs enhancement

Tings et al. [117] 2019 Metocean LR

- Works well with classifying
unknown records

- Good in interpreting
model coefficient

- Construct linear boundaries
- Limited to predict only

discrete functions

Vychuzhanin et al. [118] 2018 Metocean CNN
- High accuracy in

image recognition
- Weight sharing

- High training data are required

10. Limitation of the Study

Our review study comprehensively summarizes the deep insight on Metocean data
interoperability for intelligent operations using ML techniques. Consequently, certain ML
techniques have not been included, especially those under DL methods. After a critical
analysis, it was revealed that some proposed models are weak due to the ML method and
data analysis procedure used, which can lead to how the model performed.

In addition, each proposed technique has certain issues which have not yet been
resolved. For example, some studies are having problems with datasets, feature reports,
predictive features, and high-quality data. Our study has the potential for further investiga-
tion to provide a comparison for the state-of-art studies model performance and efficiency.
Adding to this, several aspects of Metocean in oil and gas development are excluded. Lastly,
the meta-survey studies have considered published articles between 2009 and 2022.

The current limitation can be overcome by implementing additional AI models based
on DL algorithms such as CCN, RNN, GAN, and DBN to investigate Metocean data condi-
tions. The proposed techniques/models can also be improved through hyperparameter
turning or feature selection techniques. Adding to this, data quality assurance has to be
considered in selecting datasets. However, relevant related studies before 2019 can be
referred to, and other database sources can be explored.

11. Recommendation for Future Study

Owing to the digital transformation of the oil and gas sector, which includes Metocean
data interoperability for intelligent operations using AI technique, further investigation of
existing ML approaches is recommended. Additionally, AI algorithms are moving towards
statistical reasoning by introducing next-generation approaches to automate the Metocean,
including oil and gas development. Our result revealed that different AI techniques have
been proposed and implemented based on ML models which include hybrid methods of
different algorithms.

However, there is a need to improve the existing intelligent framework by introducing
different combinations of AI models for better performance. Therefore, further work needs
to concentrate on selecting suitable preferred ML models, high-quality data, real-world
datasets, and improving result accuracy. Lastly, problems of imbalanced data need to be
considered due to the huge amount of Metocean data.

12. Conclusions

In this paper, a comprehensive review of development for Metocean data integration,
interoperability based on intelligent operations, and automation using ML techniques is
presented. The existing Metocean system generates data using sensors such as wave buoy,
anemometer and acoustic doppler current profiler (ADCP) manually. Additionally, these
data which appear in ASCII format to the Metocean system are also manual and silos.
There is no fundamental method, model, or algorithm that allows the system to reason and
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automate intelligently. This slows down provisioning while the monitoring element of the
Metocean data path is partial.

However, with the current oil and gas crash, digitalization is a good opportunity
that will bring value to all its stakeholders, which shows that there is a need to continue
in digitalization of the oil and gas sector to achieve the expected, or more of the, stated
value by the year 2025. Moreover, the digitalization of the oil and gas production-based
industries is driven by enabling technologies which include ML and big data analytics. ML
is one of the crucial and key enabling tools that oil and gas industries are now focusing on
for digital transformation implementation which allows the industry to automate, enhance
production, and have less human capacity.

We summarized several research studies exploring the needs of ML in oil and gas
industries by investigating in depth the integration of Metocean data interoperability
for intelligent operations and automation using an ML-based approach. In addition, a
comparative analysis of the current uses of ML algorithms in the oil and gas industries
was provided, and we reviewed the transformation and integration of existing Metocean
architecture for the use of oil and gas data operators through automation. Lastly, a new
model and its integration with the existing Metocean data system using an ML algorithm
to monitor and interoperate with maximum performance was proposed.
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Abbreviations

The following abbreviations are used in this manuscript:

ADCP Acoustic doppler current profiler
AI Artificial intelligence
AARI Antarctic Research Institute
ANN Artificial neural network
DL Deep learning
DNN Deep neural network
DBN Deep belief network
CNN Convolutional neural network
DDQN Double deep Q-network
DT Decision tree
EM Expectation maximization
FNN Feedforward neural network
GA Genetic algorithm
GAN Generative adversarial network
GTU Gated recurrent unit
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GP Genetic programming
GP Gaussian processing
GBRT Gradient Boosted Regression Trees
KDE Kernel density estimation
LR Linear regression
LR Logistic regression
LSTM Long short-term memory
ML Machine learning
MLP Multilayer perception
NN Neural network
PDE Partial differential equations
QC Quality control
US United States
RNN Recurrent neural network
RF Random forest
SWAN Simulating Waves Nearshore
SVM Support vector machine
SaaS Software as a Service
SSM State-space model
SLWRs Steel lazy wave risers
TL Transmission loss
XGBoost Extreme Gradient Boosting
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